Membrane Processes in a Circular Economy: Opportunities and Challenges

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Applications for Water Treatment".

Deadline for manuscript submissions: closed (20 November 2024) | Viewed by 11095

Special Issue Editors


E-Mail Website
Guest Editor
Łukasiewicz Research Network, Institute for Sustainable Technologies, 26-600 Radom, Poland
Interests: wastewater treatment and closing water circuits using membrane techniques; surface functionalization of membranes and filtration materials; biochemical methods of conversion and management of industrial waste; biotechnological methods treatment of industrial wastewater
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland
Interests: membrane processes; membrane preparation; new technologies; industrial processes; process controlling; mathematical modeling

E-Mail Website1 Website2
Guest Editor
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, 31-261 Cracow, Poland
Interests: green deal strategies; circular economy; raw materials; water and wastewater; nutrients; roadmaps; policy recommendations; indicators; life cycle assessment (LCA); sustainable development goals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Sustainable resource management necessitates the development of modern technologies to enable the management of treated sewage (recovery and recycling of water, closure of water cycles, etc.); reduction in the loss of nutrients and environmental pollution; energy recovery and energy-saving technological processes; and the effective management of waste biomass. Such activities constitute the basis for eco-development, enabling the transformation towards a circular economy in line with global trends.

Optimizing the functionality of wastewater treatment systems currently in use encompasses a wide range of topics enabling the development of technological solutions, thanks to which recovered water can be reused in agriculture to irrigate fields and crops, in industry for production or technical purposes, and in everyday life for drinking purposes.

A rational approach to sustainable resource management is particularly important in those industrial sectors where significant resource consumption is observed, combined with the generation of waste with the potential for valorization. The transition from a linear economic model, i.e., "produce, use and throw away", to a model with a closed loop of raw materials requires the development of advanced technological solutions, enabling the recovery of raw materials from waste production streams and their return to the process, as well as the management of any waste products resulting from processing primary waste streams. In the new economic approach, the value of products and raw materials is preserved for as long as possible, while the amount of waste generated is minimized, and waste that currently has no rational use is immobilized and safely stored.

This Special Issue aims to review the latest achievements in the field of membrane technological solutions, enabling the minimization of industrial pollutant emissions into the natural environment through highly effective wastewater treatment and post-filtration waste management.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following topics:

  • circular economy;
  • water reclamation;
  • nutrients recovery;
  • wastewater treatment;
  • membrane processes;
  • new types of membranes;
  • membrane manufacturing;
  • membrane fouling control.

Dr. Anna Kowalik-Klimczak
Prof. Dr. Maciej Szwast
Prof. Dr. Marzena Smol
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • circular economy
  • membranes
  • treatment processes
  • water
  • nutrients
  • raw materials
  • wastewater

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

26 pages, 9055 KiB  
Article
The Efficiency of Polyester-Polysulfone Membranes, Coated with Crosslinked PVA Layers, in the Water Desalination by Pervaporation
by Izabela Gortat, Jerzy J. Chruściel, Joanna Marszałek, Renata Żyłła and Paweł Wawrzyniak
Membranes 2024, 14(10), 213; https://doi.org/10.3390/membranes14100213 - 7 Oct 2024
Viewed by 1681
Abstract
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer [...] Read more.
Composite polymer membranes were obtained using the so-called dry phase inversion and were used for desalination of diluted saline water solutions by pervaporation (PV) method. The tests used a two-layer backing, porous, ultrafiltration commercial membrane (PS20), which consisted of a supporting polyester layer and an active polysulfone layer. The active layer of PV membranes was obtained in an aqueous environment, in the presence of a surfactant, by cross-linking a 5 wt.% aqueous solution of polyvinyl alcohol (PVA)—using various amounts of cross-linking substances: 50 wt.% aqueous solutions of glutaraldehyde (GA) or citric acid (CA) or a 40 wt.% aqueous solution of glyoxal. An ethylene glycol oligomer (PEG 200) was also used to prepare active layers on PV membranes. Witch its help a chemically cross-linked hydrogel with PVA and cross-linking reagents (CA or GA) was formed and used as an active layer. The manufactured PV membranes (PVA/PSf/PES) were used in the desalination of water with a salinity of 35‰, which corresponds to the average salinity of oceans. The pervaporation method was used to examine the efficiency (productivity and selectivity) of the desalination process. The PV was carried at a temperature of 60 °C and a feed flow rate of 60 dm3/h while the membrane area was 0.005 m2. The following characteristic parameters of the membranes were determined: thickness, hydrophilicity (based on contact angle measurements), density, degree of swelling and cross-linking density and compared with the analogous properties of the initial PS20 backing membrane. The physical microstructure of the cross-section of the membranes was analyzed using scanning electron microscopy (SEM) method. Full article
Show Figures

Figure 1

21 pages, 6605 KiB  
Article
Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite
by Ayelen C. Santos, Alicia Vergara-Rubio, Angel J. Mazocca and Silvia Goyanes
Membranes 2024, 14(9), 189; https://doi.org/10.3390/membranes14090189 - 30 Aug 2024
Viewed by 1293
Abstract
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the [...] Read more.
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the effect of relative humidity (RH) within the electrospinning chamber on the morphology of the resulting mats and how this affected the flow dynamics depending on whether or not the permeating liquid induced swelling in the membranes. An insolubilized PVA membrane was used as a hydrophilic filter model and a PVA membrane filled with iron oxide nanoparticles (IONPs) as a composite model (PVA + IONPs). The presence of IONPs increases the nanofiber diameter, which decreases when prepared under intermediate RH (IRH). Consequently, the nanofiber configuration, which is critical for filtration tortuosity, is influenced by RH. The initial swelling results in over 60% greater water flux through PVA + IONPs compared to PVA at an equivalent RH. This characterization helps to optimize membrane applications, highlighting that PVA + IONPs exhibit lower permeability values at IRH, indicating improved contaminant retention capabilities. Full article
Show Figures

Figure 1

17 pages, 6405 KiB  
Article
Cleaning of Ultrafiltration Membranes: Long-Term Treatment of Car Wash Wastewater as a Case Study
by Wirginia Tomczak, Piotr Woźniak, Marek Gryta, Joanna Grzechulska-Damszel and Monika Daniluk
Membranes 2024, 14(7), 159; https://doi.org/10.3390/membranes14070159 - 19 Jul 2024
Cited by 2 | Viewed by 1344
Abstract
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current [...] Read more.
Car wash wastewaters (CWWs) contain various pollutants with different contents. Hence, selecting an appropriate process for their treatment is a great challenge. Undoubtedly, the ultrafiltration (UF) process is one of the most interesting and reliable choices. Therefore, the main aim of the current study was to investigate the performance of the UF membranes used for the long-term treatment of real CWWs. For this purpose, two polyethersulfone (PES) membranes with molecular weight cut-off (MWCO) values equal to 10 and 100 kDa were applied. As expected, a significant decrease in the permeate flux during the UF run was observed. However, it was immediately demonstrated that the systematic cleaning of membranes (every day) with Insect agent (pH = 11.5) prevented a further decline in the process’s performance. In addition, this study focused on the relative flux during the process run with breaks lasting a few days when the UF installation was filled with distilled water. The results of this research indicated that aqueous media favor microorganism adherence to the surface which leads to the formation of biofilms inside processing installations. As a consequence, many attempts have been made to restore the initial membrane performance. It has been found that the application of several chemical agents is required. More precisely, the use of an Insect solution, P3 Ultrasil 11 agent, and phosphoric acid increases the relative flux to a value of 0.8. Finally, it has been indicated that the membranes used in this work are resistant to the long-term exposure to bacteria and chemical agents. However, during the separation of CWWs for the membrane with an MWCO of 10 kDa, a lesser fouling influence and higher effectiveness of cleaning were obtained. Finally, the present study demonstrates a novel analysis and innovative implications towards applying the UF process for the CWW treatment. Full article
Show Figures

Figure 1

12 pages, 7137 KiB  
Article
Valorisation of Tannery Waste to Recover Chromium with a View to Reusing It in Industrial Practise
by Anna Kowalik-Klimczak, Monika Łożyńska, Maciej Życki, Christian Schadewell, Thomas Fiehn, Bogusław Woźniak and Monika Flisek
Membranes 2024, 14(6), 136; https://doi.org/10.3390/membranes14060136 - 6 Jun 2024
Viewed by 1524
Abstract
This paper presents the basic assumptions of the concept of a new technology for the valorisation of chromium tannery waste. It assumes the use of an integrated system of the thermal pressure hydrolysis process and membrane filtration techniques for the recovery of chromium [...] Read more.
This paper presents the basic assumptions of the concept of a new technology for the valorisation of chromium tannery waste. It assumes the use of an integrated system of the thermal pressure hydrolysis process and membrane filtration techniques for the recovery of chromium compounds and the use of a separated organic matter during anaerobic fermentation. According to the assumptions of the developed technological concept, at the first stage, the crushed mixture of chromium tannery waste is decomposed in the process of thermal pressure hydrolysis using appropriate process conditions in an alkaline environment. Then, the liquid product of this process (the so-called hydrolysate) is processed using centrifugal force separation and ultrafiltration. Such activities enable the recovery of chromium compounds for rawhide currying and concentration of organic matter (fats, proteins) with energy potential. Research carried out under conditions similar to real operating conditions proved that chromium compounds recovered from waste can be successfully used in the processing of cowhides intended for the production of footwear. The industrial implementation of the developed technology for valorising chromium tannery waste would enable the transition from a linear to a circular economy. Full article
Show Figures

Figure 1

20 pages, 3987 KiB  
Article
Zinc Recovery from a Water Supply by Reverse Osmosis Operated at Low Pressures: Looking for Sustainability in Water Treatment Advanced Processes
by Paola Andrea Alvizuri-Tintaya, Paul d’Abzac, Vanesa G. Lo-Iacono-Ferreira, Juan Ignacio Torregrosa-López and Jaime Lora-García
Membranes 2024, 14(6), 131; https://doi.org/10.3390/membranes14060131 - 5 Jun 2024
Cited by 1 | Viewed by 1282
Abstract
Achieving sustainability in life involves increasing efforts to recover resources. This research proposes the recovery of Zn from the Milluni lagoons, an important water supply for Bolivia, where high concentrations of Zn have been identified that exceed permitted limits, exposing a risk to [...] Read more.
Achieving sustainability in life involves increasing efforts to recover resources. This research proposes the recovery of Zn from the Milluni lagoons, an important water supply for Bolivia, where high concentrations of Zn have been identified that exceed permitted limits, exposing a risk to health and ecosystems. The application of reverse osmosis (RO), operated with low pressures, is proposed as a first stage for the concentration of Zn and subsequent recovery of this metal through chemical precipitation. The aim was to maintain the separation efficiency of the RO operated at low pressures without presenting operational problems. As a result, 98.83% metal concentration was achieved with a laboratory-scale pilot system. The above means an important potential for large-scale Zn concentration, apart from orienting the RO toward sustainability by working with low pressures that reduce energy costs during its operation. This study can be used as a valuable reference for the advancement of sustainable technologies in the field of water treatment that simultaneously allow the recovery of resources to promote a circular economy. Finally, this study exposes an alternative for regions with heavy metal water contamination in Bolivia and worldwide. Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 5456 KiB  
Review
Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects
by Bhoga Arundhathi, Manideep Pabba, Shrisha S. Raj, Nivedita Sahu and Sundergopal Sridhar
Membranes 2024, 14(11), 224; https://doi.org/10.3390/membranes14110224 - 25 Oct 2024
Cited by 1 | Viewed by 2802
Abstract
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, [...] Read more.
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, like phase inversion, layer-by-layer assembly, electrospinning, and surface modification, enable the production of tailored MMMs. A trade-off exists between selectivity and flux in pristine polymer membranes or plain inorganic ceramic/zeolite membranes. In contrast, in MMMs, NPs exert a profound influence on membrane performance, enhancing both permeability and selectivity simultaneously, besides exhibiting profound antibacterial efficacy. Membranes reported in this work find application in diverse separation processes, notably in niche membrane-based applications, by addressing challenges such as membrane fouling and degradation, low flux, and selectivity, besides poor rejection properties. This review comprehensively surveys recent advances in nanoparticle-integrated polymeric membranes across various fields of water purification, heavy metal removal, dye degradation, gaseous separation, pervaporation (PV), fuel cells (FC), and desalination. Efforts have been made to underscore the role of nanomaterials in advancing environmental remediation efforts and addressing drinking water quality concerns through interesting case studies reported in the literature. Full article
Show Figures

Figure 1

Back to TopTop