Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes
Abstract
:1. Introduction
Zinc, Removal, and Recovery
2. Materials and Methods
2.1. Study Area
2.2. Design of Water Quality Monitoring Program for Milluni
2.3. RO Pilot System
2.4. Operational Conditions for the RO Pilot System
2.5. Performance of RO Pilot System
2.5.1. Mathematical Evaluation of the RO Process
- Qf = feed flow,
- Cf = feed concentration,
- Qc = concentrate flow,
- Cc = concentration of the concentrate flow,
- Qp = permeate flow, and
- Cb = concentration of the permeate flow.
- S = effective area of the membrane.
- Jvo = analytical flux,
- Lp = solvent permeability coefficient (permeability of water in the membrane),
- Δp = transmembrane pressure or system operating pressure,
- σ = reflection coefficient, and
- Δπ = osmotic pressure differential.
- Jv = analytical flux with temperature correction.
2.5.2. Statistical Evaluation of the RO Process
2.6. Evaluation of Zn Concentration by RO
3. Results
3.1. Milluni Monitoring
3.2. Experimental
3.2.1. Mathematic Evaluation
3.2.2. Statistical Assessment of Response Variables
3.3. Estimation of Zn Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inyinbor Adejumoke, A.; Adebesin Babatunde, O.; Oluyori Abimbola, P.; Adelani Akande Tabitha, A.; Dada Adewumi, O.; Oreofe Toyin, A. Water pollution: Effects, prevention, and climatic impact. Water Chall. Urban. World 2018, 33, 33–47. [Google Scholar]
- Pereira, M.A.; Marques, R.C. The ‘Sustainable Public Health Index’: What if public health and sustainable development are compatible? World Dev. 2021, 149, 105708. [Google Scholar] [CrossRef]
- United Nations. The General Assembly Adopts the 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-la-agenda-2030-para-el-desarrollo-sostenible/ (accessed on 15 April 2024).
- Ha, P.T.T.; Kokutse, N.; Duchesne, S.; Villeneuve, J.P.; Bélanger, A.; Hien, H.N.; Bach, D.N. Assessing and selecting interventions for river water quality improvement within the context of population growth and urbanization: A case study of the Cau River basin in Vietnam. Environment. Dev. Sustain. 2017, 19, 1701–1729. [Google Scholar] [CrossRef]
- Loucks, D.P.; van Beek, E. Water Resources Planning and Management: An Overview. In Water Resource Systems Planning and Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Hughes, D.A.; Retief, D.C.H.; Mantel, S.K. A management-oriented water quality model for data scarce catchments. Environ. Model. Softw. 2017, 97, 93–111. [Google Scholar] [CrossRef]
- Foureaux, A.F.S.; Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.S.; Amaral, M.C.S. Direct contact membrane distillation as an alternative to the conventional methods for value-added compounds recovery from acidic effluents: A review. Sep. Purif. Technol. 2020, 236, 116251. [Google Scholar] [CrossRef]
- Melgarejo Moreno, J. (Ed.) Agua y economía circular. In Congreso Nacional del Agua Orihuela. Innovación y Sostenibilidad; Universitat d’Alacant: Alacant, Spain, 2019; pp. 27–52. ISBN 978-84-1302-034-1. [Google Scholar]
- Al-Saidi, M.; Das, P.; Saadaoui, I. Circular Economy in Basic Supply: Framing the Approach for the Water and Food Sectors of the Gulf Cooperation Council Countries. Sustain. Prod. Consum. 2021, 27, 1273–1285. [Google Scholar] [CrossRef]
- Cerdá, E.; Khalilova, A. Economía circular. Econ. Ind. 2016, 401, 11–20. Available online: https://www.mincotur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaIndustrial/RevistaEconomiaIndustrial/401/CERD%C3%81%20y%20KHALILOVA.pdf (accessed on 15 April 2024).
- Ellen MacArthur Foundation. Growth Within: A Circular Economy Vision for a Competitive Europe. 2015. Available online: https://ellenmacarthurfoundation.org/growth-within-a-circular-economy-vision-for-a-competitive-europe (accessed on 25 March 2024).
- European Commission. Directive 2008/98/EC of The European Parliament and of The Council on Waste and Repealing Certain Directives. Off. J. Eur. Union 2008, 312, 22. [Google Scholar]
- Gharfalkar, M.; Court, R.; Campbell, C.; Ali, Z.; Hillier, G. Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Manag. 2015, 39, 305–313. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Sheikh, M.; Harami, H.R.; Rezakazemi, M.; Cortina, J.L.; Aminabhavi, T.M.; Valderrama, C. Towards a sustainable transformation of municipal wastewater treatment plants into biofactories using advanced NH3-N recovery technologies: A review. Sci. Total Environ. 2023, 904, 166077. [Google Scholar] [CrossRef] [PubMed]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Sgroi, M.; Vagliasindi, F.G.; Roccaro, P. Feasibility, sustainability and circular economy concepts in water reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 20–25. [Google Scholar] [CrossRef]
- UN Habitat and WHO. Progress on Wastewater Treatment–Global Status and Acceleration Needs for SDG Indicator 6.3.1; United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO): Geneva, Switzerland, 2021; Available online: https://unhabitat.org/sites/default/files/2021/10/sdg6_indicator_report_631_progress-on-wastewater-treatment_2021_es.pdf (accessed on 10 October 2023).
- Coats, E.R.; Wilson, P.I. Toward nucleating the concept of the water resource recovery facility (WRRF): Perspective from the principal actors. Environ. Sci. Technol. 2017, 51, 4158–4164. [Google Scholar] [CrossRef] [PubMed]
- Neczaj, E.; Grosser, A. Circular economy in wastewater treatment plant–challenges and barriers. Proceedings 2018, 2, 614. [Google Scholar] [CrossRef]
- EPA. National Primary Drinking Water Regulations 2009. Available online: https://www.epa.gov/sites/default/files/2016-06/documents/npwdr_complete_table.pdf (accessed on 15 August 2023).
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Biasi, L.; de las Mercedes, A.; Messina, D.G.A.; Gómez, D.; Noemi, N. Determinación de Zinc en muestras de agua de ríos y red de la provincia de San Luis y aguas envasadas. Diaeta 2020, 38, 38–48. Available online: http://www.scielo.org.ar/scielo.php?pid=S1852-73372020000400038&script=sci_arttext (accessed on 30 April 2024).
- WHO. Guidelines for Drinking Water Quality Quality, 4th ed.; Incorporating the 1st addendum; WHO: Geneva, Switzerland, 2017. Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 10 August 2023).
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
- Norma Boliviana NB 512: Agua Potable—Requisitos; Ibnorca: La Paz, Bolivia, 2004.
- Kania, H.; Saternus, M. Evaluation and Current State of Primary and Secondary Zinc Production—A Review. Appl. Sci. 2023, 13, 2003. [Google Scholar] [CrossRef]
- International Zinc Association. Available online: http://www.egga.com/wp-content/uploads/2014/06/5.-Recycling_material_supply.pdf (accessed on 10 September 2023).
- Statista. Average Prices for Zinc Worldwide from 2014 to 2025. Available online: https://www.statista.com/statistics/675888/average-prices-zinc-worldwide/#:~:text=In%202022%2C%20the%20average%20price,figures%20for%202023%20and%202025 (accessed on 20 May 2023).
- Peng, L.; Dai, H.; Wu, Y.; Peng, Y.; Lu, X. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere 2018, 197, 768–781. [Google Scholar] [CrossRef]
- Englande, A.J., Jr.; Krenkel, P.; Shamas, J. Wastewater treatment & water reclamation. Ref. Modul. Earth Syst. Environ. Sci. 2015, 1, 639–670. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- GreenIee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef] [PubMed]
- Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent desalination technologies by hybridization and integration with reverse osmosis: A review. Water 2021, 13, 1369. [Google Scholar] [CrossRef]
- Hoek, E.M.; Weigand, T.M.; Edalat, A. Reverse osmosis membrane biofouling: Causes, consequences and countermeasures. Npj Clean Water 2022, 5, 45. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Zhang, H.; Zhao, J.; Liu, H.; Wang, J.; Li, G.; Liang, H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. Sci. Total Environ. 2024, 908, 168277. [Google Scholar] [CrossRef]
- Ipek, U. Removal of Ni(II) and Zn(II) from an aqueous solution by reverse osmosis. Desalination 2005, 174, 161–169. [Google Scholar] [CrossRef]
- Amaral, M.C.; Grossi, L.B.; Ramos, R.L.; Ricci, B.C.; Andrade, L.H. Integrated UF–NF–RO route for gold mining effluent treatment: From bench-scale to pilot-scale. Desalination 2018, 440, 111–121. [Google Scholar] [CrossRef]
- Miranda, A.; Arancibia, H.; Quispe, R. Reconocimiento del Patrimonio Geológico y Minero de la Región de Milluni en La Paz Bolivia; Congreso Internacional sobre Patrimonio Geológico y Minero de Bolivia y Los Andes: Oruro, Bolivia, 2010; pp. 74–76. Available online: https://es.slideshare.net/slideshow/patrimonio-geolgico-y-minero-de-la-regin-de-milluni-en-la-paz-bolivia/64084000 (accessed on 7 March 2024).
- Lehmann, B. Memoria explicativa del mapa geológico de Milluni, Cordillera Real (Bolivia). Rev. Geocienc. Univ. Mayor San Andrés 1978, 2, 187–257. [Google Scholar]
- Ahlfeld, F.; Schneider-Scherbina, A. Los Yacimientos Minerales y de Hidrocarburos de Bolivia; Departamento Nacional de Geología, Ministerio de Minas y Petróleo: La Paz, Bolivia, 1964.
- Peñarrieta, L. Estudio del Tratamiento de las Aguas Ácidas Provenientes de los Pasivos Ambientales y Desagües de la Mina de la Cuenca de Milluni del Departamento de la Paz-Bolivia. Método de Biodsorción, Reutilización Sostenible del Espacio Minero. In I Simposio Red REUSE y Seminario Internacional de Reconversión de Territorios; Instituto Juan Herrera: Madrid, Spain, 2012; pp. 129–135. Available online: https://www.academia.edu/23257074/Minera%C3%A7%C3%A2o_em_Minas_Gerais_territ%C3%B3rio_e_paisagem_cultural (accessed on 20 January 2024).
- Raffailac, E. Estudio de la contaminación de la Cuenca de Milluni. In Mémoire de Stage en Aguas del Illimani; Inédito: La Paz, Bolivia, 2002; 96p. [Google Scholar]
- Salvarredy-Aranguren, M.M.; Probst, A.; Roulet, M.; Isaure, M.P. Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia). Mineralogical and hydrological influences. Appl. Geochem. 2008, 23, 1299–1324. [Google Scholar] [CrossRef]
- Alvizuri-Tintaya, P.A.; Rios-Ruiz, M.; Lora-Garcia, J.; Torregrosa-López, J.I.; Lo-Iacono-Ferreira, V.G. Study and Evaluation of Surface Water Resources Affected by Ancient and Illegal Mining in the Upper Part of the Milluni Micro-Basin, Bolivia. Resources 2022, 11, 36. [Google Scholar] [CrossRef]
- Iltis, A. Datos Sobre las Lagunas Altura de la Región de la Paz (Bolivie); ORSTOM: La Paz, Bolivia, 1988; Volume 14, 50p, Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-05/26148.pdf (accessed on 15 March 2024).
- Alvizuri-Tintaya, P.A.; Villena-Martínez, E.M.; Avendaño-Acosta, N.; Lo-Iacono-Ferreira, V.G.; Torregrosa-López, J.I.; Lora-García, J. Contamination of Water Supply Sources by Heavy Metals: The Price of Development in Bolivia, a Latin American Reality. Water 2022, 14, 3470. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística. Estimaciones y Proyecciones de Población de Bolivia, Departamentos y Municipios. Revisión 2020. 2020. Available online: https://www.ine.gob.bo/index.php/publicaciones/estimaciones-y-proyecciones-de-poblacion-de-bolivia-departamentos-y-municipios-revision-2020/ (accessed on 15 August 2023).
- Empresa Pública Social de Agua y Saneamiento. EPSAS. Servicios. 2013. Available online: https://www.epsas.com.bo/web/servicios/ (accessed on 16 March 2024).
- Alvizuri Tintaya, P.A.; Torregrosa López, J.I.; Lo Iacono Ferreira, V.G.; Salinas Villafañe, O.R. Heavy metals problem in micro-basin that feeds a drinking water dam, Milluni—Bolivia case. In Proceedings of the XXIII International Congress on Project Management and Engineering, Málaga, Spain, 10–12 July 2019; Available online: http://dspace.aeipro.com/xmlui/handle/123456789/2396 (accessed on 20 March 2024).
- Saavedra, C.; Riego, Viceministerio. Plan Nacional de Cuencas de Bolivia. 2015. Available online: https://www.researchgate.net/publication/281244646_Plan_Nacional_de_Cuencas_de_Bolivia/references (accessed on 12 March 2024).
- United Nations Environment Programme (UNEP); World Health Organization (WHO). Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes; Bartram, J., Ballance, R., Eds.; E & FN Spon: New York, NY, USA, 1996; ISBN 0 419 22320 7. Available online: https://www.who.int/publications/i/item/0419217304 (accessed on 15 March 2024).
- ISO 5667-1; Water Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes and Sampling Techniques. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/72369.html (accessed on 15 March 2024).
- ISO 5667-4; Water Quality—Sampling—Part 4: Guidance on Sampling from Lakes, Natural and Man-Made. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/55450.html (accessed on 15 March 2024).
- Pontié, M.; Dach, H.; Leparc, J.; Hafsi, M.; Lhassani, A. Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification. Desalination 2008, 221, 174–191. [Google Scholar] [CrossRef]
- Huang, R.Y.; Lin, V.J. Separation of liquid mixtures through the use of polymeric membranes. I. Permeability of binary organic liquid mixtures through polyethylene. J. Appl. Polym. Sci 1968, 12, 2615–2631. [Google Scholar] [CrossRef]
- Chen, C.; Qin, H. A mathematical modeling of the reverse osmosis concentration process of a glucose solution. Processes 2019, 7, 271. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Chen, Z.; Zhu, J.; Chen, G. A comprehensive review on forward osmosis water treatment: Recent advances and prospects of membranes and draw solutes. Int. J. Environ. Res. Public Health 2022, 19, 8215. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Hybrid technologies: The future of energy efficient desalination–A review. Desalination 2020, 495, 114659. [Google Scholar] [CrossRef]
- Alsarayreh, A.A.; Al-Obaidi, M.A.; Al-Hroub, A.M.; Patel, R.; Mujtaba, I.M. Evaluation and minimisation of energy consumption in a medium-scale reverse osmosis brackish water desalination plant. J. Clean. Prod. 2020, 248, 119220. [Google Scholar] [CrossRef]
- Gakwisiri, C.; Raut, N.; Al Saadi, S.; Al-Ajmi, A. A critical review of removal of zinc from wastewater. Proc. World Congr. Eng. 2012, 1, 627–630. [Google Scholar]
- Hao, X.; Wang, X.; Liu, R.; Li, S.; van Loosdrecht, M.C.; Jiang, H. Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 2019, 160, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Villena-Martínez, E.M.; Alvizuri-Tintaya, P.A.; Lora-Garcia, J.; Torregrosa-López, J.I.; Lo-Iacono-Ferreira, V.G. A Comparative Analysis of Statistical Models and Mathematics in Reverse Osmosis Evaluation Processes as a Search Path to Achieve Better Efficiency. Water 2022, 14, 2485. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; pp. 246–248, 281–304. Available online: https://ebookcentral.proquest.com/lib/bibliotecaupves-ebooks/reader.action?docID=3102158&ppg=1 (accessed on 15 March 2024).
- Guo, X.; He, G. Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. J. Mater. Chem. A 2023, 11, 11987–12001. [Google Scholar] [CrossRef]
- Bakalár, T.; Búgel, M.; Gajdošová, L. Heavy metal removal using reverse osmosis. Acta Montan. Slovaca 2009, 14, 250–253. Available online: https://doaj.org/article/d6912e5f715247d4b22e368fef7500f7 (accessed on 30 April 2024).
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Ghosh, P.; Samanta, A.N.; Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 2011, 266, 213–217. [Google Scholar] [CrossRef]
- Shin, D.J.; Joo, S.-H.; Oh, C.-H.; Wang, J.-P.; Park, J.-T.; Min, D.J.; Shin, S.M. A study on Zn recovery from other metals in the spent mixed batteries through a sequence of hydrometallurgical processes. Environ. Technol. 2019, 40, 3512–3522. [Google Scholar] [CrossRef]
Component | Details |
---|---|
Objective | Determine concentration of Zn in the Milluni area. |
Monitoring area | The upper part of Milluni, including its lagoons: Pata Khota, Jankho Khota, Milluni Chico, and Milluni Grande. |
Sampling points | Three sampling points were determined to monitor the concentration of Zn in Milluni.
|
Frequency of monitoring | Three samplings were defined in the dry season and three in the rainy season with intervals of 1 month between samplings. |
Parameters to measure | The in situ parameters that must be monitored are pH, dissolved oxygen, conductivity, turbidity, and temperature. In addition, concentrations of Zn. |
Equipment |
|
Sampling | For proper sampling and transportation, ISO 5667-1 and ISO 5667-4 were followed [55,56]. The above standards stipulate the necessary sample volumes and the number of repetitions for measuring parameters in situ. |
Item | Model | Brand | Operational Conditions | From |
---|---|---|---|---|
RO membrane module | ULP-2540 | Keensen® | maximum pressure 4.14 × 106 Pa; 2–10 pH | Changsha, China |
Case of the membrane module | 2540.300.1 | Wave Cyber Co., Ltd. | maximum pressure 4 × 106 Pa | Shanghai, China |
Multistage centrifugal/electric pump | 2ACM150H | LEO® | 2 HP; maximum pressure 5.00 × 106 Pa | Zhejiang, China |
Flow sensors (FS) | FT-110 | Gems Sensors & Controls™ | 0.5 to 5 L/min 1 to 25 L/min | Plainville, CT, USA |
Manometer | AN213.53 | WIKA | 0–4.5 × 106 Pa | Germany |
Arduino | MEGA 2560 R3 | ELEGOO | - | Silicon Valley, China |
Needle valve | AISI-316 | GENEBRE | - | Barcelona, Spain |
Solution Concentration | Zn (mol m−3) | NaCl (mol m−3) | Solution Concentration Cf (mol m−3) |
---|---|---|---|
Low level | 2.9 × 10−2 | 4.20 | 4.23 |
Medium level | 8.8 × 10−2 | 16.5 | 16.6 |
High level | 3.0 × 10−1 | 32.0 | 32.3 |
Sapling Month | Points | Parameters Measured In Situ | Parameter Measured Ex Situ | |||
---|---|---|---|---|---|---|
Turbidity | pH | Dissolved Oxygen | Conductivity | Zn | ||
NTU | mg/L | µS/cm | mg/L | |||
January | Point 1 | 4.14 | 6.85 | 7.31 | 48.3 | 0.003 |
Point 2 | 29.3 | 3.32 | 5.54 | 745.0 | 25.68 | |
Point 3 | 11.7 | 3.03 | 5.21 | 1119.0 | 25.88 | |
March | Point 1 | 3.21 | 7.01 | 7.56 | 37.8 | 0.01 |
Point 2 | 20.6 | 3.54 | 6.01 | 800.0 | 42.08 | |
Point 3 | 11.7 | 3.45 | 5.59 | 1080.0 | 24.26 | |
May | Point 1 | 1.83 | 6.70 | 7.90 | 38.7 | 0.033 |
Point 2 | 3.41 | 2.83 | 6.59 | 1723.0 | 54.85 | |
Point 3 | 2.75 | 2.76 | 7.06 | 1246.0 | 25.71 | |
August | Point 1 | 3.25 | 7.37 | 7.66 | 64.9 | 0.005 |
Point 2 | 7.83 | 2.78 | 6.41 | 1966.0 | 69.91 | |
Point 3 | 8.07 | 2.68 | 6.68 | 1442.0 | 34.06 | |
October | Point 1 | 3.51 | 4.60 | 5.60 | 71.5 | 0.01 |
Point 2 | 5.30 | 2.81 | 4.99 | 1718.0 | 58.06 | |
Point 3 | 23.2 | 2.67 | 5.67 | 1486.0 | 37.21 | |
December | Point 1 | 2.54 | 6.50 | 5.80 | 65.2 | 0.02 |
Point 2 | 4.50 | 3.23 | 4.45 | 850.0 | 41.47 | |
Point 3 | 9.80 | 2.57 | 4.98 | 1200.0 | 32.62 |
Nº | Input Variables | Output Variables | |||
---|---|---|---|---|---|
Solution Concentration Cf (mol m−3) | Pressure P (Pa) | Income Flow Qf (m3/s) | Flux Jv (m3/s × m2) | Global Rejection Rate Ro (%) | |
1 | Low | Low | Low | 8.37 × 10−6 | 99.15 |
2 | Low | Medium | High | 1.20 × 10−5 | 99.10 |
3 | Low | High | Medium | 1.49 × 10−5 | 99.06 |
4 | Medium | Low | Medium | 7.44 × 10−6 | 99.05 |
5 | Medium | Medium | Low | 1.04 × 10−5 | 98.96 |
6 | Medium | High | High | 1.26 × 10−5 | 98.92 |
7 | High | Low | High | 5.91 × 10−6 | 98.92 |
8 | High | Medium | Medium | 8.65 × 10−6 | 98.85 |
9 | High | High | Low | 1.08 × 10−5 | 98.83 |
No. | Mean Concentration Factor FC | Global Rejection Rate Ro (%) | Annual Mean Zn Concentration in Milluni Chico Lagoon C0 (mg/L) | Zn Concentration in the Concentrate CC (mg/L) | Mean Flow Qf of RO Process (L/h) | Estimated Annual Zn Concentration Quantity Znr (kg/year) |
---|---|---|---|---|---|---|
1 | 1.36 | 99.15 | 48.67 | 65.69 | 345.89 | 198.51 |
2 | 1.42 | 99.10 | 48.67 | 68.40 | 420.33 | 251.17 |
3 | 1.56 | 99.06 | 48.67 | 75.06 | 405.99 | 266.21 |
4 | 1.28 | 99.05 | 48.67 | 61.78 | 373.45 | 201.56 |
5 | 1.35 | 98.96 | 48.67 | 65.10 | 357.16 | 203.12 |
6 | 1.41 | 98.92 | 48.67 | 68.02 | 415.32 | 246.79 |
7 | 1.20 | 98.92 | 48.67 | 57.52 | 389.11 | 195.52 |
8 | 1.31 | 98.85 | 48.67 | 62.80 | 383.55 | 210.43 |
9 | 1.44 | 98.83 | 48.67 | 69.02 | 356.49 | 214.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvizuri-Tintaya, P.A.; d’Abzac, P.; Lo-Iacono-Ferreira, V.G.; Torregrosa-López, J.I.; Lora-García, J. Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes. Membranes 2024, 14, 131. https://doi.org/10.3390/membranes14060131
Alvizuri-Tintaya PA, d’Abzac P, Lo-Iacono-Ferreira VG, Torregrosa-López JI, Lora-García J. Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes. Membranes. 2024; 14(6):131. https://doi.org/10.3390/membranes14060131
Chicago/Turabian StyleAlvizuri-Tintaya, Paola Andrea, Paul d’Abzac, Vanesa G. Lo-Iacono-Ferreira, Juan Ignacio Torregrosa-López, and Jaime Lora-García. 2024. "Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes" Membranes 14, no. 6: 131. https://doi.org/10.3390/membranes14060131
APA StyleAlvizuri-Tintaya, P. A., d’Abzac, P., Lo-Iacono-Ferreira, V. G., Torregrosa-López, J. I., & Lora-García, J. (2024). Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes. Membranes, 14(6), 131. https://doi.org/10.3390/membranes14060131