Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Henriksdal WWTP, Stockholm
2.2. Pilot Characteristics
2.3. Pilot Membrane Operation and Cleaning
- Oxalic acid MC
- Stepwise, the frequency, the number of CEBs, and CEB concentration were minimized while maintaining permeability similar to the reference line and always above 200 L/(m2·h·bar).
- Citric acid MC
- Starting at optimal settings for oxalic acid MC obtained in step 1, and then adjusting to ensure no negative impact on permeability.
- Sodium hypochlorite MC
- Operating without adding any sodium hypochlorite until permeability decreased below 200 L/(m2·h·bar).
- Introducing demand-driven MC by using membrane resistance and an algorithm that automatically decided if cleaning was to start.
2.4. Environmental Impact Assessment
- The carbo-hydrate raw material is a waste or by-product from other processes and, as such, carries no burden from upstream processes.
- The raw material requirements for the process are 1.4 kg of nitric acid and 0.32 kg of oxygen.
- As the oxalic acid reaction is strongly exothermal, the heat of the formed reaction balances the heating needed for other process steps.
- Various electricity requirements for pumping, compressing, etc., are lumped into an overall electricity need for 1 kWh/kg oxalic acid.
- A fugitive loss of 14 g NO/kg oxalic acid is assumed to be emitted into the atmosphere, corresponding to 98% capturing efficiency in the scrubber where nitric acid is regenerated.
2.5. Cost Calculations
3. Results and Discussion
3.1. General Pilot Performance
3.2. Permeability and Consumption of Membrane Cleaning Chemicals
- Design cleaning (June 2016 to June 2018).
- Optimization of oxalic acid MC (June 2018 to October 2019).
- Optimization of citric acid MC (October 2019 to February 2020).
- Optimization of sodium hypochlorite MC in combination with acid MC (February 2020 to April 2022).
- Optimized design operation mode—This mode represents an optimization level that can be currently implemented on the full scale. This operational mode means a 50% reduction in chemical consumption for RC (1 RC/year instead of 2) and a 20% reduction for MC.
- Demand-driven operational mode—This case represents the best total optimization achieved with stable results in the pilot without considering the membrane warranty.
3.3. Environment Impact
3.4. Costs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Asheh, S.; Bagheri, M.; Aidan, A. Membrane bioreactor for wastewater treatment: A review. Case Stud. Chem. Environ. Eng. 2021, 4, 100109. [Google Scholar] [CrossRef]
- Iglesias, R.; Simón, P.; Moragas, L.; Arce, A.; Rodriguez-Roda, I. Cost comparison of full-scale water reclamation technologies with an emphasis on membrane bioreactors. Water Sci. Technol. 2017, 75, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Liang, S.; Wang, X.; Chen, C.; Huang, X. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresour. Technol. 2019, 271, 473–481. [Google Scholar] [CrossRef] [PubMed]
- The MBR Site. Available online: https://www.thembrsite.com/ (accessed on 2 February 2024).
- Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, P.; Yang, Z.; and Judd, S.J. The status of potable water reuse implementation. Water Res. 2022, 24, 118198. [Google Scholar] [CrossRef]
- Da Costa, P.R.; Alkmin, A.R.; Amaral, M.C.S.; de França Neta, L.S.; Cerqueira, A.C.; Santiago, V.M.J. Ageing effect on chlorinated polyethylene membrane of an MBR caused by chemical cleaning procedures. Desalin. Water Treat. 2015, 53, 1460–1470. [Google Scholar] [CrossRef]
- Oliveira Filho, M.; Mailler, R.; Rocher, V.; Fayolle, Y.; Causserand, C. Comprehensive study of supported PVDF membrane ageing in MBR: A direct comparison between changes at bench scale and full scale. Sep. Purif. Technol. 2021, 279, 119695. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Leslie, G.L.; Waite, T.D. Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Res. 2015, 69, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Bligh, M.W.; Wang, Y.; Leslie, G.L.; Bustamante, H.; Waite, T.D. Cleaning strategies for iron-fouled membranes from submerged membrane bioreactor treatment of wastewaters. J. Membr. Sci. 2014, 475, 9–21. [Google Scholar] [CrossRef]
- Arya, S.; Gupta, S.; Thakur, S.; Mishra, A.K. Impacts of Sodium Hypochlorite on Humans and Environment. IJECC 2023, 13, 3200–3217. [Google Scholar] [CrossRef]
- Chen, Y.; Sheng, Q.; Wei, J.; Wen, Q.; Ma, D.; Li, J.; Xie, Y.; Shen, J.; Sun, X. Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Sci. Total Environ. 2022, 808, 151996. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.N.; Balakrishnan, M.; Hasan, S.W.; Choo, K.-H.; Zhao, Y.; Cai, Y.; Zarra, T.; Belgiorno, V.; Naddeo, V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. NPJ Clean. Water 2020, 3, 43. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Y.; Qiao, S.; Zhou, J.; Quan, X. Alternating current-enhanced carbon nanotubes hollow fiber membranes for membrane fouling control in novel membrane bioreactors. Chemosphere 2021, 277, 130240. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tian, Y.; Zhang, J.; Li, H.; Tang, C.; Li, J. Wastewater treatment and membrane fouling with algal-activated sludge culture in a novel membrane bioreactor: Influence of inoculation ratios. Chem. Eng. J. 2018, 343, 455–459. [Google Scholar] [CrossRef]
- Liu, Q.; Ren, J.; Lu, Y.; Zhang, X.; Roddick, F.A.; Fan, L.; Wang, Y.; Yu, H.; Yao, P. A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J. Ind. Eng. Chem. 2021, 98, 42–59. [Google Scholar] [CrossRef]
- Wang, S.; Chew, J.W.; Liu, Y. An environmentally sustainable approach for online chemical cleaning of MBR with activated peroxymonosulfate. J. Membr. Sci. 2020, 600, 117872. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.; Xu, Z.; Zhang, G. Advanced membrane bioreactors systems: New materials and hybrid process design. Bioresour. Technol. 2018, 269, 476–488. [Google Scholar] [CrossRef]
- Aslam, M.; Charfi, A.; Lesage, G.; Heran, M.; Kim, J. Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling. Chem. Eng. J. 2017, 307, 897–913. [Google Scholar] [CrossRef]
- Kimura, K.; Uchida, H. Intensive membrane cleaning for MBRs equipped with flat-sheet ceramic membranes: Controlling negative effects of chemical reagents used for membrane cleaning. Water Res. 2019, 150, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, S.J.; Hasan, S.W. Quorum sensing control and wastewater treatment in quorum quenching/ submerged membrane electro-bioreactor (SMEBR(QQ)) hybrid system. Biomass Bioenergy 2019, 128, 105329. [Google Scholar] [CrossRef]
- Andersson, S.L.; Westling, K.; Baresel, C.; Andersson, S. Phosphorus peaks in MBR effluent after membrane cleaning. In Proceedings of the NORDIWA—Nordic Wastewater Conference, Aarhus, Denmark, 10–12 October 2017. [Google Scholar]
- Larreur-Cayol, S.; Bertron, A.; Escadeillas, G. Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem. Concr. Res. 2011, 41, 2011. [Google Scholar] [CrossRef]
- Andersson, S.L.; Andersson, S.; Baresel, C.; Eriksson, M.; Narongin-Fujikawa, M.; Carranza Munzos, A.; Yang, J.J.; Bornhold, N.; Karlsson, J. Long Term Trials with Membrane Bioreactor for Enhanced Wastewater Treatment Coupled with Compact Sludge Treatment—Pilot Henriksdal 2040, Results from 2021–2022; Rapport B2461; IVL Svenska Miljöinstitutet: Stockholm, Sweden, 2023. [Google Scholar]
- Sphera, 2021. GaBi LCA database version 2021.2.
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Riemenschneider, W.; Tanijufi, M. Oxalic Acid, Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Sethy, A. Preparation of Oxalic Acid from Molasses. BTech Thesis, Department of Chemical Engineering, National Institute of Technology, Rourkela, India, 2013; p. 769008. [Google Scholar]
- Kakkos, E. 2021, Oxalic Acid Production, RoW, Allocation, Cut-Off by Classification, Ecoinvent Database Version 3.8. Available online: https://support.ecoinvent.org/system-models (accessed on 16 April 2024).
Unit | Sodium Hypochlorite | Citric Acid | Oxalic Acid | |
---|---|---|---|---|
Maintenance cleaning (MC) | Frequency | 2 per week | 1 per week | 1 per week |
Recovery cleaning (RC) | Frequency | 2 per year | 2 per year | 2 per year |
Backpulse flux during MC | L/(m2·h) | 20 | 20 | 20 |
Backpulse flux during RC | L/(m2·h) | 34 | 34 | 34 |
Concentration in MC backpulse | mg/L | 200 | 2000 | 1300 |
Concentration in RC backpulse | mg/L | 1100 | 2200 | 1500 |
Parameter | Limit | Comment | 2016 * | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|---|
BOD7 (mg/L) | 5 | yearly average | <2 | n.a. | n.a. | n.a. | n.a. | n.a. |
TN (mg/L) | 6 | yearly average | 4.6 | 4.8 | 4.6 | 4.4 | 3.9 | 3.9 |
NH4-N (mg/L) | 2 | average Apr–Oct | 0.2 | 0.5 | 0.4 | 0.6 | 0.8 | 0.2 |
TP (mg/L) | 0.20 | yearly average | 0.33 | 0.14 | 0.14 ** | 0.12 | 0.05 | 0.13 |
Unit | Design Resp. Pilot Value | Full-Scale Fraction | |
---|---|---|---|
Chemical consumption RC | |||
Citric acid (51%) | |||
Design mode | L/m3 | 0.00061 | 100% |
Optimized design operation mode | L/m3 | 0.00031 | 50% |
Demand-driven operation mode | L/m3 | 0.00027 | 44% |
Oxalic acid (8%) | |||
Design mode | L/m3 | 0.0033 | 100% |
Optimized design operation mode | L/m3 | 0.00165 | 50% |
Demand-driven operation mode | L/m3 | 0.00146 | 44% |
Sodium hypochlorite (12%) | |||
Design mode | L/m3 | 0.0014 | 100% |
Optimized design operation mode | L/m3 | 0.00069 | 50% |
Demand-driven operation mode | L/m3 | 0.00062 | 44% |
Chemical consumption MC | |||
Citric acid (51%) | |||
Design mode | L/m3 | 0.0020 | 100% |
Optimized design operation mode | L/m3 | 0.0015 | 80% |
Demand-driven operation mode | L/m3 | 0.00091 | 48% |
Oxalic acid (8%) | |||
Design mode | L/m3 | 0.0100 | 100% |
Optimized design operation mode | L/m3 | 0.0080 | 80% |
Demand-driven operation mode | L/m3 | 0.00304 | 32% |
Sodium hypochlorite (12%) | |||
Design mode | L/m3 | 0.0018 | 100% |
Optimized design operation mode | L/m3 | 0.0014 | 80% |
Demand-driven operation mode | L/m3 | 0.00039 | 24% |
Category (CML2001) | Citric Acid 1 kg, 100% | Oxalic Acid * 1 kg, 100% | Oxalic Acid ** 1 kg, 100% | Sodium Hypochlorite 1 kg, 100% |
---|---|---|---|---|
Global warming potential (GWP 100 years), excl biogenic carbon [kg CO2eq] | 2.72 | 1.828 | 12.4 | 0.922 |
Abiotic depletion (ADP fossil) [MJ] | 34.7 | 24.59 | 181 | 12.7 |
Acidification potential (AP) [kg SO2eq] | 0.0182 | 0.0091 | 0.313 | 0.00263 |
Eutrophication potential (EP) [kg phosphate eq.] | 0.00867 | 0.00267 | 0.0691 | 0.000295 |
Photochem. ozone creation potential (POCP) [kg ethene eq.] | 0.00106 | 0.000566 | −0.0996 | 0.000159 |
Design Mode | Optimized Design Operation Mode | Demand-Driven Operation Mode | |
---|---|---|---|
Global Warming Potential [kg CO2eq] | |||
Citric acid | 828,700 | 604,600 | 391,900 |
Oxalic acid (sustainable production) | 366,900 | 266,200 | 129,000 |
Oxalic acid (fossil production) | 2,488,900 | 1,805,800 | 875,200 |
Sodium hypochlorite | 78,670 | 52,700 | 25,700 |
Abiotic Depletion [MJ] | |||
Citric acid | 10,572,100 | 7,713,600 | 4,999,800 |
Oxalic acid (sustainable production) | 4,935,600 | 3,581,100 | 1,735,600 |
Oxalic acid (fossil production) | 36,329,700 | 26,359,200 | 12,775,300 |
Sodium hypochlorite | 1,083,600 | 725,800 | 354,600 |
Acidification Potential (AP) [kg SO2eq] | |||
Citric acid | 5545 | 4046 | 2622 |
Oxalic acid (sustainable production) | 1827 | 1325 | 642 |
Oxalic acid (fossil production) | 62,800 | 45,600 | 22,100 |
Sodium hypochlorite | 224 | 150 | 73 |
Eutrophication Potential (EP) [kg Phosphate eq.] | |||
Citric acid | 2641 | 1927 | 1249 |
Oxalic acid (sustainable production) | 536 | 389 | 188 |
Oxalic acid (fossil production) | 13,900 | 10,000 | 4877 |
Sodium hypochlorite | 25 | 17 | 8 |
Photochem. Ozone Creation Potential (POCP) [kg Ethene eq.] | |||
Citric acid | 323 | 236 | 153 |
Oxalic acid (sustainable production) | 114 | 82 | 40 |
Oxalic acid (fossil production) | −200,000 | −145,000 | −70,300 |
Sodium hypochlorite | 14 | 9 | 4 |
Design Mode | Optimized Design Operation Mode | Demand Driven Operation Mode | |
---|---|---|---|
Citric acid | 11,460,000 | 8,360,000 | 5,420,000 |
Oxalic acid | 8,360,000 | 5,460,000 | 2,650,000 |
Sodium hypochlorite | 2,560,000 | 1,710,000 | 840,000 |
Total cost sodium hypochlorite + citric acid | 14,020,000 | 10,080,000 | 6,260,000 |
Total cost sodium hypochlorite + oxalic acid | 10,920,000 | 7,170,000 | 3,480,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersson, S.L.; Baresel, C.; Andersson, S.; Westling, K.; Eriksson, M.; Munoz, A.C.; Persson, G.; Narongin-Fujikawa, M.; Johansson, K.; Rydberg, T. Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials. Membranes 2024, 14, 126. https://doi.org/10.3390/membranes14060126
Andersson SL, Baresel C, Andersson S, Westling K, Eriksson M, Munoz AC, Persson G, Narongin-Fujikawa M, Johansson K, Rydberg T. Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials. Membranes. 2024; 14(6):126. https://doi.org/10.3390/membranes14060126
Chicago/Turabian StyleAndersson, Sofia Lovisa, Christian Baresel, Sofia Andersson, Klara Westling, Mikael Eriksson, Andrea Carranza Munoz, Gabriel Persson, Mayumi Narongin-Fujikawa, Kristin Johansson, and Tomas Rydberg. 2024. "Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials" Membranes 14, no. 6: 126. https://doi.org/10.3390/membranes14060126
APA StyleAndersson, S. L., Baresel, C., Andersson, S., Westling, K., Eriksson, M., Munoz, A. C., Persson, G., Narongin-Fujikawa, M., Johansson, K., & Rydberg, T. (2024). Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials. Membranes, 14(6), 126. https://doi.org/10.3390/membranes14060126