Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of H-PAN Membrane
2.3. Characterization
2.4. Preparation of Essential Oil-in-Water Emulsion
2.5. Oil/Water Separation
2.6. Membrane Fouling Mechanism
2.7. Determination of Rejection Rate
2.8. GC-MS Analysis of the Enriched EON
3. Results
3.1. Characterization
3.2. Wetting Behavior
3.3. Nutmeg Oil-in-Water Emulsion Separation
3.4. GC-MS Analysis of the Enriched EON
3.5. The Applicability of the PAN and H-PAN Membranes for Other TCM Essential Oil-in-Water Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Guo, L.; Cui, Y.; Xiao, R.; Yu, Z.; Jin, Y.; Fu, R.; Zhang, J.; Xu, T.; Chen, J.; et al. Quality suitability modeling of essential oil in Chinese Materia Medica—Based on maximum entropy and independent weight coefficient method: Case studies of Atractylodes lancea, Angelica sinensis, Curcuma longa and Atractylodes macrocephala. Ind. Crops Prod. 2019, 142, 111807. [Google Scholar] [CrossRef]
- Unusan, N. Essential oils and microbiota: Implications for diet and weight control. Trends Food Sci. Technol. 2020, 104, 60–71. [Google Scholar] [CrossRef]
- Lauriola, M.M.; Sena, P.; De Bitonto, A.; Corazza, M. Irritant contact dermatitis after a curious therapeutic use of oregano essential oil. Contact Dermat. 2020, 83, 129–130. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Simal-Gandara, J.; Murugan, M.; Dhanya, M.K.; Pandian, A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytother. Res. 2022, 36, 2839–2851. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.T.; Vu, N.K.; Tran, T.H.; Kim, J.A.; Woo, M.H.; Min, B.S. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: An updated review. Arch. Pharmacal Res. 2020, 43, 1067–1092. [Google Scholar] [CrossRef] [PubMed]
- Mickus, R.; Jančiukė, G.; Raškevičius, V.; Mikalayeva, V.; Matulytė, I.; Marksa, M.; Maciūnas, K.; Bernatonienė, J.; Skeberdis, V.A. The effect of nutmeg essential oil constituents on Novikoff hepatoma cell viability and communication through Cx43 gap junctions. Biomed. Pharmacother. 2021, 135, 111229. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.K.; James, B.; Varughese, S.; Nair, M.S. Phytochemical investigation on Myristica fragrans stem bark. Nat. Prod. Res. 2019, 33, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Trifan, A.; Zengin, G.; Korona-Glowniak, I.; Skalicka-Woźniak, K.; Luca, S.V. Essential oils and sustainability: In vitro bioactivity screening of Myristica fragrans Houtt. post-distillation by-products. Plants 2023, 12, 1741. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ali, E.F.; Mostafa, N.Y.; Mazrou, R. Shelf-life extension of sweet basil leaves by edible coating with thyme essential oil encapsulated chitosan nanoparticles. Int. J. Biol. Macromol. 2021, 177, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Figureoli, A.; Marino, T.; Galiano, F.; Blasi, E.; Belsito, E.L.; Liguori, A.; Leggio, A.; Rombola, L.; Morrone, L.A. Potentiality of polymeric membranes in aromatherapy: Application to bergamot essential oil. Sep. Purif. Technol. 2018, 207, 166–178. [Google Scholar] [CrossRef]
- Zhu, H.; Tang, Z.; Guo, L.; Liu, H.; Pan, L.; Li, B.; Xing, W.; Gao, C. Study on oil-water separation principle and practical application of new membrane process for high efficiency enrichment of traditional Chinese medicine essential oil. J. Nanjing Univ. Tradit. Chin. Med. 2019, 35, 491–495. [Google Scholar] [CrossRef]
- Ma, H.; Hu, Y.; Yang, H.; Zhu, L.; Wang, G.; Zeng, Z.; Wang, L. In situ mussel-inspired Janus membranes using catechol and polyethyleneimine as the additives for highly efficient oil/water emulsions separation. Sep. Purif. Technol. 2021, 262, 118310. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Baldasso, C.; Tessaro, I.C. Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr. Polym. 2020, 247, 116676. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Fan, T.; Cui, W.; Li, Y.; Ramakrishna, S.; Long, Y. Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv. Fiber Mater. 2022, 4, 938–958. [Google Scholar] [CrossRef]
- Li, C.; Ren, L.; Zhang, C.; Xu, W.; Liu, X. TiO2 coated Polypropylene membrane by atomic layer deposition for oil–water mixture separation. Adv. Fiber Mater. 2021, 3, 138–146. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Li, J.; Huang, L.; Sun, H.; Hao, Y.; Bai, L.; Pan, J.; Gao, X. Enhanced oil–water separation via superhydrophobic electrospun carbon fiber membrane decorated with Ni nanoclusters. Sep. Purif. Technol. 2022, 287, 120617. [Google Scholar] [CrossRef]
- Qi, G.C.; Guo, K.Y.; Yang, J.; Wang, Y.H.; Wang, Z.Y.; Yuan, Z.H. A stable underwater superoleophobic membrane constructed by CuO oriented rods and PAA water-adsorbent resin for fast and high efficient oil-water separation. Sep. Purif. Technol. 2022, 294, 1211175. [Google Scholar] [CrossRef]
- Gopika, S.K.; Subramanian, R. Recovery of bioactive essentials from byproduct of curcumin manufacture by membrane processing. Ind. Crops Prod. 2020, 158, 112984. [Google Scholar] [CrossRef]
- Du, C.; Du, J.R.; Feng, X.; Wang, J. Green extraction of perilla essential organic compounds by pervaporation. Sep. Purif. Technol. 2021, 261, 118281. [Google Scholar] [CrossRef]
- Xiao, H.; Zhong, Z.; Low, Z.-X.; Huang, Y.; Sun, Y.; Yao, Z. Separation of sulfoether compounds in garlic oil by integrated membrane technologies. J. Food Process Eng. 2016, 39, 591–600. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Li, B.; Pan, L.; Fu, T.; Zhang, Y.; Song, Z.; Tang, Z.; Zhu, H. Separation of essential oil from Pogostemon cablin based on ultrafiltration and vapor permeation membrane methods. Chin. Tradit. Herb. Drugs 2021, 52, 1582–1590. [Google Scholar]
- Vatanpour, V.; Pasaoglu, M.E.; Kose-Mutlu, B.; Koyuncu, I. Polyacrylonitrile in the preparation of separation membranes: A review. Ind. Eng. Chem. Res. 2023, 62, 6537–6558. [Google Scholar] [CrossRef]
- Yan, X.; Wang, Y.; Huang, Z.; Gao, Z.; Mao, X.; Kipper, M.J.; Huang, L.; Tang, J. Janus polyacrylonitrile/carbon nanotube nanofiber membranes for oil/water separation. ACS Appl. Nano Mater. 2023, 6, 4511–4521. [Google Scholar] [CrossRef]
- Mai, Z.; Fan, S.; Wang, Y.; Chen, J.; Chen, Y.; Bai, K.; Deng, L.; Xiao, Z. Catalytic nanofiber composite membrane by combining electrospinning precursor seeding and flowing synthesis for immobilizing ZIF-8 derived Ag nanoparticles. J. Membr. Sci. 2022, 643, 120045. [Google Scholar] [CrossRef]
- Long, Q.; Chen, J.; Wang, Z.; Zhang, Z.; Qi, G.; Liu, Z.-Q. Vein-supported porous membranes with enhanced superhydrophilicity and mechanical strength for oil-water separation. Sep. Purif. Technol. 2021, 254, 117517. [Google Scholar] [CrossRef]
- Li, L.; Xiang, Y.; Yang, W.; Liu, Z.; Cai, M.; Ma, Z.; Wei, Q.; Pei, X.; Yu, B.; Zhou, F. Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. J. Colloid Interface Sci. 2020, 575, 388–398. [Google Scholar] [CrossRef]
- Teng, D.; Zhao, T.; Xu, Y.; Zhang, X.; Zeng, Y. The zein-based fiber membrane with switchable superwettability for on-demand oil/water separation. Sep. Purif. Technol. 2021, 263, 118393. [Google Scholar] [CrossRef]
- Xue, N.; Cui, Y.; Xiao, H.; Wang, Y.; Huang, Y.; Huang, X.; Shi, B. Collagen fiber membrane as multi-functional support enabled rational design of ultrahigh-flux separation membrane for the remediation of oil contamination in water. J. Hazard. Mater. 2022, 432, 128649. [Google Scholar] [CrossRef]
- D’Auria, M.; Bellocchi, D.; Battellocchi, G.; Monachino, C.; Guidobaldi, E.; Marucci, F.; Billi, L. Composition and seasonal variation of essential organic compounds in Santolina etrusca (Lacaita) Marchi & D’Amato found at Acquapendente (Viterbo, Central Italy). Nat. Prod. Res. 2023, 37, 3310–3313. [Google Scholar] [CrossRef]
- Khalid, K.A.; Elsayed, A.A.A.; El-Gohary, A.E.; El-Garf, I.A.; Sabry, R.M. Chemical composition of essential oils isolated from aerial parts of some wild herbs growing in arid regions of Egypt. J. Essent. Oil Bear. Plants 2021, 24, 1269–1278. [Google Scholar] [CrossRef]
- Bitterling, H.; Mailänder, L.; Vetter, W.; Kammerer, D.R.; Stintzing, F.C. Photo-protective effects of furocoumarins on terpenes in lime, lemon and bergamot essential oils upon UV light irradiation. Eur. Food Res. Technol. 2022, 248, 1049–1057. [Google Scholar] [CrossRef]
- Wu, Y.; Wan, N.; Liu, Y.; Lin, R.; Zhang, Y.; Guo, D.; Liao, J.; Zhou, T.; Wu, Z.; Yang, M. Influencing factors, changing mechanisms and protection strategies of essential oil from traditional Chinese medicine. Chin. Tradit. Herb. Drugs 2022, 53, 6900–6908. [Google Scholar] [CrossRef]
- Hermia, J. Constant pressure blocking filtration laws-application to power-law non-newtonian fluids. Trans. Inst. Chem. Eng. 1982, 60, 183–187. [Google Scholar]
- Shams, H.; Alavi Moghaddam, M.R.; Maknoon, R.; Mąkinia, J.; Hasani Zonoozi, M. Fouling mechanisms in anoxic-aerobic sequencing batch membrane bioreactor based on adapted Hermia models and main foulant characteristics. J. Environ. Manag. 2022, 323, 116146. [Google Scholar] [CrossRef]
- Meng, X.; Luosang, D.; Meng, S.; Wang, R.; Fan, W.; Liang, D.; Li, X.; Zhao, Q.; Yang, L. The structural and functional properties of polysaccharide foulants in membrane fouling. Chemosphere 2021, 268, 129364. [Google Scholar] [CrossRef]
- Deng, E.; Chen, X.; Rub, D.; Lin, H. Modeling and mitigating fouling of microfiltration membranes for microalgae dewatering. Sep. Purif. Technol. 2023, 315, 123707. [Google Scholar] [CrossRef]
- Chen, Y.; Nan, J. A strategy to alleviate membrane fouling by optimizing the structure of the cake layer formed by flocs deposited directly on the membrane in the ultrafiltration process through coagulation and nanoscale Fe3O4/Fe3O4@SiO2 load. J. Membr. Sci. 2023, 680, 121729. [Google Scholar] [CrossRef]
- Zhang, X.; Ying, R.; Chen, X.; Li, Q.; Xu, J.; Qiu, J.; Kong, Y.; Zhang, Y.; Shao, J.; Zhu, F.; et al. A novel membrane-based integrated process for baicalin recovery from TCM Pudilan wastewater. J. Water Process Eng. 2023, 53, 103868. [Google Scholar] [CrossRef]
- Garcés, R.; de Andrés-Gil, C.; Venegas-Calerón, M.; Martínez-Force, E.; Moreno-Pérez, A.J.; Salas, J.J. Characterization of sunflower seed and oil wax ester composition by GC/MS, a final evaluation. LWT-Food Sci. Technol. 2023, 173, 114365. [Google Scholar] [CrossRef]
- Abu-Saied, M.; Fahmy, A.; Morgan, N.; Qutop, W.; Abdelbary, H.; Friedrich, J.F. Enhancement of poly (vinyl chloride) electrolyte membrane by its exposure to an atmospheric dielectric barrier discharge followed by grafting with polyacrylic acid. Plasma Chem. Plasma Process. 2019, 39, 1499–1517. [Google Scholar] [CrossRef]
- Qi, J.; He, X.; Lu, Q. Novel chelating polyacrylonitrile membrane for efficient capture of Cu2+, Pb2+ and Fe3+. Chem. Eng. J. 2022, 450, 138203. [Google Scholar] [CrossRef]
- Gu, Z.; Yang, Z.; Guo, X.; Qiao, Z.; Zhong, C. Vacuum resistance treated ZIF-8 mixed matrix membrane for effective CH4/N2 separation. Sep. Purif. Technol. 2021, 272, 118845. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Y.; Wang, C.; Xie, W.; Jiao, Y.; Shan, L.; Gao, P.; Wang, H.; Luo, S. Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation. J. Membr. Sci. 2022, 644, 120115. [Google Scholar] [CrossRef]
- Tu, Y.-M.; Samineni, L.; Ren, T.; Schantz, A.B.; Song, W.; Sharma, S.; Kumar, M. Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. J. Membr. Sci. 2021, 620, 118968. [Google Scholar] [CrossRef]
- Asandulesa, M.; Chibac-Scutaru, A.L.; Culica, M.E.; Melinte, V.; Coseri, S. Cellulose-based films with enhanced load of nitrogen containing heterocycles: The impact on the surface morphology and proton conductivity. Appl. Surf. Sci. 2023, 607, 155077. [Google Scholar] [CrossRef]
- Yang, X.; Hsia, T.; Merenda, A.; Al-Attabi, R.; Dumee, L.F.; Thang, S.H.; Kong, L. Constructing novel nanofibrous polyacrylonitrile (PAN)-based anion exchange membrane adsorber for protein separation. Sep. Purif. Technol. 2022, 285, 120364. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Y.; Song, Y.; Qiu, X.; Wang, S.; Sun, P. Optimization of electron transport pathway: A novel strategy to solve the photocorrosion of Ag-based photocatalysts. Environ. Sci. Technol. 2023, 57, 18626–18635. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhu, H.; Wan, P.; Xu, F.; Wang, C.; Lu, S.; Zhang, Y.; Fan, H.; Xu, J. Freestanding and ultra-flexible PAN/ZIF-67 hybrid membrane with controlled porosity for high-performance and high-safety lithium batteries separator. Adv. Fiber Mater. 2022, 4, 1511–1524. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W.; Wang, M.; Zhang, H.; Li, J.; Luo, W. Fabrication of GO/PAN nanofiber membrane grafted with chitosan as efficient adsorbent for dye removal. J. Polym. Environ. 2022, 30, 2943–2954. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Li, L.; Wang, H.; Dong, X.; Pan, Y.; Wang, T. Insight into the influences of thermal crosslinking on the transition from polyacrylonitrile based ultrafiltration membrane to organic solvent nanofiltration membrane. J. Membr. Sci. 2023, 679, 121694. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, X.; Jia, N.; Cheng, L.; Liu, L.; Gao, C. Superwetting oil/water separation membrane constructed from in situ assembled metal–phenolic networks and metal–organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 10000–10008. [Google Scholar] [CrossRef] [PubMed]
- Niknejad, A.S.; Kargari, A.; Namdari, M.; Pishnamazi, M.; Barani, M.; Ranjbari, E.; Sallakhniknezhad, R.; Bazgir, S.; Rasouli, M.; McAvoy, D. A scalable dual-layer PAN/SAN nanofibrous membrane for treatment of saline oily water using membrane distillation. Desalination 2023, 566, 116895. [Google Scholar] [CrossRef]
- Niu, B.; Yang, L.; Meng, S.; Liang, D.; Liu, H.; Yang, L.; Shen, L.; Zhao, Q. Time-dependent analysis of polysaccharide fouling by Hermia models: Reveal the structure of fouling layer. Sep. Purif. Technol. 2022, 302, 122093. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Wang, Q.; Zhang, X.; Peng, J.; Zhang, Y.; Wu, Q.; Duan, J.; Mao, X.; Tang, Z.; et al. Insights into the penetration of PhACs in TCM during ultrafiltration: Effects of fouling mechanisms and intermolecular interactions. Sep. Purif. Technol. 2022, 295, 121205. [Google Scholar] [CrossRef]
Model | Equations a |
---|---|
Complete blocking model | |
Intermediate blocking model | |
Cake filtration model | |
Standard blocking model |
Heating Rate (°C/min) | Temperature (°C) | Hold Time (min) |
---|---|---|
40 | ||
5 | 70 | 5 |
6 | 160 | 5 |
6 | 200 | 0 |
Membrane | Atomic Content (At.%) | ||
---|---|---|---|
C/% | N/% | O/% | |
PAN | 76.35 | 9.94 | 13.71 |
H-PAN | 73.76 | 15.67 | 10.57 |
Sample | PAN | H-PAN | ||
---|---|---|---|---|
The Blocking Model | R2 | The Blocking Model | R2 | |
0.07% | Cake filtration model | 0.9894 | Standard blocking model | 0.9709 |
0.1% | Cake filtration model | 0.9576 | Standard blocking model | 0.9479 |
0.2% | Cake filtration model | 0.9770 | Standard blocking model | 0.9416 |
0.3% | Cake filtration model | 0.9846 | Complete blocking model | 0.8351 |
0.5% | Cake filtration model | 0.9425 | Complete blocking model | 0.7916 |
1% | Cake filtration model | 0.8931 | Complete blocking model | 0.7851 |
Actual emulsion | Cake filtration model | 0.7984 | Complete blocking model | 0.8432 |
Sample | Similarity |
---|---|
SD | 1.000 |
PAN | 0.988 |
H-PAN | 0.990 |
Number | RT/min | Name | CAS | Formula | Relative Amounts/% | ||
---|---|---|---|---|---|---|---|
SD | PAN | H-PAN | |||||
1 | 6.366 | α-Thujene | 2867-05-2 | C10H16 | 2.33 | 2.52 | 2.18 |
2 | 6.598 | α-Pinene | 80-56-8 | C10H16 | 9.28 | 9.63 | 8.93 |
3 | 7.073 | Camphene | 79-92-5 | C10H16 | 0.35 | 0.32 | 0.27 |
4 | 7.955 | Bicyclo[2.2.1]heptane, 7,7-dimethyl-2-methylene- | 471-84-1 | C10H16 | 15.53 | 16.84 | 15.54 |
5 | 8.113 | (+)-Camphene | 5794-03-6 | C10H16 | 8.97 | 9.75 | 9.27 |
6 | 8.58 | β-Myrcene | 123-35-3 | C10H16 | 2.42 | 2.78 | 2.73 |
7 | 9.274 | α-Phellandrene | 99-83-2 | C10H16 | 0.74 | 0.84 | 0.85 |
8 | 9.4 | 3-Carene | 13466-78-9 | C10H16 | 0.62 | 0.71 | 0.69 |
9 | 9.81 | (+)-4-Carene | 29050-33-7 | C10H16 | 3.11 | 3.67 | 3.83 |
10 | 10.185 | o-Cymene | 527-84-4 | C10H14 | 1.7 | 2.06 | 2.08 |
11 | 10.485 | (R)-1-Methyl-5-(1-methylvinyl) cyclohexene | 1461-27-4 | C10H16 | 7.12 | 8.63 | 8.69 |
12 | 10.622 | Eucalyptol | 470-82-6 | C10H18O | 0.3 | 0.28 | 0.26 |
13 | 12.071 | γ-Terpinene | 99-85-4 | C10H16 | 4.38 | 5.3 | 5.75 |
14 | 12.641 | trans-4-Thujanol | 17699-16-0 | C10H18O | 0.36 | —— | —— |
15 | 13.348 | Cyclohexene, 3-methyl-6-(1-methylethylidene)- | 586-63-0 | C10H16 | 1.35 | 1.62 | 1.75 |
16 | 13.523 | α, p-Dimethylstyrene | 1195-32-0 | C10H12 | 0.07 | 0.08 | 0.09 |
17 | 14.036 | 4-Thujanol | 546-79-2 | C10H18O | 0.64 | 0.36 | 0.34 |
18 | 14.961 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, cis- | 29803-82-5 | C10H18O | 0.58 | 0.37 | 0.3 |
19 | 15.649 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, trans- | 29803-81-4 | C10H18O | 0.44 | 0.23 | 0.3 |
20 | 16.67 | endo-Borneol | 507-70-0 | C10H18O | 0.06 | 0.04 | 0.03 |
21 | 17.022 | 3-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-, (R)- | 20126-76-5 | C10H18O | 9.44 | 6.26 | 6.5 |
22 | 17.204 | p-Cymen-8-ol | 1197-01-9 | C10H14O | 0.12 | 0.06 | 0.06 |
23 | 17.467 | α-Terpineol | 98-55-5 | C10H18O | 1.08 | 0.53 | 0.54 |
24 | 17.524 | 2-Cyclohexen-1-ol, 3-methyl-6-(1-methylethyl)-, trans- | 16721-39-4 | C10H18O | 0.13 | 0.11 | 0.12 |
25 | 17.924 | 2-Cyclohexen-1-ol, 3-methyl-6-(1-methylethyl)-, cis- | 16721-38-3 | C10H18O | 0.22 | 0.22 | 0.2 |
26 | 19.194 | Nerol | 106-25-2 | C10H18O | 0.09 | 0.07 | 0.07 |
27 | 20.104 | Bornyl acetate | 76-49-3 | C12H20O2 | 0.19 | 0.23 | 0.25 |
28 | 20.215 | Safrole | 94-59-7 | C10H10O2 | 2.3 | 2.37 | 2.61 |
29 | 20.427 | 2-Cyclohexen-1-ol, 3-methyl-6-(1-methylethyl)-, acetate | 1204-30-4 | C12H20O2 | 0.06 | 0.11 | 0.11 |
30 | 20.641 | Allyl 4-(2-hydroxyethoxy) benzoate | 142651-41-0 | C12H14O4 | 0.07 | 0.04 | 0.05 |
31 | 21.75 | α-Cubebene | 17699-14-8 | C15H24 | 0.3 | 0.36 | 0.38 |
32 | 21.826 | Chavibetol | 501-19-9 | C10H12O2 | 0.35 | 0.33 | 0.37 |
33 | 22.459 | Copaene | 3856-25-5 | C15H24 | 0.83 | 0.9 | 0.99 |
34 | 22.75 | β-Copaene | 18252-44-3 | C15H24 | 0.07 | 0.07 | 0.08 |
35 | 23.024 | Methyleugenol | 93-15-2 | C11H14O2 | 5.86 | 5.3 | 5.76 |
36 | 23.495 | Caryophyllene | 87-44-5 | C15H24 | 0.32 | 0.21 | 0.24 |
37 | 23.803 | cis-α-Bergamotene | 18252-46-5 | C15H24 | 0.14 | 0.16 | 0.18 |
38 | 24.069 | trans-Isoeugenol | 5932-68-3 | C10H12O2 | 0.34 | 0.28 | 0.33 |
39 | 24.224 | (E)-β-Farnesene | 18794-84-8 | C15H24 | 0.09 | 0.1 | 0.12 |
40 | 24.305 | 1,4,7-Cycloundecatriene, 1,5,9,9-tetramethyl-, (1Z,4Z,7Z)- | 400822-79-9 | C15H24 | 0.05 | 0.03 | 0.04 |
41 | 24.873 | β-Cubebene | 13744-15-5 | C15H24 | 0.22 | 0.29 | 0.33 |
42 | 25.131 | Isohomogenol | 93-16-3 | C11H14O2 | 1.33 | 1.14 | 1.26 |
43 | 25.194 | (+)-Bicyclogermacrene | 24703-35-3 | C15H24 | 0.07 | 0.07 | 0.07 |
44 | 25.439 | β-Bisabolene | 495-61-4 | C15H24 | 0.11 | 0.12 | 0.13 |
45 | 25.721 | Myristicine | 607-91-0 | C11H12O3 | 10.37 | 9.67 | 10.48 |
46 | 25.791 | β-Sesquiphellandrene | 20307-83-9 | C15H24 | 0.05 | 0.05 | 0.06 |
47 | 26.225 | Elemicine | 487-11-6 | C12H16O3 | 2.68 | 2.07 | 2.26 |
48 | 26.303 | Elemol | 639-99-6 | C15H26O | 0.06 | 0.05 | 0.05 |
49 | 26.555 | Dodecanoic acid | 143-07-7 | C12H24O2 | 0.05 | 0.04 | 0.04 |
50 | 27.325 | Phenol, 2,6-dimethoxy-4-(2-propenyl)- | 6627-88-9 | C11H14O3 | 0.05 | 0.04 | 0.05 |
51 | 27.45 | α-Guaiol | 489-86-1 | C15H26O | 0.05 | 0.04 | 0.04 |
52 | 28.705 | Isoelemicin | 5273-85-8 | C12H16O3 | 0.06 | 0.06 | 0.07 |
53 | 32.765 | Myristic acid | 544-63-8 | C14H28O2 | 0.35 | 0.2 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Zhang, H.; Cui, J.; Wu, Q.; Huang, L.; Qiu, J.; Zhang, X.; Xiang, Y.; Li, B.; Liu, H.; et al. Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes. Membranes 2024, 14, 97. https://doi.org/10.3390/membranes14050097
Yin H, Zhang H, Cui J, Wu Q, Huang L, Qiu J, Zhang X, Xiang Y, Li B, Liu H, et al. Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes. Membranes. 2024; 14(5):97. https://doi.org/10.3390/membranes14050097
Chicago/Turabian StyleYin, Huilan, Haoyu Zhang, Jiaoyang Cui, Qianlian Wu, Linlin Huang, Jiaoyue Qiu, Xin Zhang, Yanyu Xiang, Bo Li, Hongbo Liu, and et al. 2024. "Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes" Membranes 14, no. 5: 97. https://doi.org/10.3390/membranes14050097
APA StyleYin, H., Zhang, H., Cui, J., Wu, Q., Huang, L., Qiu, J., Zhang, X., Xiang, Y., Li, B., Liu, H., Tang, Z., Zhang, Y., & Zhu, H. (2024). Enrichment of Nutmeg Essential Oil from Oil-in-Water Emulsions with PAN-Based Membranes. Membranes, 14(5), 97. https://doi.org/10.3390/membranes14050097