Next Issue
Volume 14, September
Previous Issue
Volume 14, July
 
 

Membranes, Volume 14, Issue 8 (August 2024) – 19 articles

Cover Story (view full-size image): Microplastics (MPs) cannot be treated completely in wastewater treatment plants and discharged to a water body. MPs can have adverse effects on human beings and water ecosystems. The effects of MPs (polyethylene) and organic matter (humic acid) were researched in a hybrid process of ceramic microfiltration (MF) and photocatalyst (TiO2)-mounted PES spheres with air backwashing. The roles of the MF, photo-oxidation, and adsorption of PES spheres were confirmed in an MF process, an MF process with UV irradiation (MF + UV), MF and PES sphere adsorption without UV irradiation (MF + PES), and a hybrid process incorporating MF and PES spheres with UV irradiation (MF + PES + UV). The impact of the air backwashing cycle on the filtration characteristics and treatment efficiencies in the hybrid process was studied. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
46 pages, 4729 KiB  
Review
Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis
by Katherinne Castro and Ricardo Abejón
Membranes 2024, 14(8), 180; https://doi.org/10.3390/membranes14080180 - 22 Aug 2024
Cited by 1 | Viewed by 1968
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative [...] Read more.
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

12 pages, 310 KiB  
Article
Thermodynamic Considerations on the Biophysical Interaction between Low-Energy Electromagnetic Fields and Biosystems
by Umberto Lucia and Giulia Grisolia
Membranes 2024, 14(8), 179; https://doi.org/10.3390/membranes14080179 - 22 Aug 2024
Viewed by 1151
Abstract
A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several [...] Read more.
A general theory explaining how electromagnetic waves affect cells and biological systems has not been completely accepted yet; nevertheless, extremely low-frequency electromagnetic fields (ELF-EMFs) can interfere with and modify several molecular cellular processes. The therapeutic effect of EMFs has been investigated in several clinical conditions with promising results: in this context a better understanding of mechanisms by which ELF-EMF influences cellular events is necessary and it could lead to more extended and specific clinical applications in different pathological conditions. This paper develops a thermodynamic model to explain how ELF-EMF directly interferes with the cellular membrane, inducing a biological response related to a cellular energy conversion and modification of flows across cell membranes. Indeed, energy, irreversibly consumed by cellular metabolism, is converted into entropy variation. The proposed thermodynamic model views living systems as adaptative open systems, analysing the changes in energy and matter moving in and out of the cell. Full article
18 pages, 9413 KiB  
Article
Performance and Enhanced Efficiency Induced by Cold Plasma on SAPO-34 Membranes for CO2 and CH4 Mixtures
by Fnu Gorky, Vashanti Storr, Grace Jones, Apolo Nambo, Jacek B. Jasinski and Maria L. Carreon
Membranes 2024, 14(8), 178; https://doi.org/10.3390/membranes14080178 - 20 Aug 2024
Viewed by 2038
Abstract
In this study, we investigate the influence of cold-plasma-induced enhanced performance and efficiency of SAPO-34 membranes in the separation of CO2 and CH4 mixtures. Placing the herein presented research in a broader context, we aim to address the question of whether [...] Read more.
In this study, we investigate the influence of cold-plasma-induced enhanced performance and efficiency of SAPO-34 membranes in the separation of CO2 and CH4 mixtures. Placing the herein presented research in a broader context, we aim to address the question of whether cold plasma can significantly impact the membrane performance. We subjected SAPO-34 membranes to plasma mild disturbances and analyzed their performance in separating CO2 and CH4. Our findings reveal a notable enhancement in membrane efficiency and sustained performance when exposed to cold plasma. The pulsed plasma separation displayed improved structural integrity, and the experimental results indicated that the linear structure of CO₂ facilitates the distortion of electron clouds in response to the electric field, a property known as polarizability, which aids in effective separation. Plausible mechanistic insight indicated that the intermolecular forces facilitated an integral role in SAPO-34 membranes exhibiting strong electrostatic interactions. In conclusion, our research highlights the potential of cold plasma as a promising technique for improving the performance of SAPO-34 membranes in gas mixtures at atmospheric pressures, providing valuable insights for optimizing membrane technology in carbon capture and gas separation applications. Full article
(This article belongs to the Special Issue A Commemorative Special Issue in Honor of Dr. Moises Carreon)
Show Figures

Figure 1

15 pages, 2737 KiB  
Article
Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries
by Chiari J. Van Cauter, Yun Li, Sander Van Herck and Ivo F. J. Vankelecom
Membranes 2024, 14(8), 177; https://doi.org/10.3390/membranes14080177 - 15 Aug 2024
Viewed by 1203
Abstract
Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the [...] Read more.
Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the performance and stability of nine commercial membranes at pH 14 and pH ≤ 0 with temperatures up to 80 °C is conducted in an organic aqueous RFB. Swelling, area resistance, diffusion crossover, battery performance and membrane stability after 40–80 °C temperature treatment are shown, after which a recommendation is made for different user scenarios. The Aquivion E98-05 membrane performed best for both the Tiron/2,7-AQDS battery and the DHPS/Fe(CN)6 battery at 40 mA/cm2, with stable results after 1 week of storage at 80 °C. At 80 mA/cm2, E-620-PE performed best in the DHPS/Fe(CN)6 battery, while Sx-050DK performed best in the Tiron/2,7-AQDS battery. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

17 pages, 2890 KiB  
Article
Optimized Sulfonated Poly(Ether Ether Ketone) Membranes for In-House Produced Small-Sized Vanadium Redox Flow Battery Set-Up
by Antonino Rizzuti, Elena Dilonardo, Gennaro Cozzolino, Fabio Matera, Alessandra Carbone, Biagia Musio and Piero Mastrorilli
Membranes 2024, 14(8), 176; https://doi.org/10.3390/membranes14080176 - 14 Aug 2024
Viewed by 1029
Abstract
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of [...] Read more.
The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm−2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%. Full article
(This article belongs to the Special Issue Membranes for Energy and the Environment)
Show Figures

Figure 1

19 pages, 5253 KiB  
Article
Elucidating the Mechanism of Electro-Adsorption on Electrically Conductive Ultrafiltration Membranes via Modified Poisson-Boltzmann Equation
by Muhammad Usman, Shahrokh Vahedi, Sarah Glass, Volkan Filiz and Mathias Ernst
Membranes 2024, 14(8), 175; https://doi.org/10.3390/membranes14080175 - 10 Aug 2024
Viewed by 1016
Abstract
Electrically conductive membranes (ECMs) were prepared by coating porous ethylenediamine-modified polyacrylonitrile (PAN-EDA) UF membranes with an ultrathin layer of platinum (Pt) nanoparticles through magnetron sputtering. These ECMs were used in electrofiltration to study the removal of brilliant blue dye from an aqueous solution [...] Read more.
Electrically conductive membranes (ECMs) were prepared by coating porous ethylenediamine-modified polyacrylonitrile (PAN-EDA) UF membranes with an ultrathin layer of platinum (Pt) nanoparticles through magnetron sputtering. These ECMs were used in electrofiltration to study the removal of brilliant blue dye from an aqueous solution under positive electrical potentials (0–2.5 V). Negative electrical potentials (−1.0–−2.5 V) were also investigated to regenerate the membrane by desorbing the dye from the ECM surface. At +0 V, the EC PAN-EDA membrane adsorbed the dye due to its intrinsic positive charge. Application of −2.0 V resulted in a maximum of 39% desorption of the dye. A modified Poisson-Boltzmann (MPB) model showed that −2.0 V created a repulsive force within the first 24 nm of the membrane matrix, which had a minimal effect on dye ions adsorbed deeper within the membrane, thus limiting the electro-desorption efficiency to 39%. Moreover, increasing positive potentials from +0.5 V to +2.5 V led to increased dye electro-adsorption by 9.5 times, from 132 mg/m2 to 1112 mg/m2 at pH 8 (equivalent to the membrane’s isoelectric point). The MBP simulations demonstrated that increasing electro-adsorption loadings are related to increasing attractive force, indicating electro-adsorption induced by attractive force is the dominant mechanism and the role of other mechanisms (e.g., electrochemical oxidation) is excluded. At pH 5, electro-adsorption further increased to 1390 mg/m2, likely due to the additional positive charge of the membrane (zeta potential = 9.2 mV) compared to pH 8. At pH 8, complete desorption of the dye from the ECM surface was achieved with a significant repulsive force at −2.0 V. However, as pH decreased from 8 to 5, the desorption efficiency decreased by 3.9% due to the membrane’s positive charge. These findings help elucidate the mechanisms of electro-adsorption and desorption on ECMs using dye as a model for organic compounds like humic acids. Full article
Show Figures

Figure 1

20 pages, 4099 KiB  
Article
Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling
by Anamary Pompa-Pernía, Serena Molina, Laura Cherta, Lorena Martínez-García and Junkal Landaburu-Aguirre
Membranes 2024, 14(8), 174; https://doi.org/10.3390/membranes14080174 - 9 Aug 2024
Viewed by 1287
Abstract
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different [...] Read more.
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

12 pages, 3164 KiB  
Article
High-Temperature Water Electrolysis Properties of Membrane Electrode Assemblies with Nafion and Crosslinked Sulfonated Polyphenylsulfone Membranes by Using a Decal Method
by Je-Deok Kim
Membranes 2024, 14(8), 173; https://doi.org/10.3390/membranes14080173 - 8 Aug 2024
Viewed by 1057
Abstract
To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO2 was used as the oxygen evolution reaction [...] Read more.
To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO2 was used as the oxygen evolution reaction (OER) catalyst, and Pt/C was used as the hydrogen evolution reaction (HER) catalyst. The conductivity of the CSPPSU membrane at 80 °C and 90% RH (relative humidity) is about four times lower than that of the Nafion 115 membrane. Single-cell water electrolysis was performed while measuring the current density and performing electrochemical impedance spectroscopy (EIS) at cell temperatures from 80 to 150 °C and the stability of the current density over time at 120 °C and 1.7 V. The current density of water electrolysis using Nafion 115 and CSPPSU membranes at 150 °C and 2 V was 1.2 A/cm2 for both. The current density of the water electrolysis using the CSPPSU membrane at 120 °C and 1.7 V was stable for 40 h. The decal method improved the contact between the CSPPSU membrane and the catalyst electrode, and a stable current density was obtained. Full article
(This article belongs to the Special Issue Membranes for Energy and the Environment)
Show Figures

Figure 1

15 pages, 2481 KiB  
Article
Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties
by Dmitrii I. Petukhov, James Weston, Rishat G. Valeev and Daniel J. Johnson
Membranes 2024, 14(8), 172; https://doi.org/10.3390/membranes14080172 - 7 Aug 2024
Cited by 1 | Viewed by 1416
Abstract
The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes [...] Read more.
The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes to enhance their antifouling properties. The Langmuir–Blodgett technique was employed to transfer aminated graphene oxide films assembled at the air–liquid interface, under specific surface pressure conditions, to the polyamide surface with pre-activated carboxylic groups. The microstructure and distribution of graphene oxide along the modified membrane were characterized using SEM, AFM, and Raman mapping techniques. Modification carried out at the optimal surface pressure value improved the membrane hydrophilicity and reduced the surface roughness, thereby enhancing the antifouling properties against colloidal fouling. The flux recovery ratio after modification increased from 65% to 87%, maintaining high permeability. The modified membranes exhibited superior performance compared to the unmodified membranes during long-term fouling tests. This membrane modification technique can be easily scaled using the roll-to-roll approach and requires minimal consumption of the modifier used. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

24 pages, 8685 KiB  
Article
Hydrodynamic Evaluation of a Filtering Hydrocyclone for Solid Particle/Water Separation
by Daniel C. M. Cavalcante, Hortência L. F. Magalhães, Severino R. Farias Neto, Ricardo S. Gomez, João M. P. Q. Delgado, Antonio G. B. Lima, Danielle B. T. Vasconcelos, Márcio J. V. Silva, Daniel O. Farias, Suelyn F. A. M. Queiroz, Antonio C. Q. Santos, Thâmmara L. H. Tito and Emmanuel F. M. Silva
Membranes 2024, 14(8), 171; https://doi.org/10.3390/membranes14080171 - 6 Aug 2024
Viewed by 1061
Abstract
A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, [...] Read more.
A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, where a porous membrane replaces the conic or cylindrical wall. During the operation of this equipment, in addition to the traditionally observed streams (feed, underflow, and overflow), there is a liquid stream resulting from the filtration process, commonly referred to as filtrate. This work proposes to numerically investigate the solid particle/liquid water separation process in a filtering hydrocyclone using the commercial software Ansys CFX® 15.0. The proposed mathematical model for the study considers three-dimensional, steady state and turbulent flow, using the Eulerian–Eulerian approach and the Shear Stress Transport (SST) turbulence model. This study presents and analyzes the volume fraction, velocity, and pressure fields, along with flowlines and velocity profiles. The results indicate that the proposed model effectively captures the fluid dynamic behavior within the filtering hydrocyclone, highlighting higher pressures near the porous membrane and a higher concentration of solid particles in the conical region, with water being more concentrated in the cylindrical part of the hydrocyclone. Additionally, the findings show that the volumetric flow rate of the filtrate significantly influences the internal flow dynamics, with conventional hydrocyclones demonstrating higher pressure gradients compared to the proposed filtering hydrocyclone. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Figure 1

16 pages, 5680 KiB  
Article
Mixed-Matrix Organo-Silica–Hydrotalcite Membrane for CO2 Separation Part 1: Synthesis and Analytical Description
by Lucas Bünger, Krassimir Garbev, Angela Ullrich, Peter Stemmermann and Dieter Stapf
Membranes 2024, 14(8), 170; https://doi.org/10.3390/membranes14080170 - 6 Aug 2024
Viewed by 1386
Abstract
Hydrotalcite exhibits the capability to adsorb CO2 at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing [...] Read more.
Hydrotalcite exhibits the capability to adsorb CO2 at elevated temperatures. High surface area and favorable coating properties are essential to harness its potential for practical applications. Stable alcohol-based dispersions are needed for thin film applications of mixed membranes containing hydrotalcite. Currently, producing such dispersions without the need for delamination and dispersing agents is a challenging task. This work introduces, for the first time, a manufacturing approach to overcoming the drawbacks mentioned above. It includes a synthesis of hydrotalcite nanoparticles, followed by agent-free delamination of their layers and final dispersion into alcohol without dispersing agents. Further, the hydrotalcite-derived sorption agent is dispersed in a matrix based on organo-silica gels derived from 1,2-bis(triethoxysilyl)ethane (BTESE). The analytical results indicate that the interconnection between hydrotalcite and BTESE-derived gel occurs via forming a strong hydrogen bonding system between the interlayer species (OH groups, CO32−) of hydrotalcite and oxygen and silanol active gel centers. These findings lay the foundation for applications involving incorporating hydrotalcite-like compounds into silica matrices, ultimately enabling the development of materials with exceptional mass transfer properties. In part 2 of this study, the gas separation performance of the organo-silica and the hydrotalcite-like materials and their combined form will be investigated. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

23 pages, 18244 KiB  
Article
Removal of Microplastics in a Hybrid Treatment Process of Ceramic Microfiltration and Photocatalyst-Mounted PES Spheres with Air Backwashing
by Minjoo Song and Jin Yong Park
Membranes 2024, 14(8), 169; https://doi.org/10.3390/membranes14080169 - 31 Jul 2024
Viewed by 1170
Abstract
Microplastics (MPs), which are defined as plastics with a size of less than 5 mm, cannot be treated completely in wastewater treatment plants (WWTPs) and discharged to a water body because they are too small in size. It has been reported that MPs [...] Read more.
Microplastics (MPs), which are defined as plastics with a size of less than 5 mm, cannot be treated completely in wastewater treatment plants (WWTPs) and discharged to a water body because they are too small in size. It has been reported that MPs can have adverse effects on human beings and water ecosystems. There is a need to combine existing drinking water treatment plants (DWTPs) and WWTPs with the traditional treatment process and technology with high removal efficiency of MPs or to develop a new technology to separate MPs from water and wastewater. In this study, the effects of MPs (polyethylene (PE), 125 μm) and organic matter (humic acid) were researched in a hybrid treatment process of ceramic microfiltration (MF) and photocatalyst (TiO2)-mounted polyether sulfone (PES) spheres with air backwashing. The roles of the MF, photooxidation, and adsorption of PES spheres were confirmed in a single MF process (MF), an MF process with UV irradiation (MF+UV), MF and PES sphere adsorption without UV irradiation (MF+PES), and a hybrid process incorporating MF and PES spheres with UV irradiation (MF+PES+UV). The impact of the air backwashing cycle (filtration time, FT) on filtration characteristics and treatment efficiencies in the hybrid process was studied. In the MF process, membrane fouling increased with increasing organic matter (HA, humic acid). The treatment efficiency of MPs increased; however, that of dissolved organic matter (DOM) decreased with increasing HA. As MPs increased, the membrane fouling decreased; however, total filtration volume (VT) remained almost constant. The treatment efficiency of MPs increased a little, and that of DOM showed a dropping trend. In the hybrid process, the membrane fouling was controlled via the adsorption and UV photooxidation of the PES spheres, and the DOM treatment efficiency increased by combining processes from MF to MF+PES+UV. The optimal FT was 10 min at BT 10 s in this hybrid process. The results could be applied to separate MPs effectively in DWTPs/WWTPs. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 2271 KiB  
Article
Lipid-Based Catalysis Demonstrated by Bilayer-Enabled Ester Hydrolysis
by Shu Liu, Kiran Kumar, Tracey Bell, Ayyalusamy Ramamoorthy, David Van Winkle and Steven Lenhert
Membranes 2024, 14(8), 168; https://doi.org/10.3390/membranes14080168 - 30 Jul 2024
Viewed by 1297
Abstract
Lipids have not traditionally been considered likely candidates for catalyzing reactions in biological systems. However, there is significant evidence that aggregates of amphiphilic compounds are capable of catalyzing reactions in synthetic organic chemistry. Here, we demonstrate the potential for the hydrophobic region of [...] Read more.
Lipids have not traditionally been considered likely candidates for catalyzing reactions in biological systems. However, there is significant evidence that aggregates of amphiphilic compounds are capable of catalyzing reactions in synthetic organic chemistry. Here, we demonstrate the potential for the hydrophobic region of a lipid bilayer to provide an environment suitable for catalysis by means of a lipid aggregate capable of speeding up a chemical reaction. By bringing organic molecules into the nonpolar or hydrophobic region of a lipid bilayer, reactions can be catalyzed by individual or collections of small, nonpolar, or amphiphilic molecules. We demonstrate this concept by the ester hydrolysis of calcein-AM to produce a fluorescent product, which is a widely used assay for esterase activity in cells. The reaction was first carried out in a two-phase octanol–water system, with the organic phase containing the cationic amphiphiles cetyltrimethylammonium bromide (CTAB) or octadecylamine. The octanol phase was then replaced with phospholipid vesicles in water, where the reaction was also found to be carried out. The reaction was monitored using quantitative fluorescence, which revealed catalytic turnover numbers on a scale of 107 to 108 s−1 for each system, which is much slower than enzymatic catalysis. The reaction product was characterized by 1H-NMR measurements, which were consistent with ester hydrolysis. The implications of thinking about lipids and lipid aggregates as catalytic entities are discussed in the context of biochemistry, pharmacology, and synthetic biology. Full article
Show Figures

Figure 1

15 pages, 1605 KiB  
Article
Revisiting the Effect of the Resistance to Gas Accumulation in Constant Volume Systems on the Membrane Time Lag
by Peter Jr. Leszczynski, Siamak Lashkari and Boguslaw Kruczek
Membranes 2024, 14(8), 167; https://doi.org/10.3390/membranes14080167 - 30 Jul 2024
Viewed by 823
Abstract
The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the [...] Read more.
The time-lag method is commonly used to determine membrane permeability, diffusivity and solubility in a single gas permeation experiment in a constant volume system. An unwritten assumption on which this method relies is that there is no resistance to gas accumulation in the downstream receiver of the system. However, this is not the case, even with the specially designed receiver used in this study when, in addition to tubing, the receiver utilizes an additional accumulation tank. The resistance to gas accumulation originates from a finite diffusivity (Knudsen diffusion) of gases in tubing, which are magnified by “resistance-free” accumulation tank(s). As a result of the resistance to gas accumulation, the time lag of the membrane is underestimated, which leads to an overestimation of gas diffusivity in the membrane. The experimentally predicted resistances in different configurations of the receiver, expressed by the difference in the time lag at two different receiver locations, were several times greater than the theoretically predicted values. A high molecular PPO membrane was used to demonstrate this effect. The time lags measured at different locations differed by as much as 30%. The diffusivity of nitrogen in a PPO of 4.04 × 10−12 m2/s determined at the optimum configuration of the receiver is at least 50% lower than the literature-reported values. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

15 pages, 4602 KiB  
Article
Influence of Feed Composition on the Separation Factor during Nanofiltration of Organic Acids
by Gustavo Tottoli, Sylvain Galier and Hélène Roux-de Balmann
Membranes 2024, 14(8), 166; https://doi.org/10.3390/membranes14080166 - 28 Jul 2024
Viewed by 1094
Abstract
In this study, nanofiltration experiments using synthetic solutions containing acetate, butyrate, and lactate are carried out to assess the impact of the feed composition, i.e., feed concentration and feed proportions, on the separation factor of couples of solutes in binary and ternary solutions. [...] Read more.
In this study, nanofiltration experiments using synthetic solutions containing acetate, butyrate, and lactate are carried out to assess the impact of the feed composition, i.e., feed concentration and feed proportions, on the separation factor of couples of solutes in binary and ternary solutions. In binary solutions, no influence of the solute proportions in the feed was pointed out, whatever the couple of solutes. The separation factor of acetate/butyrate and acetate/lactate was found to decrease with increasing feed concentration, while that of lactate/butyrate remained constant. The separation factors of acetate/lactate and lactate/butyrate were identical in ternary solutions compared to binary ones, showing no impact of the addition of the third solute. In ternary solutions, the presence of lactate decreased the separation factor of acetate/butyrate, but this decrease was not influenced by the proportion of lactate. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

18 pages, 4235 KiB  
Article
Hydrogen (H2)/Toluene (TOL) Separation via One and Two Stages of the Bis(triethoxysily)ethane (BTESE) Membranes
by Suhaina Mohd Ibrahim, Xin Yu, Shigeru Miyata, Kengo Mishina, Feridoun Salak, Sulaiman Oladipo Lawal, Toshinori Tsuru and Ken-ichi Sawamura
Membranes 2024, 14(8), 165; https://doi.org/10.3390/membranes14080165 - 25 Jul 2024
Viewed by 987
Abstract
The separation ability of bis(triethoxysilyl)ethane (BTESE) membranes for hydrogen (H2) purification from hydrogen (H2)/toluene (TOL) gas mixtures after a methylcyclohexane (MCH) dehydrogenation process was investigated via one-stage and two-stage membrane processes. This study revealed that BTESE membranes of varied [...] Read more.
The separation ability of bis(triethoxysilyl)ethane (BTESE) membranes for hydrogen (H2) purification from hydrogen (H2)/toluene (TOL) gas mixtures after a methylcyclohexane (MCH) dehydrogenation process was investigated via one-stage and two-stage membrane processes. This study revealed that BTESE membranes of varied pore sizes (0.4, 0.5, and 0.7 nm) in a one-stage configuration can manage to achieve a H2 purity ~99.9%. However, the TOL concentrations fell within a wide range, ranging from 280 to 5441 ppm. A primary goal of this research was to lower the TOL concentration in the permeate stream below 200 ppm. Hence, by applying the two-stage membrane, it was demonstrated that the TOL concentration in the permeate stream could be lowered below 200 ppm. Full article
(This article belongs to the Section Membrane Applications for Gas Separation)
Show Figures

Figure 1

32 pages, 15433 KiB  
Article
Screening the Performance of a Reverse Osmosis Pilot-Scale Process That Treats Blended Feedwater Containing a Nanofiltration Concentrate and Brackish Groundwater
by Christopher R. Hagglund and Steven J. Duranceau
Membranes 2024, 14(8), 164; https://doi.org/10.3390/membranes14080164 - 24 Jul 2024
Viewed by 936
Abstract
A two-stage pilot plant study has been completed that evaluated the performance of a reverse osmosis (RO) membrane process for the treatment of feedwater that consisted of a blend of a nanofiltration (NF) concentrate and brackish groundwater. Membrane performance was assessed by monitoring [...] Read more.
A two-stage pilot plant study has been completed that evaluated the performance of a reverse osmosis (RO) membrane process for the treatment of feedwater that consisted of a blend of a nanofiltration (NF) concentrate and brackish groundwater. Membrane performance was assessed by monitoring the process operation, collecting water quality data, and documenting the blended feedwater’s impact on fouling due to microbiological or organic means, plugging, and scaling, or their combination. Fluorescence and biological activity reaction tests were used to identify the types of organics and microorganisms present in the blended feedwater. Additionally, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to analyze suspended matter that collected on the surfaces of cartridge filters used in the pilot’s pretreatment system. SEM and EDS were also used to evaluate solids collected on the surfaces of 0.45 µm silver filter pads after filtering known volumes of NF concentrate and RO feedwater blends. Water quality analyses confirmed that the blended feedwater contained little to no dissolved oxygen, and a significant amount of particulate matter was absent from the blended feedwater as defined by silt density index and turbidity measurements. However, water quality results suggested that the presence of sulfate, sulfide, iron, anaerobic bacteria, and humic acid organics likely contributed to the formation of pyrite observed on some of the membrane surfaces autopsied at the conclusion of pilot operations. It was determined that first-stage membrane productivity was impacted by the location of cartridge filter pretreatment; however, second-stage productivity was maintained with no observed flux decline during the entire pilot operation’s timeline. Study results indicated that the operation of an RO process treating a blend of an NF concentrate and brackish groundwater could maintain a sustainable and productive operation that provided a practical minimum liquid discharge process operation for the NF concentrate, while the dilution of RO feedwater salinity would lower overall production costs. Full article
Show Figures

Figure 1

19 pages, 5738 KiB  
Article
Low-Resistance Membrane vs. High-Resistance Membrane Performance Utilizing Electrodialysis–Evaporator Hybrid System in Treating Reject Brine from Kuwait Desalination Plants
by Bader S. Al-Anzi and Maryam K. Awadh
Membranes 2024, 14(8), 163; https://doi.org/10.3390/membranes14080163 - 24 Jul 2024
Viewed by 1126
Abstract
This work is an effort to mitigate the existing environmental issues caused by brine discharge from Kuwait’s desalination plants and to find an economical and efficient way of managing reject brine from local desalination plants. Low- and high-resistance membranes (LRMs and HRMs, respectively) [...] Read more.
This work is an effort to mitigate the existing environmental issues caused by brine discharge from Kuwait’s desalination plants and to find an economical and efficient way of managing reject brine from local desalination plants. Low- and high-resistance membranes (LRMs and HRMs, respectively) were used to produce salt and low-salinity water from brine effluent utilizing an electrodialysis (ED)–evaporator hybrid system. The effect of high current densities of 300, 400, and 500 A/m2 and brine flowrates of 450 and 500 L/h on the quality of produced salt and diluate were investigated for LRM and HRM. The recovered salt purity for LRM is up to 90.58%. Results show that the low-resistance membrane (LRM) achieved higher water recovery, energy consumption, desalination rate, operation time and ion removal rate than those of the high-resistance membrane (HRM) under the same operating conditions. The difference in concentration for 300 A/m2 between LRM and HRM increased from 0.93% at 10 min to 8.28% at 140 min. The difference in diluate concentration effluent is negligible for both membranes, whereas LRM produced higher concentrate effluent than HRM for all current densities and low flowrate (400 L/h). The maximum difference between LRM and HRM (with LRM achieving higher concentrations) is 10.7% for 400 A/m2. The permselectivity of LRM for monovalent cations decreased with current density, whereas the effect on permselectivity for HRM was insignificant for the current density values. The addition of a neutral cell was effective in reducing the buildup of divalent ions on the inner membrane of the cathode side. Full article
Show Figures

Figure 1

20 pages, 7137 KiB  
Article
Research on the Performance and Computational Fluid Dynamics Numerical Simulation of Plate Air Gap Membrane Distillation Module
by Haojie Bi, Hongying Yuan, Zhiyuan Xu, Zhuobin Liang and Yongliang Du
Membranes 2024, 14(8), 162; https://doi.org/10.3390/membranes14080162 - 24 Jul 2024
Viewed by 903
Abstract
Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying [...] Read more.
Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying operating conditions on AGMD performance, employing numerical simulations which are grounded in experimental validation. The objective was to enhance the performance of AGMD, mitigate polarization phenomena, and provide a reference for optimizing membrane component design. The results show that the agreements between the simulated and the experimental values were high. When increasing the feed temperature and decreasing the coolant temperature, the impact of polarization phenomena on the performance of AGMD was reduced. The mass flux, Total Permeate Concentration (TPC), and heat flux increased by 81.69%, 36.89%, and 118.01%, respectively, when the feed temperature was increased from 50 °C to 75 °C. When the coolant temperature decreased from 22 °C to 7 °C, the mass flux increased by 37.06%. The response surface analysis revealed that the feed temperature has significant influence on AGMD performance, and there is a noticeable interaction between the feed temperature and coolant temperature. These findings will play key roles in practical applications. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

Previous Issue
Back to TopTop