Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Membrane Modification
2.3. Membrane Characterization
2.4. Filtration Tests
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Yang, B.; Xiao, K.; Zhao, H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. Water Res. 2021, 195, 116976. [Google Scholar] [CrossRef] [PubMed]
- Kochkodan, V.; Johnson, D.J.; Hilal, N. Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 2014, 206, 116–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Ghasemi, H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv. Colloid Interface Sci. 2020, 284, 102264. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-S.; Liu, Q.; Shen, Y.; Wang, N.; Ji, Y.; Wanjiya, M.; An, Q.-F.; Gao, C.-J. Preparation of anti-fouling zwitterionic nanofiltration membrane with tunable surface charge. Adv. Membr. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Shen, Y.; Van Eygen, G.; Wu, B.; Wu, C.; Yin, M.-J.; Zhao, Y.; Van der Bruggen, B.; An, Q.-F. In-situ interfacial polymerization of zwitterionic nanofiltration membranes with anti-scaling performance. Adv. Membr. 2024, 4, 100095. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Wu, Y.; Xia, Y.; Jing, X.; Cai, P.; Igalavithana, A.D.; Tang, C.; Tsang, D.C.W.; Ok, Y.S. Recent advances in mitigating membrane biofouling using carbon-based materials. J. Hazard. Mater. 2020, 382, 120976. [Google Scholar] [CrossRef] [PubMed]
- Petukhov, D.I.; Johnson, D.J. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv. Colloid Interface Sci. 2024, 327, 103140. [Google Scholar] [CrossRef]
- Zhou, C.; Li, B.; Li, Y.; Zhao, J.; Mei, Q.; Wu, Y.; Chen, Y.; Li, M.; Fan, Y. A review of graphene oxide-based adsorbents for removing lead ions in water. J. Environ. Chem. Eng. 2024, 12, 111839. [Google Scholar] [CrossRef]
- Mahdavi, H.; Rahimi, A. Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: Towards improved anti-fouling performance for reverse osmosis. Desalination 2018, 433, 94–107. [Google Scholar] [CrossRef]
- Ansari, A.; Peña-Bahamonde, J.; Wang, M.; Shaffer, D.L.; Hu, Y.; Rodrigues, D.F. Polyacrylic acid-brushes tethered to graphene oxide membrane coating for scaling and biofouling mitigation on reverse osmosis membranes. J. Memb. Sci. 2021, 630, 119308. [Google Scholar] [CrossRef]
- Wang, H.; Yan, B.; Hussain, Z.; Wang, W.; Chang, N. Chemically graft aminated GO onto dehydro-fluorinated PVDF for preparation of homogenous DF-PVDF/GO-NH2 ultrafiltration membrane with high permeability and antifouling performance. Surf. Interfaces 2022, 33, 102255. [Google Scholar] [CrossRef]
- Majid, H.; Heidarzadeh, N.; Vatanpour, V.; Dehqan, A. Surface modification of commercial reverse osmosis membranes using both hydrophilic polymer and graphene oxide to improve desalination efficiency. Chemosphere 2022, 302, 134931. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Marsh, K.L.; McVerry, B.T.; Hoek, E.M.V.; Kaner, R.B. Low-Fouling Antibacterial Reverse Osmosis Membranes via Surface Grafting of Graphene Oxide. ACS Appl. Mater. Interfaces 2016, 8, 14334–14338. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Tiraferri, A.; Yip, N.Y.; Adout, A.; Huang, X.; Elimelech, M. Improved Antifouling Properties of Polyamide Nanofiltration Membranes by Reducing the Density of Surface Carboxyl Groups. Environ. Sci. Technol. 2012, 46, 13253–13261. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Zouari, N. Functionalization of reverse osmosis membrane with graphene oxide to reduce both membrane scaling and biofouling. Carbon N. Y. 2020, 166, 374–387. [Google Scholar] [CrossRef]
- Cao, B.; Ansari, A.; Yi, X.; Rodrigues, D.F.; Hu, Y. Gypsum scale formation on graphene oxide modified reverse osmosis membrane. J. Memb. Sci. 2018, 552, 132–143. [Google Scholar] [CrossRef]
- Han, J.-L.; Xia, X.; Tao, Y.; Yun, H.; Hou, Y.-N.; Zhao, C.-W.; Luo, Q.; Cheng, H.-Y.; Wang, A.-J. Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux. Water Res. 2016, 102, 619–628. [Google Scholar] [CrossRef]
- Perreault, F.; Jaramillo, H.; Xie, M.; Ude, M.; Nghiem, L.D.; Elimelech, M. Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes. Environ. Sci. Technol. 2016, 50, 5840–5848. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Zouari, N. Investigating the effect of polymer-modified graphene oxide coating on RO membrane fouling. J. Water Process Eng. 2022, 49, 103164. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Zouari, N. Functionalization of reverse osmosis membrane with graphene oxide and polyacrylic acid to control biofouling and mineral scaling. Sci. Total Environ. 2020, 736, 139500. [Google Scholar] [CrossRef] [PubMed]
- Croll, H.; Soroush, A.; Pillsbury, M.E.; Romero-Vargas Castrillón, S. Graphene oxide surface modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine (NDMA) removal. Sep. Purif. Technol. 2019, 210, 973–980. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, P.; Xu, R.; Wang, Z.; Song, W.; Wang, X. Porous graphene oxide surface-coated thin-film composite membrane for simultaneously increasing permeation performance and organic-fouling migration capacities. J. Memb. Sci. 2022, 661, 120942. [Google Scholar] [CrossRef]
- Pang, R.; Zhang, K. A facile and viable approach to fabricate polyamide membranes functionalized with graphene oxide nanosheets. RSC Adv. 2017, 7, 53463–53471. [Google Scholar] [CrossRef]
- Choi, W.; Choi, J.; Bang, J.; Lee, J.-H. Layer-by-Layer Assembly of Graphene Oxide Nanosheets on Polyamide Membranes for Durable Reverse-Osmosis Applications. ACS Appl. Mater. Interfaces 2013, 5, 12510–12519. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Wrasman, C.J.; Kao, K.-C.; Riscoe, A.R.; Cargnello, M.; Frank, C.W. Langmuir–Blodgett Deposition of Graphene Oxide—Identifying Marangoni Flow as a Process that Fundamentally Limits Deposition Control. Langmuir 2018, 34, 9683–9691. [Google Scholar] [CrossRef] [PubMed]
- Cote, L.J.; Kim, F.; Huang, J. Langmuir−Blodgett Assembly of Graphite Oxide Single Layers. J. Am. Chem. Soc. 2009, 131, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Jia, J.; Yousefi, N.; Shen, X.; Kim, J.-K. Excellent optoelectrical properties of graphene oxide thin films deposited on a flexible substrate by Langmuir–Blodgett assembly. J. Mater. Chem. C 2013, 1, 6869–6877. [Google Scholar] [CrossRef]
- Han, F.; Yang, S.; Jing, W.; Jiang, Z.; Liu, H.; Li, L. A study on near-UV blue photoluminescence in graphene oxide prepared by Langmuir–Blodgett method. Appl. Surf. Sci. 2015, 345, 18–23. [Google Scholar] [CrossRef]
- Nie, Y.; Tian, M.; Zhang, Q.; Wang, L.; Ji, Z.; Chen, X.; Yang, S.; Song, W.; Wu, C.; Xu, H.; et al. Controlled fabrication of biocompatible graphene oxide Langmuir–Blodgett films by size and surface property manipulation. J. Dispers. Sci. Technol. 2022, 43, 1747–1754. [Google Scholar] [CrossRef]
- Xu, L.; Tetreault, A.R.; Khaligh, H.H.; Goldthorpe, I.A.; Wettig, S.D.; Pope, M.A. Continuous Langmuir–Blodgett Deposition and Transfer by Controlled Edge-to-Edge Assembly of Floating 2D Materials. Langmuir 2019, 35, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Parchine, M.; Kohoutek, T.; Bardosova, M.; Pemble, M.E. Large area colloidal photonic crystals for light trapping in flexible organic photovoltaic modules applied using a roll-to-roll Langmuir-Blodgett method. Sol. Energy Mater. Sol. Cells 2018, 185, 158–165. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Rehman, S.; Kharraz, J.A.; Farid, M.U.; Khatri, M.; Hilal, N.; An, A.K. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance. Chemosphere 2023, 338, 139557. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Liang, Q.; Wan, W.; Han, Q.; Tan, S.; Ding, M. Amino acid-modified graphene oxide magnetic nanocomposite for the magnetic separation of proteins. RSC Adv. 2017, 7, 30109–30117. [Google Scholar] [CrossRef]
- Lee, D.W.; Hong, T.-K.; Kang, D.; Lee, J.; Heo, M.; Kim, J.Y.; Kim, B.-S.; Shin, H.S. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides. J. Mater. Chem. 2011, 21, 3438–3442. [Google Scholar] [CrossRef]
- Vashist, S.K. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics 2012, 2, 23–33. [Google Scholar] [CrossRef]
- Petukhov, D.I.; Chernova, E.A.; Kapitanova, O.O.; Boytsova, O.V.; Valeev, R.G.; Chumakov, A.P.; Konovalov, O.V.; Eliseev, A.A. Thin graphene oxide membranes for gas dehumidification. J. Memb. Sci. 2019, 577, 184–194. [Google Scholar] [CrossRef]
- Park, D.J.; Supekar, O.D.; Greenberg, A.R.; Gopinath, J.T.; Bright, V.M. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy. Desalination 2021, 497, 114736. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z.; Hu, Y.; Chen, Y. Thin-Film Composite Membrane Compaction: Exploring the Interplay among Support Compressive Modulus, Structural Characteristics, and Overall Transport Efficiency. Environ. Sci. Technol. 2024, 58, 8587–8596. [Google Scholar] [CrossRef]
- Beshkov, G.; Dimitrov, D.B.; Georgiev, S.; Juan-Cheng, D.; Petrov, P.; Velchev, N.; Krastev, V. XPS spectra of thin CNx films prepared by chemical vapor deposition. Diam. Relat. Mater. 1999, 8, 591–594. [Google Scholar] [CrossRef]
- Ederer, J.; Janoš, P.; Ecorchard, P.; Štengl, V.; Bělčická, Z.; Šťastný, M.; Pop-Georgievski, O.; Dohnal, V. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polym. 2016, 103, 44–53. [Google Scholar] [CrossRef]
- Chernova, E.A.; Brotsman, V.A.; Gurianov, K.E.; Eliseev, A.A.; Valeev, R.G.; Kolesnik, I.V.; Chumakov, A.P.; Petukhov, D.I.; Eliseev, A.A. Proton transport in electrochemically reduced graphene oxide: Enhancing H+/H2O selectivity. Carbon 2023, 213, 118288. [Google Scholar] [CrossRef]
- Kim, F.; Cote, L.J.; Huang, J. Graphene Oxide: Surface Activity and Two-Dimensional Assembly. Adv. Mater. 2010, 22, 1954–1958. [Google Scholar] [CrossRef]
- Shang, C.; Pranantyo, D.; Zhang, S. Understanding the Roughness–Fouling Relationship in Reverse Osmosis: Mechanism and Implications. Environ. Sci. Technol. 2020, 54, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Nabe, A.; Staude, E.; Belfort, G. Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Memb. Sci. 1997, 133, 57–72. [Google Scholar] [CrossRef]
- Xie, L.; Liu, Y.; Xu, S.; Zhang, W. Enhanced Anti-Biofouling Properties of BWRO Membranes via the Deposition of Poly (Catechol/Polyamine) and Ag Nanoparticles. Membranes 2023, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Liu, Y.; Zhang, W.; Xu, S. A Dopamine/Tannic-Acid-Based Co-Deposition Combined with Phytic Acid Modification to Enhance the Anti-Fouling Property of RO Membrane. Membranes 2021, 11, 342. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Tong, T.; Zhao, S.; Zhang, W.; Wang, Z.; Wang, J. Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly. J. Memb. Sci. 2020, 601, 117888. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Goh, P.S.; Wong, K.C.; Mamah, S.C.; Ismail, A.F.; Zulhairun, A.K. Accelerated spraying-assisted layer by layer assembly of polyethyleneimine/titania nanosheet on thin film composite membrane for reverse osmosis desalination. Desalination 2022, 529, 115645. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, W.; Li, Y.; Zhou, Q.; Xu, H.; Gao, B.; Wang, Z. Antibacterial Thin-Film Nanocomposite Membranes Incorporated with Graphene Oxide Quantum Dot-Mediated Silver Nanoparticles for Reverse Osmosis Application. ACS Sustain. Chem. Eng. 2019, 7, 8724–8734. [Google Scholar] [CrossRef]
- Chan, W.-F.; Marand, E.; Martin, S.M. Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance. J. Memb. Sci. 2016, 509, 125–137. [Google Scholar] [CrossRef]
- Ma, W.; Chen, T.; Nanni, S.; Yang, L.; Ye, Z.; Rahaman, M.S. Zwitterion-Functionalized Graphene Oxide Incorporated Polyamide Membranes with Improved Antifouling Properties. Langmuir 2019, 35, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Kumal, R.R.; Carr, A.J.; Uysal, A. A simple method for floating graphene oxide films facilitates nanoscale investigations of ion and water adsorption. RSC Adv. 2024, 14, 7582–7591. [Google Scholar] [CrossRef] [PubMed]
Modifier | Permeance, L/(m2 bar h) | NaCl Rejection, % | FDR, % (Time, h) | FRR, % | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
Pristine | Modified | Pristine | Modified | Pristine | Modified | Pristine | Modified | ||
Surface modification | |||||||||
GO | 2.3 | 1.1 | 95% | 98% | 25.5% (3) | 10% (3) | 80% | 98% | [14] |
AgNP | 5 | 4.6 | 98% | 97% | 3% (5) | 9% (5) | 93% | 98% | [47] |
Dopamine/tannic acid | 4.9 | 3.6 | 97.2% | 98.5% | 23% (5) | 9% (5) | 82% | 96& | [48] |
Ferric-phytic acid | 4.5 | 3.5 | 96.2% | 98% | 35%(24) | 12%(24) | 75% | 94% | [49] |
TiO2 nanosheets | 1.06 | 1.39 | 97% | 97.2% | 36% (5) | 20% (5) | 87% | 100% | [50] |
GO | 2.6 | 2.25 | 94.1% | 95.3% | 65% (168) | 43% (168) | n/a | n/a | [15] |
GO | 2.7 | 2.28 | 95.2% | 98% | 38% (3) | 18% (3) | 65% | 87% | This work |
Thin film composite membranes | |||||||||
CQD/Ag | 1.69 | 2.44 | 98.6% | 98.9% | 44% (20) | 36% (20) | 68% | 83% | [51] |
CNT | 0.62 | 1.45 | 98.2% | 98.1% | 38% (10) | 24% (10) | 72% | 100% | [52] |
GO | 0.2 | 0.42 | 97.6% | 81% | 70% (12) | 45% (12) | 92% | 98% | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petukhov, D.I.; Weston, J.; Valeev, R.G.; Johnson, D.J. Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties. Membranes 2024, 14, 172. https://doi.org/10.3390/membranes14080172
Petukhov DI, Weston J, Valeev RG, Johnson DJ. Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties. Membranes. 2024; 14(8):172. https://doi.org/10.3390/membranes14080172
Chicago/Turabian StylePetukhov, Dmitrii I., James Weston, Rishat G. Valeev, and Daniel J. Johnson. 2024. "Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties" Membranes 14, no. 8: 172. https://doi.org/10.3390/membranes14080172
APA StylePetukhov, D. I., Weston, J., Valeev, R. G., & Johnson, D. J. (2024). Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties. Membranes, 14(8), 172. https://doi.org/10.3390/membranes14080172