Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments
Abstract
:1. Introduction
2. Experimental Setup and Materials
3. Theoretical Formulations
3.1. Mass and Heat Transfer
3.2. Temperature Polarization Coefficient
3.3. Governing Equations by Macroscopic Modeling
3.4. Hydraulic Consumption Increment
3.5. Heat-Transfer Enhancement Factor
4. Results and Discussions
4.1. Lessening Temperature Polarization Effect by Inserting Carbon-Fiber Filaments
4.2. Permeate Flux Enhancement by Inserting S-Ribs Carbon-Fiber Turbulence Promoters
4.3. Accuracy Deviations between Experimental and Theoretical Results
4.4. Energy Consumption Increment
5. Conclusions
- Inserting S-ribs carbon-fiber filaments of 3 mm in width into the saline feed flow channel results in relative increases in permeate flux up to a maximum permeate flux improvement of 37.77% under countercurrent-flow operations compared to the module using an empty channel.
- The results show that permeate flux improvement decreases with the width of carbon-fiber filaments, but the ratio of permeate flux improvement to power consumption increment (say ) increases with the width of carbon-fiber filaments.
- Permeate flux improvement is more pronounced in countercurrent-flow operations compared to cocurrent-flow operations due to the attainment of a larger temperature gradient.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cross-sectional area of flow channel (m2) | |
Water activity in NaCl solution | |
Friction losses coefficient | |
Heat capacity () | |
Membrane coefficient based on the Knudsen diffusion model () | |
Membrane coefficient based on the molecular diffusion model () | |
Membrane permeation coefficient () | |
Channel height (m) | |
Carbon-fiber thickness (m) | |
Diffusion coefficient of air and vapor in the membrane () | |
Hydraulic equivalent hdiameter of channel (m), | |
The heat-transfer equivalent diameter (m) | |
Accuracy deviation of experimental results from the theoretical predictions | |
Fanning friction factor, | |
Convective heat-transfer coefficient of cold feed (W ) | |
Convective heat-transfer coefficient of hot saline feed (W ) | |
Convective heat-transfer coefficient of hot saline feed with promoter insertion (W ) | |
Hydraulic dissipate energy (W), | |
Permeate flux relative factor | |
Power consumption relative index | |
Thermal conductivity of water () | |
Thermal conductivity of gas () | |
Thermal conductivity of membrane () | |
Thermal conductivity of solid membrane () | |
Channel length (m) | |
Friction loss (J kg−1), | |
Molecular weight of water (kg mol−1) | |
Number of carbon-fiber filaments | |
Distillate flux () | |
Average distillate flux () | |
Number of experimental measurements | |
Enhanced dimensionless Nusselt number | |
Nusselt number for laminar flow | |
Mean saturated pressure in membrane (Pa) | |
Saturation vapor pressure (Pa) | |
Volumetric flow rate (m3 s−1) | |
Heat flux () | |
Membrane pore radius (m) | |
Gas constant (8.314 J mol−1 K−1) | |
Reynolds number | |
Precision index of an experimental measurements of permeate flux (kg m−2 s−1) | |
Mean value of (kg m−2 s−1) | |
Membrane surface temperature in the hot saline feed region (°C) | |
Membrane surface temperature in the cold feed region (°C) | |
Membrane surface temperature with promoter insertion in the hot saline feed region (°C) | |
Membrane surface temperature with promoter insertion in the cold feed region (°C) | |
Mean temperature in membrane (°C) | |
Average velocity () | |
Width of channel (m) | |
Carbon-fiber width (m) | |
Liquid mole fraction of water | |
Mole fraction of NaCl in saline solution | |
Vapor mole fraction of water | |
Natural log mean Vapor mole fraction of water in the membrane | |
Axial coordinate along the flow direction (m) | |
Greek letters | |
Enhancement factor | |
Thickness of membrane (µm) | |
ε | Membrane porosity |
Gas viscosity () | |
Latent heat of water () | |
Viscosity () | |
Density () | |
Membrane tortuosity | |
Temperature polarization coefficients | |
Subscripts | |
1 | Membrane surface on hot fluid side |
Membrane surface on cold fluid side | |
c | Cold feed stream |
h | Hot feed stream |
cor. | Correlated results |
empty | Channel without embedding turbulence promoters |
exp. | Experimental results |
in | At the inlet |
Laminar flow | |
out | At the outlet |
promoter | Channel with embedding turbulence promoters |
theo | Theoretical predictions |
References
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. II. Direct contact MD. J. Membr. Sci. 1996, 120, 123–133. [Google Scholar] [CrossRef]
- Khayet, M. Membranes and theoretical modeling of membrane distillation: A review. Adv. Colloid Interface Sci. 2011, 164, 56–88. [Google Scholar] [CrossRef] [PubMed]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Profio, G.D.; Al-Hinai, H.; Drioli, E. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. J. Membr. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Huang, Y.-X.; Wang, Z.; Horseman, T.; Livingston, J.L.; Lin, S. Interpreting contact angles of surfactant solutions on microporous hydrophobic membranes. J. Membr. Sci. Lett. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Martínez-Díez, L.; Vazquez-Gonzalez, M.I. Temperature and concentration polarizationin membrane distillation of aqueous salt solutions. J. Membr. Sci. 1999, 156, 265–273. [Google Scholar] [CrossRef]
- El-Bourawi, M.S.; Ding, Z.; Ma, R.; Khayet, M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 2006, 285, 4–29. [Google Scholar] [CrossRef]
- Yun, Y.; Ma, R.; Zhang, W.; Fane, A.; Li, J. Direct contact membrane distillation mechanism for high concentration NaCl solutions. Desalination 2006, 188, 251–262. [Google Scholar] [CrossRef]
- Ali, A.; Macedonio, F.; Drioli, E.; Aljlil, S.; Alharbi, O.A. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chem. Eng. Res. Des. 2013, 91, 1966–1977. [Google Scholar] [CrossRef]
- Martínez-Díez, L.; Vázquez-González, M.I. Effects of Polarization on Mass Transport through Hydrophobic Porous Membranes. Ind. Eng. Chem. Res. 1998, 37, 4128–4135. [Google Scholar] [CrossRef]
- Ho, C.-D.; Chang, H.; Chang, C.-L.; Huang, C.-H. Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination. J. Membr. Sci. 2013, 433, 160–166. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies. J. Membr. Sci. 2003, 217, 193–206. [Google Scholar] [CrossRef]
- Yang, X.; Yu, H.; Wang, R.; Fane, A.G. Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations. J. Membr. Sci. 2012, 415–416, 758–769. [Google Scholar] [CrossRef]
- Thomas, N.; Sreedhar, N.; Al-Ketan, O.; Rowshan, R.; Abu Al-Rub, R.K.; Arafat, H. 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation. Desalination 2018, 443, 256–271. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Tan, W.S.; An, J.; Chua, C.K.; Tang, C.Y.; Fane, A.G.; Chong, T.H. The potential to enhance membrane module design with 3D printing technology. J. Membr. Sci. 2016, 499, 480–490. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Huang, A.; Soesanto, J.F.; Luo, Y.-L.; Hsu, T.-Y.; Chen, C.-H.; Hwang, K.-J.; Ho, C.-D.; Tung, K.-L. 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal. J. Membr. Sci. 2018, 573, 647–656. [Google Scholar] [CrossRef]
- Lee, J.-G.; Kim, Y.-D.; Kim, W.-S.; Francis, L.; Amy, G.; Ghaffour, N. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. J. Membr. Sci. 2015, 478, 85–95. [Google Scholar] [CrossRef]
- Chen, L.-H.; Huang, A.; Chen, Y.-R.; Chen, C.-H.; Hsu, C.-C.; Tsai, F.-Y.; Tung, K.-L. Omniphobic membranes for direct contact membrane distillation: Effective deposition of zinc oxide nanoparticles. Desalination 2018, 428, 255–263. [Google Scholar] [CrossRef]
- Martínez-Díez, L.; Vázquez-González, M.; Florido-Díaz, F. Study of membrane distillation using channel spacers. J. Membr. Sci. 1998, 144, 45–56. [Google Scholar] [CrossRef]
- Santos, J.L.C.; Geraldes, V.; Velizarov, S.; Crespo, J.G. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J. Membr. Sci. 2007, 305, 103–117. [Google Scholar] [CrossRef]
- Schofield, R.W.; Fane, A.G.; Fell, C.J.D. Heat and mass transfer in membrane distillation. J. Membr. Sci. 1987, 33, 299–313. [Google Scholar] [CrossRef]
- Dong, Y.; Dai, X.; Zhao, L.; Gao, L.; Xie, Z.; Zhang, J. Review of Transport Phenomena and Popular Modelling Approaches in Membrane Distillation. Membranes 2021, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Shakaib, M.; Hasani, S.M.F.; Ahmed, I.; Yunus, R.M. A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules. Desalination 2012, 284, 332–340. [Google Scholar] [CrossRef]
- Chang, H.; Hsu, J.-A.; Chang, C.-L.; Ho, C.-D.; Cheng, T.-W. Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules. Appl. Energy 2017, 185, 2045–2057. [Google Scholar] [CrossRef]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci. 2003, 212, 177–193. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Mills, A.F. Mass Transfer, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2001. [Google Scholar]
- Da Costa, A.; Fane, A.; Wiley, D. Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. J. Membr. Sci. 1994, 87, 79–98. [Google Scholar] [CrossRef]
- Taamneh, Y.; Bataineh, K. Improving the performance of direct contact membrane distillation utilizing spacer-filled channel. Desalination 2017, 408, 25–35. [Google Scholar] [CrossRef]
- Ho, C.D.; Chang, H.; Tsai, C.H.; Lin, P.H. Theoretical and experimental studies of a compact multi-unit direct contact membrane distillation module. Ind. Eng. Chem. Res. 2016, 55, 5385–5394. [Google Scholar]
- Fukazawa, T.; Kawamura, H.; Tamura, T. Water Vapour Resistance of Hydrophobic Microporous Membranes under Reduced Pressures at a Constant Temperature. J. Text. Inst. 1999, 90 Pt 1, 602–615. [Google Scholar] [CrossRef]
- Lawson, K.W.; Lloyd, D.R. Membrane distillation. J. Membr. Sci. 1997, 124, 1–25. [Google Scholar] [CrossRef]
- Schofield, R.W.; Fane, A.G.; Fell, C.J.D. Gas and vapor transport through microporous membranes. I. Knudsen-Poiseuille transition. J. Membr. Sci. 1990, 53, 159–171. [Google Scholar] [CrossRef]
- Ding, Z.; Ma, R.; Fane, A. A new model for mass transfer in direct contact membrane distillation. Desalination 2003, 151, 217–227. [Google Scholar] [CrossRef]
- Zhang, J.; Gray, S.; Li, J.-D. Modelling heat and mass transfers in DCMD using compressible membranes. J. Membr. Sci. 2012, 387–388, 7–16. [Google Scholar] [CrossRef]
- Iversen, S.; Bhatia, V.; Dam-Johansen, K.; Jonsson, G. Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci. 1997, 130, 205–217. [Google Scholar] [CrossRef]
- Warner, S.B. Fiber Science; Princeton-Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Welty, J.R.; Wick, C.E.; Wilson, R.E. Fundamentals of Momentum, Heat, and Mass Transfer, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Kakac, S.; Shah, R.K.; Aung, W. Handbook of Single-Phase Convective Heat Transfer; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Phattaranawik, J.; Jiraratananon, R.; Fane, A.G. Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J. Membr. Sci. 2003, 215, 75–85. [Google Scholar] [CrossRef]
- Kern, D.Q. Process Heat Transfer; McGraw-Hill: New York, NY, USA, 1950. [Google Scholar]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
(°C) | (L/min) | Empty | 3 mm | 4 mm | 5 mm | |||
---|---|---|---|---|---|---|---|---|
(kg m−2 h−1) | (kg m−2 h−1) | (%) | (kg m−2 h−1) | (%) | (kg m−2 h−1) | (%) | ||
50 | Cocurrent-flow operations | |||||||
0.3 | 0.75 | 0.85 | 14.06 | 0.84 | 12.58 | 0.83 | 11.37 | |
0.5 | 9.00 | 1.06 | 17.46 | 1.04 | 15.68 | 1.03 | 14.35 | |
0.7 | 1.05 | 1.27 | 21.14 | 1.25 | 19.24 | 1.23 | 17.37 | |
0.9 | 1.10 | 1.39 | 26.00 | 1.35 | 23.10 | 1.33 | 20.55 | |
60 | 0.3 | 1.21 | 1.42 | 17.27 | 1.39 | 14.92 | 1.37 | 13.31 |
0.5 | 1.41 | 1.71 | 21.28 | 1.67 | 18.16 | 1.64 | 16.45 | |
0.7 | 1.60 | 2.02 | 26.19 | 1.95 | 21.94 | 1.92 | 19.75 | |
0.9 | 1.73 | 2.28 | 31.79 | 2.18 | 25.95 | 2.13 | 23.12 | |
50 | Countercurrent-flow operations | |||||||
0.3 | 0.87 | 1.00 | 15.44 | 0.99 | 13.82 | 0.98 | 12.73 | |
0.5 | 1.01 | 1.22 | 21.09 | 1.20 | 18.81 | 1.19 | 17.52 | |
0.7 | 1.12 | 1.42 | 26.34 | 1.39 | 23.84 | 1.38 | 22.77 | |
0.9 | 1.17 | 1.55 | 32.48 | 1.52 | 29.49 | 1.50 | 28.03 | |
60 | 0.3 | 1.39 | 1.65 | 18.56 | 1.61 | 15.83 | 1.59 | 14.39 |
0.5 | 1.57 | 1.95 | 24.33 | 1.89 | 20.64 | 1.87 | 19.30 | |
0.7 | 1.75 | 2.29 | 30.82 | 2.21 | 26.14 | 2.18 | 24.31 | |
0.9 | 1.88 | 2.59 | 37.77 | 2.48 | 32.13 | 2.45 | 30.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-D.; Wang, Y.-W.; Chao, Y.; Chew, T.L.; Jiang, M.-S.; Chen, J.-H.; Li, C.-Y. Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments. Membranes 2024, 14, 98. https://doi.org/10.3390/membranes14050098
Ho C-D, Wang Y-W, Chao Y, Chew TL, Jiang M-S, Chen J-H, Li C-Y. Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments. Membranes. 2024; 14(5):98. https://doi.org/10.3390/membranes14050098
Chicago/Turabian StyleHo, Chii-Dong, Yi-Wun Wang, Yi Chao, Thiam Leng Chew, Ming-Shen Jiang, Jian-Har Chen, and Ching-Yu Li. 2024. "Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments" Membranes 14, no. 5: 98. https://doi.org/10.3390/membranes14050098
APA StyleHo, C. -D., Wang, Y. -W., Chao, Y., Chew, T. L., Jiang, M. -S., Chen, J. -H., & Li, C. -Y. (2024). Enhancing the Permeate Flux Improvement of Direct Contact Membrane Distillation Modules with Inserted S-Ribs Carbon-Fiber Filaments. Membranes, 14(5), 98. https://doi.org/10.3390/membranes14050098