Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment Experiments
2.3. RO Experiments
2.4. Analytical Methods
3. Results
3.1. Optimization of Coagulants
3.2. Removal Performance in the C-S and C-U Pretreatment
3.3. Effect of Integrated Pretreatment on RO Fouling
3.4. RO Membrane Fouling Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, C.; Lao, Y.; Ouyang, R.; Zhang, G.; Huang, G.; Deng, F.; Tan, Q.; Lin, G.; Zhou, H. Evaluation of Different Reverse Osmosis Membranes for Textile Dyeing and Finishing Wastewater Reuse. Membranes 2023, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering Antifouling Reverse Osmosis Membranes: A Review. Desalination 2020, 499, 114857. [Google Scholar] [CrossRef]
- Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W. Dissolved Organic Matter in the Florida Everglades: Implications for Ecosystem Restoration. Crit. Rev. Environ. Sci. Technol. 2011, 41, 217–248. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kim, S.; Shin, J.; Rho, H.; Lee, Y.; Kim, Y.M.; Park, Y.; Oh, S.E.; Cho, J.; Chon, K. Fouling Behavior of Marine Organic Matter in Reverse Osmosis Membranes of a Real-Scale Seawater Desalination Plant in South Korea. Desalination 2020, 485, 114305. [Google Scholar] [CrossRef]
- Henthorne, L.; Boysen, B. State-of-the-Art of Reverse Osmosis Desalination Pretreatment. Desalination 2015, 356, 129–139. [Google Scholar] [CrossRef]
- Abushaban, A.; Salinas-Rodriguez, S.G.; Pastorelli, D.; Schippers, J.C.; Mondal, S.; Goueli, S.; Kennedy, M.D. Assessing Pretreatment Effectiveness for Particulate, Organic and Biological Fouling in a Full-Scale Swro Desalination Plant. Membranes 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Johir, M.; Chinu, K.; Shon, H.; Vigneswaran, S.; Kandasamy, J.; Kim, C.; Shaw, K. Hybrid Filtration Method for Pre-Treatment of Seawater Reverse Osmosis (Swro). Desalination 2009, 247, 15–24. [Google Scholar] [CrossRef]
- Kavitha, J.; Rajalakshmi, M.; Phani, A.R.; Padaki, M. Pretreatment Processes for Seawater Reverse Osmosis Desalination Systems—A Review. J. Water Process Eng. 2019, 32, 100926. [Google Scholar] [CrossRef]
- Dagar, S.; Singh, S.K.; Gupta, M.K. Integration of Pre-Treatment with Uf/Ro Membrane Process for Waste Water Recovery and Reuse in Agro-Based Pulp and Paper Industry. Membranes 2023, 13, 199. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Hilal, N.; Leo, C.P. A Review on the Applicability of Integrated/Hybrid Membrane Processes in Water Treatment and Desalination Plants. Desalination 2015, 363, 2–18. [Google Scholar] [CrossRef]
- Fatima, F.; Fatima, S.; Du, H.; Kommalapati, R.R. An Evaluation of Microfiltration and Ultrafiltration Pretreatment on the Performance of Reverse Osmosis for Recycling Poultry Slaughterhouse Wastewater. Separations 2024, 11, 115. [Google Scholar] [CrossRef]
- El Batouti, M.; Alharby, N.F.; Elewa, M.M. Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. Separations 2022, 1, 1. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Pang, W.; Zhou, B.; Li, T.; Zhang, J.; Dong, B. Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water. Membranes Membranes 2021, 11, 380. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sim, L.N.; Ho, J.S.; Nakano, K.; Kinoshita, Y.; Sekiguchi, K.; Chong, T.H. Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination. Membranes 2022, 12, 1209. [Google Scholar] [CrossRef]
- Lin, J.L.; Ika, A.R. Minimization of Halogenated Dbp Precursors by Enhanced Pacl Coagulation: The Impact of Organic Molecule Fraction Changes on Dbp Precursors Destabilization with Al Hydrates. Sci. Total Environ. 2020, 703, 134936. [Google Scholar] [CrossRef]
- Guo, Y.; Bai, L.; Tang, X.; Huang, Q.; Xie, B.; Wang, T.; Wang, J.; Li, G.; Liang, H. Coupling Continuous Sand Filtration to Ultrafiltration for Drinking Water Treatment: Improved Performance and Membrane Fouling Control. J. Membr. Sci. 2018, 567, 18–27. [Google Scholar] [CrossRef]
- Liu, T.; Yang, B.; Graham, N.; Lian, Y.; Yu, W.; Sun, K. Mitigation of Nom Fouling of Ultrafiltration Membranes by Pre-Deposited Heated Aluminum Oxide Particles with Different Crystallinity. J. Membr. Sci. 2017, 544, 359–367. [Google Scholar] [CrossRef]
- Chua, K.; Hawlader, M.; Malek, A. Pretreatment of Seawater: Results of Pilot Trials in Singapore. Desalination 2003, 159, 225–243. [Google Scholar] [CrossRef]
- Brehant, A.; Bonnelye, V.; Perez, M. Comparison of Mf/Uf Pretreatment with Conventional Filtration Prior to Ro Membranes for Surface Seawater Desalination. Desalination 2002, 144, 353–360. [Google Scholar] [CrossRef]
- Rodríguez, S.G.S.; Kennedy, M.D.; Schippers, J.C.; Amy, G.L. Organic Foulants in Estuarine and Bay Sources for Seawater Reverse Osmosis—Comparing Pre-Treatment Processes with Respect to Foulant Reductions. Desalination Water Treat. 2009, 9, 155–164. [Google Scholar] [CrossRef]
- Guastalli, A.R.; Simon, F.X.; Penru, Y.; de Kerchove, A.; Llorens, J.; Baig, S. Comparison of Dmf and Uf Pre-Treatments for Particulate Material and Dissolved Organic Matter Removal in Swro Desalination. Desalination 2013, 322, 144–150. [Google Scholar] [CrossRef]
- Her, N.; Amy, G.; Chung, J.; Yoon, J.; Yoon, Y. Characterizing Dissolved Organic Matter and Evaluating Associated Nanofiltration Membrane Fouling. Chemosphere 2008, 70, 495–502. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Yang, H.; Siddique, M.S.; Yu, W. The Characters of Dissolved Organic Matters from Litter-Mimic with the Different Humification States and Their Effects on Drinking Water Treatment Processes. Sci. Total Environ. 2023, 861, 160470. [Google Scholar] [CrossRef]
- Wei, C.; Stephanie, L.; Roger, B.; Gary, A. Full Utilization of Silt Density Index (SDI) Measurements for Seawater Pre-Treatment. J. Membr. Sci. 2012, 212, 405–406. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Bell, K.; Ibrahim, E.; Verges, D.; Amy, G.; Lechevallier, M. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water. Water Res. 2000, 34, 3247–3257. [Google Scholar] [CrossRef]
- Zheng, L.; Yu, D.; Wang, G.; Yue, Z.; Zhang, C.; Wang, Y.; Zhang, J.; Wang, J.; Liang, G.; Wei, Y. Characteristics and Formation Mechanism of Membrane Fouling in a Full-Scale Ro Wastewater Reclamation Process: Membrane Autopsy and Fouling Characterization. J. Membr. Sci. 2018, 563, 843–856. [Google Scholar] [CrossRef]
- Edzwald, J.K.; Haarhoff, J. Seawater Pretreatment for Reverse Osmosis: Chemistry, Contaminants, and Coagulation. Water Res. 2011, 45, 5428–5440. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Zhang, W.; Yu, S.; Wang, X.; Gao, N. New Advances in Fluorescence Excitation-Emission Matrix Spectroscopy for the Characterization of Dissolved Organic Matter in Drinking Water Treatment: A Review. Chem. Eng. J. 2020, 381, 122676. [Google Scholar] [CrossRef]
- Sharp, E.L.; Parsons, S.A.; Jefferson, B. The Impact of Seasonal Variations in Doc Arising from a Moorland Peat Catchment on Coagulation with Iron and Aluminium Salts. Environ. Pollut. 2006, 140, 436–443. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Aryal, R.; Johir, A.H.; Ratnaweera, H.; Vigneswaran, S. Removal of Organics with Ion-Exchange Resins (Iex) from Reverse Osmosis Concentrate. Membranes 2023, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Howe, K.J.; Clark, M.M. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters. Environ. Sci. Technol. 2002, 36, 3571–3576. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Ma, B.; Liu, H.; Qu, J. Effects of Protein Properties on Ultrafiltration Membrane Fouling Performance in Water Treatment. J. Environ. Sci. 2019, 77, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Chen, V. Characterization of Protein Fouling on Membranes: Opportunities and Challenges. J. Membr. Sci. 2004, 242, 169–188. [Google Scholar] [CrossRef]
- Joo, J.C.; Shackelford, C.D.; Reardon, K.F. Association of Humic Acid with Metal (Hydr)Oxide-Coated Sands at Solid–Water Interfaces. J. Colloid Interface Sci. 2008, 317, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yang, C.; Long, C.; Li, A. Effect of Integrated Pretreatment Technologies on Ro Membrane Fouling for Treating Textile Secondary Effluent: Laboratory and Pilot-Scale Experiments. Chem. Eng. J. 2018, 332, 109–117. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, S.-J.; Kim, L.H.; Shin, M.S.; Vigneswaran, S.; Nguyen, T.V.; Kim, I.S. Foulant Analysis of a Reverse Osmosis Membrane Used Pretreated Seawater. J. Membr. Sci. 2013, 428, 434–444. [Google Scholar] [CrossRef]
- Kwon, B.; Lee, S.; Cho, J.; Ahn, H.; Lee, D.; Shin, H.S. Biodegradability, DBP Formation, and Membrane Fouling Potential of Natural Organic Matter: Characterization and Controllability. Environ. Sci. Technol. 2005, 39, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, X.; Suwarno, S.R.; Cornelissen, E.R.; Chong, T.H. Fouling Behavior of Isolated Dissolved Organic Fractions from Seawater in Reverse Osmosis (Ro) Desalination Process. Water Res. 2019, 159, 385–396. [Google Scholar] [CrossRef]
- Miyoshi, T.; Hayashi, M.; Shimamura, K.; Matsuyama, H. Important Fractions of Organic Matter Causing Fouling of Seawater Reverse Osmosis (SWRO) Membranes. Desalination 2016, 390, 72–80. [Google Scholar] [CrossRef]
Virgin RO Membrane | RO Membrane after C-S Pretreatment | RO Membrane after C-U Pretreatment | |
---|---|---|---|
Water contact angle (°) | 35.2 ± 1.3 | 52.3 ± 2.5 | 29.4 ± 1.4 |
Zeta potential at pH 5.5 (mV) | −20.8 ± 0.7 | −17.3 ± 1.4 | −9.9 ± 1.3 |
Surface roughness (nm) | 50.7 ± 3.1 | 64.3 ± 4.2 | 42.4 ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xie, L.; Xu, S.; Zhang, W. Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment. Membranes 2024, 14, 125. https://doi.org/10.3390/membranes14060125
Li Q, Xie L, Xu S, Zhang W. Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment. Membranes. 2024; 14(6):125. https://doi.org/10.3390/membranes14060125
Chicago/Turabian StyleLi, Qingao, Lixin Xie, Shichang Xu, and Wen Zhang. 2024. "Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment" Membranes 14, no. 6: 125. https://doi.org/10.3390/membranes14060125
APA StyleLi, Q., Xie, L., Xu, S., & Zhang, W. (2024). Comparison of Coagulation-Integrated Sand Filtration and Ultrafiltration for Seawater Reverse Osmosis Pretreatment. Membranes, 14(6), 125. https://doi.org/10.3390/membranes14060125