Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospinning Solutions and Process
Preparation of Electrospun Membranes
2.3. Morphology and Structure of Mats
2.4. Porosity Measurements and Effective Pore Size Estimation
2.5. Swelling of the Mats
2.6. Flow through the Mats with Pure Water and Toluene
3. Results and Discussion
3.1. Morphological Characterization of Electrospun Mats (PVA and PVA + IONPs). Effect of Chamber RH
3.2. Swelling: Interaction Solvent Materials
3.3. Dynamic Flow through the Membranes with Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mobarak, M.H.; Siddiky, A.Y.; Islam, M.A.; Hossain, A.; Rimon, M.I.H.; Oliullah, M.S.; Khan, J.; Rahman, M.; Hossain, N.; Chowdhury, M.A. Progress and Prospects of Electrospun Nanofibrous Membranes for Water Filtration: A Comprehensive Review. Desalination 2024, 574, 117285. [Google Scholar] [CrossRef]
- Liang, H.; Xie, A.; Nie, S.; Rui, J.; Li, C.; Xue, C.; Cui, J.; Pan, J. Low-Pressure Driving Co3O4/PAN Nanofiber Membrane with Peroxymonosulfate Activation Self-Cleaning for Efficient Wastewater Purification. J. Membr. Sci. 2024, 693, 122380. [Google Scholar] [CrossRef]
- Facchi, D.P.; Facchi, S.P.; Souza, P.R.; Bonafé, E.G.; Popat, K.C.; Kipper, M.J.; Martins, A.F. Composite Filter with Antimicrobial and Anti-Adhesive Properties Based on Electrospun Poly (Butylene Adipate-Co-Terephthalate)/Poly(Acid Lactic)/Tween 20 Fibers Associated with Silver Nanoparticles. J. Membr. Sci. 2022, 650, 120426. [Google Scholar] [CrossRef]
- Picón, D.; Vergara-Rubio, A.; Estevez-Areco, S.; Cerveny, S.; Goyanes, S. Adsorption of Methylene Blue and Tetracycline by Zeolites Immobilized on a PBAT Electrospun Membrane. Molecules 2022, 28, 81. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, Y.; Wei, X.-Y.; Zheng, L.-W.; Li, Z.-Q.; Zhang, K.-G.; Yuan, C.-G. Electrospun Metal-Organic Frameworks Hybrid Nanofiber Membrane for Efficient Removal of As(III) and As(V) from Water. Ecotoxicol. Environ. Saf. 2021, 228, 112990. [Google Scholar] [CrossRef]
- Vergara-Rubio, A.; Ribba, L.; Picón Borregales, D.E.; Sapag, K.; Candal, R.; Goyanes, S. Ultramicroporous Carbon Nanofibrous Mats for Hydrogen Storage. ACS Appl. Nano Mater. 2022, 5, 15353–15361. [Google Scholar] [CrossRef]
- Gouthaman, A.; Azarudeen, R.S.; Thirumarimurugan, M. A Strategic Approach towards Thermal Crosslinking of the Electrospun PVA Membrane Using O-Phenylene Diamine: Superhydrophilic Platform to Grow PANI for Simultaneous Cationic and Anionic Dye Rejections. J. Membr. Sci. 2024, 695, 122476. [Google Scholar] [CrossRef]
- Des Ligneris, E.; Dumée, L.F.; Al-Attabi, R.; Castanet, E.; Schütz, J.; Kong, L. Mixed Matrix Poly(Vinyl Alcohol)-Copper Nanofibrous Anti-Microbial Air-Microfilters. Membranes 2019, 9, 87. [Google Scholar] [CrossRef]
- Vergara-Rubio, A.; Ribba, L.; Picón, D.; Candal, R.; Goyanes, S. A Highly Efficient Nanostructured Sorbent of Sulfuric Acid from Ecofriendly Electrospun Poly (Vinyl Alcohol) Mats. Ind. Eng. Chem. Res. 2022, 61, 2091–2099. [Google Scholar] [CrossRef]
- Huang, S.-M.; Liu, S.-M.; Tseng, H.-Y.; Chen, W.-C. Effect of Citric Acid on Swelling Resistance and Physicochemical Properties of Post-Crosslinked Electrospun Polyvinyl Alcohol Fibrous Membrane. Polymers 2023, 15, 1738. [Google Scholar] [CrossRef]
- Torasso, N.; Vergara-Rubio, A.; Rivas-Rojas, P.; Huck-Iriart, C.; Larrañaga, A.; Fernández-Cirelli, A.; Cerveny, S.; Goyanes, S. Enhancing Arsenic Adsorption via Excellent Dispersion of Iron Oxide Nanoparticles inside Poly (Vinyl Alcohol) Nanofibers. J. Environ. Chem. Eng. 2021, 9, 104664. [Google Scholar] [CrossRef]
- Torasso, N.; Vergara-Rubio, A.; Pereira, R.; Martinez-Sabando, J.; Baudrit, J.R.V.; Cerveny, S.; Goyanes, S. An in Situ Approach to Entrap Ultra-Small Iron Oxide Nanoparticles inside Hydrophilic Electrospun Nanofibers with High Arsenic Adsorption. Chem. Eng. J. 2023, 454, 140168. [Google Scholar] [CrossRef]
- Cimadoro, J.; Goyanes, S. Reversible Swelling as a Strategy in the Development of Smart Membranes from Electrospun Polyvinyl Alcohol Nanofiber Mats. J. Polym. Sci. 2020, 58, 737–746. [Google Scholar] [CrossRef]
- Raota, C.S.; Crespo, J.D.S.; Baldasso, C.; Giovanela, M. Development of a Green Polymeric Membrane for Sodium Diclofenac Removal from Aqueous Solutions. Membranes 2023, 13, 662. [Google Scholar] [CrossRef]
- Xu, R.; Feng, J.; Zhang, L.; Li, S. Low Viscosity of Spinning Liquid to Prepare Organic-Inorganic Hybrid Ultrafine Nanofiber Membrane for High-Efficiency Filtration Application. Sep. Purif. Technol. 2022, 303, 122224. [Google Scholar] [CrossRef]
- Yan, S.; Qian, Y.; Haghayegh, M.; Xia, Y.; Yang, S.; Cao, R.; Zhu, M. Electrospun Organic/Inorganic Hybrid Nanofibers for Accelerating Wound Healing: A Review. J. Mater. Chem. B 2024, 12, 3171–3190. [Google Scholar] [CrossRef]
- Castro, K.; Abejón, R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. Membranes 2024, 14, 180. [Google Scholar] [CrossRef]
- Saad Binkadem, M. Fabrication of PCL/CMARX/GO Composite Nanofibrous Mats for Dye Adsorption: Wastewater Treatment. Membranes 2023, 13, 622. [Google Scholar] [CrossRef]
- Elbhnsawi, N.A.; Elwakil, B.H.; Hassanin, A.H.; Shehata, N.; Elshewemi, S.S.; Hagar, M.; Olama, Z.A. Nano-Chitosan/Eucalyptus Oil/Cellulose Acetate Nanofibers: Manufacturing, Antibacterial and Wound Healing Activities. Membranes 2023, 13, 604. [Google Scholar] [CrossRef]
- Huang, S.-M.; Liu, S.-M.; Tseng, H.-Y.; Chen, W.-C. Development and In Vitro Analysis of Layer-by-Layer Assembled Membranes for Potential Wound Dressing: Electrospun Curcumin/Gelatin as Middle Layer and Gentamicin/Polyvinyl Alcohol as Outer Layers. Membranes 2023, 13, 564. [Google Scholar] [CrossRef]
- El-Attar, A.A.; El-Wakil, H.B.; Hassanin, A.H.; Bakr, B.A.; Almutairi, T.M.; Hagar, M.; Elwakil, B.H.; Olama, Z.A. Silver/Snail Mucous PVA Nanofibers: Electrospun Synthesis and Antibacterial and Wound Healing Activities. Membranes 2022, 12, 536. [Google Scholar] [CrossRef]
- Sakib, M.N.; Mallik, A.K.; Rahman, M.M. Update on Chitosan-Based Electrospun Nanofibers for Wastewater Treatment: A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100064. [Google Scholar] [CrossRef]
- Yin, J.; Deng, B. Polymer-Matrix Nanocomposite Membranes for Water Treatment. J. Membr. Sci. 2015, 479, 256–275. [Google Scholar] [CrossRef]
- Zhong, Q.; Shi, G.; Sun, Q.; Mu, P.; Li, J. Robust PVA-GO-TiO2 Composite Membrane for Efficient Separation Oil-in-Water Emulsions with Stable High Flux. J. Membr. Sci. 2021, 640, 119836. [Google Scholar] [CrossRef]
- Mahanta, N.; Valiyaveettil, S. Functionalized Poly (Vinyl Alcohol) Based Nanofibers for the Removal of Arsenic from Water. RSC Adv. 2013, 3, 2776. [Google Scholar] [CrossRef]
- Pelipenko, J.; Kristl, J.; Janković, B.; Baumgartner, S.; Kocbek, P. The Impact of Relative Humidity during Electrospinning on the Morphology and Mechanical Properties of Nanofibers. Int. J. Pharm. 2013, 456, 125–134. [Google Scholar] [CrossRef]
- Medeiros, E.S.; Mattoso, L.H.C.; Offeman, R.D.; Wood, D.F.; Orts, W.J. Effect of Relative Humidity on the Morphology of Electrospun Polymer Fibers. Can. J. Chem. 2008, 86, 590–599. [Google Scholar] [CrossRef]
- Raksa, A.; Numpaisal, P.; Ruksakulpiwat, Y. The Effect of Humidity during Electrospinning on Morphology and Mechanical Properties of SF/PVA Nanofibers. Mater. Today Proc. 2021, 47, 3458–3461. [Google Scholar] [CrossRef]
- Hikmawati, D.; Adiputri, E.F.; Putra, A.P.; Ady, J. The Role of Relative Humidity on Physical Characteristics of Poly Vinyl Alcohol-Aloe Vera Fiber Membrane by Using Electrospinning Methods. Mater. Sci. Forum 2019, 966, 157–162. [Google Scholar] [CrossRef]
- Karimi, E.; Raisi, A.; Aroujalian, A. TiO2-Induced Photo-Cross-Linked Electrospun Polyvinyl Alcohol Nanofibers Microfiltration Membranes. Polymer 2016, 99, 642–653. [Google Scholar] [CrossRef]
- Faraji, M.; Saidi, M.; Abdouss, M. Novel Activated Biochar-Enhanced Superhydrophilic Nanofibrous Membrane for Superior Oil-in-Water Emulsion Separation. J. Membr. Sci. 2024, 700, 122675. [Google Scholar] [CrossRef]
- Ahn, B.W.; Kang, T.J. Preparation and Characterization of Magnetic Nanofibers with Iron Oxide Nanoparticles and Poly (Ethylene Terephthalate). J. Appl. Polym. Sci. 2012, 125, 1567–1575. [Google Scholar] [CrossRef]
- Götz, A.; Senz, V.; Schmidt, W.; Huling, J.; Grabow, N.; Illner, S. General Image Fiber Tool: A Concept for Automated Evaluation of Fiber Diameters in SEM Images. Measurement 2021, 177, 109265. [Google Scholar] [CrossRef]
- Huling, J.; Götz, A.; Grabow, N.; Illner, S. GIFT: An ImageJ Macro for Automated Fiber Diameter Quantification. PLoS ONE 2022, 17, e0275528. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G. DiameterJ: A Validated Open Source Nanofiber Diameter Measurement Tool. Biomaterials 2015, 61, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Cortez Tornello, P.R.; Caracciolo, P.C.; Cuadrado, T.R.; Abraham, G.A. Structural Characterization of Electrospun Micro/Nanofibrous Scaffolds by Liquid Extrusion Porosimetry: A Comparison with Other Techniques. Mater. Sci. Eng. C 2014, 41, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Sutera, S.P.; Skalak, R. The History of Poiseuille’s Law. Annu. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Marzocca, A.J.; Rodriguez Garraza, A.L.; Sorichetti, P.; Mosca, H.O. Cure Kinetics and Swelling Behaviour in Polybutadiene Rubber. Polym. Test. 2010, 29, 477–482. [Google Scholar] [CrossRef]
- Darcy, H.A. Du Texte les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes à Suivre et des Formules à Employer Dans Les Questions de Distribution D’eau; Victor Dalmont: Paris, France, 1856. [Google Scholar]
- Wang, Z.; Cai, N.; Zhao, D.; Xu, J.; Dai, Q.; Xue, Y.; Luo, X.; Yang, Y.; Yu, F. Mechanical Reinforcement of Electrospun Water-Soluble Polymer Nanofibers Using Nanodiamonds. Polym. Compos. 2013, 34, 1735–1744. [Google Scholar] [CrossRef]
- Mailley, D.; Hébraud, A.; Schlatter, G. A Review on the Impact of Humidity during Electrospinning: From the Nanofiber Structure Engineering to the Applications. Macromol. Mater. Eng. 2021, 306, 2100115. [Google Scholar] [CrossRef]
- Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2022, 15, 65. [Google Scholar] [CrossRef]
- Nataraj, D.; Reddy, R.; Reddy, N. Crosslinking Electrospun Poly (Vinyl) Alcohol Fibers with Citric Acid to Impart Aqueous Stability for Medical Applications. Eur. Polym. J. 2020, 124, 109484. [Google Scholar] [CrossRef]
- Hamrang, A.; Howell, B.A. (Eds.) Foundations of High Performance Polymers: Properties, Performance and Applications; Apple Academic Press: Oakville, ON, Canada, 2013; ISBN 978-0-429-17146-8. [Google Scholar]
- Zhang, C.; Yuan, X.; Wu, L.; Han, Y.; Sheng, J. Study on Morphology of Electrospun Poly (Vinyl Alcohol) Mats. Eur. Polym. J. 2005, 41, 423–432. [Google Scholar] [CrossRef]
- Phachamud, T.; Phiriyawirut, M. Physical Properties of Polyvinyl Alcohol Electrospun Fiber Mat. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 675–684. [Google Scholar]
- Konta, A.; García-Piña, M.; Serrano, D. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering 2017, 4, 79. [Google Scholar] [CrossRef] [PubMed]
- Kayal, S.; Ramanujan, R.V. Doxorubicin Loaded PVA Coated Iron Oxide Nanoparticles for Targeted Drug Delivery. Mater. Sci. Eng. C 2010, 30, 484–490. [Google Scholar] [CrossRef]
- Lee, J.; Isobe, T.; Senna, M. Preparation of Ultrafine Fe3O4Particles by Precipitation in the Presence of PVA at High PH. J. Colloid Interface Sci. 1996, 177, 490–494. [Google Scholar] [CrossRef]
- Ahn, T.; Kim, J.H.; Yang, H.M.; Lee, J.W.; Kim, J.D. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
Electrospinnable Solution | Viscosity [cp] | Conductivity [μS/cm] | pH | Surface Tension [mN/m] |
---|---|---|---|---|
PVA | 309.33 ± 0.65 | 635.98 ± 0.31 | 5.331 ± 0.010 | 66.61 ± 0.18 |
PVA + IONPs | 877.0 ± 2.2 | 2667.3 ± 1.7 | 2.498 ± 0.010 | 65.16 ± 0.38 |
PVA | PVA + IONPs | |||
---|---|---|---|---|
LRH | IRH | LRH | IRH | |
ϕmode (nm) | 173 | 75 | 173 | 108 |
ϕmean (nm) | 181 | 90 | 54 186 | 135 |
st. dev. (σ) (nm) | 44 | 19 | 26 60 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.C.; Vergara-Rubio, A.; Mazocca, A.J.; Goyanes, S. Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite. Membranes 2024, 14, 189. https://doi.org/10.3390/membranes14090189
Santos AC, Vergara-Rubio A, Mazocca AJ, Goyanes S. Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite. Membranes. 2024; 14(9):189. https://doi.org/10.3390/membranes14090189
Chicago/Turabian StyleSantos, Ayelen C., Alicia Vergara-Rubio, Angel J. Mazocca, and Silvia Goyanes. 2024. "Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite" Membranes 14, no. 9: 189. https://doi.org/10.3390/membranes14090189
APA StyleSantos, A. C., Vergara-Rubio, A., Mazocca, A. J., & Goyanes, S. (2024). Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite. Membranes, 14(9), 189. https://doi.org/10.3390/membranes14090189