A Review of Sulfate Removal from Water Using Polymeric Membranes
Abstract
:1. Introduction
2. Polymeric Membrane Materials
2.1. Polyethersulfone (PES)
2.2. Polysulfone (PSf)
2.3. Polyacrylonitrile (PAN)
2.4. Polyvinylidene Fluoride (PVDF)
2.5. Polyvinyl Alcohol (PVA)
2.6. Cellulose Acetate (CA)
2.7. Polyamide (PA)
3. Modification and Improvement in Polymeric Membranes
4. Modules of the Membranes
5. Mechanisms of Membranes
Companies | Type/Polymer Material | Solute | Rejection % | Pressure | Refs. |
---|---|---|---|---|---|
TriSep | UA60/Polypiperazine amide, SB90/Cellulose Acetate | MgSO4 | 70, 97 | 8 bar | [109,115] |
GE | CK/Cellulose Acetate, HL/Polyamide, | Na2SO4 MgSO4 | 92 | 15 bar, 8 bar | [109] |
Dow | NF, NF90, NF270/Polyamide | MgSO4 | 99 | 9 bar | [109,116] |
Veolia | DK, RL/Polyamide | MgSO4 | 96, 98 | 7 bar | [117] |
Synder | NFX, NFW/Polyamide | MgSO4 | 97, 99 | 8 bar, 7 bar | [109,117] |
Microdyn Nadir | NP010, NP030/Polyethersulfone | Na2SO4 | 35–75 | 40 bar | [109,117] |
Alfa | NF, NF99HF, RO90, RO99/Polyester | MgSO4 | 99, 99, 90, 98 | 5 bar, 9 bar | [118] |
Membranes | Materials | Operation Conditions | Solution Type | Rejection% | Flux LMH | Refs. |
---|---|---|---|---|---|---|
MPS44 NF70 DESAL | Org.Selro PA PA | 8 bar, 20 °C, 5–200 mg/L, pH 6 | Na2SO4 and nitrates | 85–66 94–91 60–45 | 8 71 50.5 | [119] |
Hydr70p TNF270 | SPES PA | 8.3–20 bar, 25 °C, flow 14.3 L/min, pH 2–2.8 | Na2SO4 | 89 75 | 2.8–3.6 2.9–4.1 | [120] |
NF90 NF200 NF270 | PA | 6–22 bar, 25 °C, 340 L/h, 1780 mg/L, | Secondary effluent | 75 60 65 | 8 22 35 | [121] |
NF90 NF270 | PA | 5–20 bar, 28 °C, pH 7 | Na2SO4 | 96 88 | - | [122] |
NF90 NF270 | PA | 4–9 bar, 25 °C | Na2SO4 | 66.586.5 | 2.2 41.5 | [123] |
TFC-SR NF70 NF90 | PA | 5–20 bar, 25 °C | Na2SO4 | 96 99 93 | 12.3 2.6 3.6 | [124] |
NF Desal DK | PA | 1–25 bar, 25 °C, flowrate 1800 L/h | MgSO4 Na2SO4 | 98 99 | - | [125] |
Toray T610, NF 270 NF Desal 5 L | PA | 6–15 bar, 2000 mg/L | MgSO4 | 94 91 94 | 205 143 80 | [126] |
Membrane Materials | Operation Condition | Solution Type | PWF or Flux (LMH) | Rejection% | Refs. |
---|---|---|---|---|---|
PSf + PVA + silica | 10 bar, 23 °C | NaSO4 | 61.9 | 97.5 | [127] |
PES + PA + TiO | 6 bar, 25 °C | MgSO4 | 9.1 | 95 | [128] |
PES + PA + Ag | 14 bar, 25 °C | MgSO4 | 92 | 97 | [129] |
PES + chitosan + multiwalled carbon nanotubes (MWCNTs) | 2–10 bar, flow rate 16 L/min pH 6.4, | NaSO4 MgSO4 NaCl | 15.50 | 89.05 66.74 50.89 | [130] |
PSf + GO | 4 bar, pH 2–12 | Na2SO4 | - | 72% | [131] |
PSf, + MWCNT + Ag | 14 bar, 23 °C, pH 7 | Na2SO4 NaCl | - | 95.6 88.1 | [132] |
PAN+ chitosan | 2–12 bar, 30 °C | Na2SO4 ZnSO4 CuSO4 | 18.35 | 97.2 ~92 ~89 | [133] |
PAN+ HACC | 5–14 bar, 25 °C | Na2SO4 MgSO4 K2SO4 | 13.6 | ~28 ~35 ~20 | [134] |
PSf + PA + SPES | 5 bar, 25 °C, flow feed rate 7 L/min | Na2SO4 MgSO4 | 128.8 115.2 | 99.4 96.5 | [135] |
PVDF + CMC + ZnO | 10 bar pH 6 | Na2SO4 MgSO4 | 139.7 | 95.01 90 | [136] |
PPEA + TFC | 10 bar, 80 °C, 2000 mg/L | Na2SO4 | 400 | 96 | [137] |
PSf + HNT | 9 bar, 2000 mg/L | MgSO4 | 30 | 94.4 | [138] |
PES + silica+ BHTTM | 6 bar, 25 °C, 2000 mg/L, Na2SO4, MgSO4, pH 7 | Na2SO4 MgSO4 | 15.21 | 85 ~57 | [139] |
6. Fabrication Techniques
6.1. Phase Inversion (PI)
6.2. Surface Modification Membranes
6.2.1. Physical Surface Modification
Dip Coating
Spin Coating
6.2.2. Chemical Surface Modification
Thin-Film Composite (TFC)
Thin-Film Nanocomposite (TFN)
7. Sulfate Treatment Methods
7.1. Chemical Precipitation
7.2. Ion Exchange
7.3. Membrane Contactor (MC)
7.4. Evaporative
7.5. Sulfate Reducing Bacteria (SRB)
7.6. Electrodialysis (ED and EDR)
8. Flux and Rejection
9. Membrane Fouling and Cleaning
10. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AL2O3 | Nano-sized alumina |
Ag | Silver |
AMD | Acid mine drainage |
Au | Gold |
BaSO4 | Barium sulfate |
BDSA | Benzidinedisulfonic acid |
BHTTM | Bis(1-hydroxyl-1-trifluoromethyl-2,2,2-trifluoroethyl)-4,4′-methylenedianiline |
CA | Cellulose acetate |
CaSO4 | Calcium sulfate |
CdSO4 | Cadmium sulfate |
CFFO | Carboxyl functionalized ferroferric oxide |
CFV | Cross-flow velocity |
CMC | Carboxymethyl chitosan |
CNTs | Carbon nanotubes |
CuSO4 | Copper sulfate |
DMAc | Dimethylacetamide |
DMF | Dimethylformamide |
ED | Electrodialysis |
EDR | Electrodialysis reversal |
Fe2O3 | Ferric oxide |
GE | General Electric |
GO | Graphene oxide |
HACC | Hydroxypropyl trimethyl ammonium chloride chitosan |
HNT | Halloysite nanotubes |
HPEI | Hyperbranched polyethyleneimine |
IP | Interfacial polymerization |
K2SO4 | Potassium sulfate |
KOH/HNO3/H3PO4 | Potassium hydroxide+ Nitric+ Phosphoric acids |
KDa | Kilodalton |
LIPS | Liquid-induced phase inversion |
MC | Membrane contactor |
LMH | Permeate flux |
MF | Microfiltration |
MgSO4 | Magnesium sulfate |
MMMs | Mixed matrix membranes |
MOF | Metal–organic frameworks |
MPD | Meta-phenylenediamine |
MWCO | Molecular weight cut-off |
NaSO4 | Sodium sulfate |
NF | Nanofiltration |
NIPS | Non-solvent-induced phase inversion |
NMP | N-methyl pyrrolidone |
PA | Polyamide |
PEG | Polyethylene glycol |
PES | Polyethersulfone |
PFPT | Periodic feed pressure technique |
PI | Polyimide |
PIP | Piperazine |
PP | Polypropylene |
PPEA | Poly (ethylene glycol) phenyl ether acrylate |
PS | Phase separation |
PSf | Polysulfone |
PTMP | Periodic transmembrane pressure technique |
PTP | Periodic transmembrane pressure |
PVC | Polyvinyl chloride |
PVDF | Polyvinylidene fluoride |
PVP | Polyvinylpyrrolidone |
PWF | Pure-water flux |
RO | Reverse osmosis |
SDS | Sodium dodecyl sulfate |
SPES | Sulfonated polyether sulfone |
SPSU | Sulfonated polysulfone |
SRB | Sulfate reducing bacteria |
SWCNTs | Single-walled carbon nanotubes |
TEA | Triethylamine |
TFC | Thin-film composite |
TFN | Thin-film nanocomposite |
TiO2 | Titanium dioxide |
TIPS | Thermal-induced phase inversion |
TMC | Trimesoyl chloride |
TMP | Transmembrane pressure |
UF | Ultrafiltration |
VIPS | Vapor-induced phase inversion |
WHO | World Health Organization |
ZnO | Zinc oxide |
ZLD | Zero liquid discharge |
References
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Shirazi, M.M.A.; Kargari, A.; Shirazi, M.J.A. Direct contact membrane distillation for seawater desalination. Desalin. Water Treat. 2012, 49, 368–375. [Google Scholar] [CrossRef]
- Runtti, H.; Tynjälä, P.; Tuomikoski, S.; Kangas, T.; Hu, T.; Rämö, J.; Lassi, U. Utilisation of barium-modified analcime in sulphate removal: Isotherms. J. Water Process Eng. 2017, 16, 319–328. [Google Scholar] [CrossRef]
- Quist-Jensen, C.A.; Macedonio, F.; Horbez, D.; Drioli, E. Reclamation of sodium sulfate from industrial wastewater by using membrane distillation and membrane crystallization. Desalination 2017, 401, 112–119. [Google Scholar] [CrossRef]
- Firdous, S.; Jin, W.; Shahid, N.; Bhatti, Z.A.; Iqbal, A.; Abbasi, U.; Mahmood, Q.; Ali, A. The performance of microbial fuel cells treating vegetable oil industrial wastewater. Environ. Technol. Innov. 2018, 10, 143–151. [Google Scholar] [CrossRef]
- Cao, W.; Dang, Z.; Zhou, X.Q.; Yi, X.Y.; Wu, P.X.; Zhu, N.W.; Lu, G.N. Removal of sulphate from aqueous solution using modified rice straw: Preparation, characterization and adsorption performance. Carbohydr. Polym. 2011, 85, 571–577. [Google Scholar] [CrossRef]
- Badmus, S.O.; Oyehan, T.A.; Saleh, T.A. Synthesis of a Novel Polymer-Assisted AlNiMn Nanomaterial for Efficient Removal of Sulfate Ions from Contaminated Water. J. Polym. Environ. 2021, 29, 2840–2854. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef]
- Echakouri, M.; Salama, A.; Henni, A. Experimental and Computational Fluid Dynamics Investigation of the Deterioration of the Rejection Capacity of the Membranes Used in the Filtration of Oily Water Systems. ACS ES T Water 2021, 1, 728–744. [Google Scholar] [CrossRef]
- Dickhout, J.M.; Moreno, J.; Biesheuvel, P.M.; Boels, L.; Lammertink, R.G.H.; de Vos, W.M. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci. 2017, 487, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.Y.; Kim, S.H.; Kim, S.S. Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Membrane. Environ. Sci. Technol. 2001, 35, 2388–2394. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, A.; Jahanshahi, M.; Mollahosseini, A.; Rajaeian, B. Structural and performance properties of UV-assisted TiO2 deposited nano-composite PVDF/SPES membranes. Desalination 2012, 285, 31–38. [Google Scholar] [CrossRef]
- Yu, T.; Zhou, J.; Liu, F.; Xu, B.M.; Pan, Y. Recent Progress of Adsorptive Ultrafiltration Membranes in Water Treatment—A Mini Review. Membranes 2022, 12, 519. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [PubMed]
- Awad, E.S.; Sabirova, T.M.; Tretyakova, N.A.; Alsalhy, Q.F.; Figoli, A.; Salih, I.K. A mini-review of enhancing ultrafiltration membranes (Uf) for wastewater treatment: Performance and stability. ChemEngineering 2021, 5, 34. [Google Scholar] [CrossRef]
- Moslehyani, A.; Mobaraki, M.; Ismail, A.F.; Matsuura, T.; Hashemifard, S.A.; Othman, M.H.D.; Mayahi, A.; Rezaei Dashtarzhandi, M.; Soheilmoghaddam, M.; Shamsaei, E. Effect of HNTs modification in nanocomposite membrane enhancement for bacterial removal by cross-flow ultrafiltration system. React. Funct. Polym. 2015, 95, 80–87. [Google Scholar] [CrossRef]
- Haynes, W.M.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Elphick, J.R.; Davies, M.; Gilron, G.; Canaria, E.C.; Lo, B.; Bailey, H.C. An aquatic toxicological evaluation of sulfate: The case for considering hardness as a modifying factor in setting water quality guidelines. Environ. Toxicol. Chem. 2011, 30, 247–253. [Google Scholar] [CrossRef]
- Curtis, P.J. Effects of hydrogen ion and sulphate on the phosphorus cycle of a Precambrian Shield lake. Nature 1989, 337, 156–158. [Google Scholar] [CrossRef]
- BCC Research: Major Reverse Osmosis System Components for Water Treatment. Available online: https://www.bccresearch.com/market-research/membrane-and-separation-technology/reverse-osmosis-components-water-treatment-report.html (accessed on 26 October 2024).
- BCC Research: Technologies for Nanofiltration Global Markets and Technologies for Nanofiltration. Available online: https://www.bccresearch.com/market-research/nanotechnology/nanofiltration.html (accessed on 25 September 2024).
- BCC Research: Ultrafiltration Membranes: Technologies and Global Markets. Available online: https://www.bccresearch.com/market-research/membrane-and-separation-technology/ultrafiltration-membranes-techs-markets-report.html (accessed on 25 August 2024).
- BCC Research: Global Market for Membrane Microfiltration. Available online: https://www.bccresearch.com/market-research/membrane-and-separation-technology/membrane-microfiltration.html (accessed on 26 October 2024).
- Quintana-Baquedano, A.A.; Sanchez-Salas, J.L.; Flores-Cervantes, D.X. A review of technologies for the removal of sulfate from drinking water. Water Environ. J. 2023, 37, 718–728. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Mehdipour-Ataei, S. Synthesis of a novel poly(amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes. J. Memb. Sci. 2008, 311, 349–359. [Google Scholar] [CrossRef]
- Yung, L.; Ma, H.; Wang, X.; Yoon, K.; Wang, R.; Hsiao, B.S.; Chu, B. Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. J. Memb. Sci. 2010, 365, 52–58. [Google Scholar] [CrossRef]
- Chen, W.; Peng, J.; Su, Y.; Zheng, L.; Wang, L.; Jiang, Z. Separation of oil/water emulsion using Pluronic F127 modified polyethersulfone ultrafiltration membranes. Sep. Purif. Technol. 2009, 66, 591–597. [Google Scholar] [CrossRef]
- Mansourizadeh, A.; Javadi Azad, A. Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation. J. Polym. Res. 2014, 21, 375. [Google Scholar] [CrossRef]
- Salahi, A.; Mohammadi, T.; Mosayebi Behbahani, R.; Hemmati, M. Asymmetric polyethersulfone ultrafiltration membranes for oily wastewater treatment: Synthesis, characterization, ANFIS modeling, and performance. J. Environ. Chem. Eng. 2015, 3, 170–178. [Google Scholar] [CrossRef]
- Li, J.F.; Xu, Z.L.; Yang, H.; Yu, L.Y.; Liu, M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl. Surf. Sci. 2009, 255, 4725–4732. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Liu, Y.; Xu, Y.; Li, R.; Hong, H.; Shen, L.; Lin, H.; Liao, B.Q. Enhanced permeability and antifouling performance of polyether sulfone (PES) membrane via elevating magnetic Ni@MXene nanoparticles to upper layer in phase inversion process. J. Memb. Sci. 2021, 623, 119080. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Sadeghi, I.; Aroujalian, A.; Raisi, A.; Dabir, B.; Fathizadeh, M. Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions. J. Memb. Sci. 2013, 430, 24–36. [Google Scholar] [CrossRef]
- Machodi, M.J.; Daramola, M.O. Synthesis of pes and pes/chitosan membranes for synthetic acid mine drainage treatment. Water SA 2020, 46, 114–122. [Google Scholar] [CrossRef]
- Lipp, P.; Lee, C.H.; Fane, A.G.; Fell, C.J.D. A fundamental study of the ultrafiltration of oil-water emulsions. J. Memb. Sci. 1988, 36, 161–177. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane. J. Memb. Sci. 2008, 325, 427–437. [Google Scholar] [CrossRef]
- Amin, I.N.H.M.; Mohammad, A.W.; Markom, M.; Peng, L.C.; Hilal, N. Flux decline study during ultrafiltration of glycerin-rich fatty acid solutions. J. Memb. Sci. 2010, 351, 75–86. [Google Scholar] [CrossRef]
- Yadav, S.; Ibrar, I.; Samal, A.K.; Altaee, A.; Déon, S.; Zhou, J.; Ghaffour, N. Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. J. Hazard. Mater. 2022, 421, 126744. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Water Purif. 2018, 521, 518–521. [Google Scholar] [CrossRef]
- Lai, G.S.; Lau, W.J.; Goh, P.S.; Ismail, A.F.; Yusof, N.; Tan, Y.H. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 2016, 387, 14–24. [Google Scholar] [CrossRef]
- Moradi, G.; Zinadini, S.; Rajabi, L.; Dadari, S. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors. Appl. Surf. Sci. 2018, 427, 830–842. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B.S.; Chu, B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47, 2434–2441. [Google Scholar] [CrossRef]
- Charles, E.; Carraher, J. Carraher’s Polymer Chemistry, 10th ed.; Taylor & Francis Group: Abingdon, UK, 2018; ISBN 9781498737388. [Google Scholar]
- Musale, D.A.; Kumar, A.; Pleizier, G. Formation and characterization of poly(acrylonitrile)/Chitosan composite ultrafiltration membranes. J. Memb. Sci. 1999, 154, 163–173. [Google Scholar] [CrossRef]
- Asano, T. Water Reuse Issues, Technologies and Aapplications; Metcalf & Eddy: New York, NY, USA, 2007; ISBN 9780333227794. [Google Scholar]
- Makaremi, M.; Lim, C.X.; Pasbakhsh, P.; Lee, S.M.; Goh, K.L.; Chang, H.; Chan, E.S. Electrospun functionalized polyacrylonitrile-chitosan Bi-layer membranes for water filtration applications. RSC Adv. 2016, 6, 53882–53893. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating. J. Memb. Sci. 2009, 338, 145–152. [Google Scholar] [CrossRef]
- Reyhani, A.; Sepehrinia, K.; Seyed Shahabadi, S.M.; Rekabdar, F.; Gheshlaghi, A. Optimization of operating conditions in ultrafiltration process for produced water treatment via Taguchi methodology. Desalin. Water Treat. 2015, 54, 2669–2680. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Liu, C.; Zhao, Y.; Xia, Q.; Fang, M.; Min, X.; Huang, Z.; Liu, Y.; Wu, X. Polydopamine nanocluster embedded nanofibrous membrane via blow spinning for separation of oil/water emulsions. Molecules 2021, 26, 3258. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.M.; Wang, Z.; Mahajan, D.; Hsiao, B.S.; Chu, B. High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers. J. Mater. Chem. A 2013, 1, 12998–13003. [Google Scholar] [CrossRef]
- Shahriari, H.R.; Hosseini, S.S. Experimental and statistical investigation on fabrication and performance evaluation of structurally tailored PAN nanofiltration membranes for produced water treatment. Chem. Eng. Process. Process Intensif. 2020, 147, 107766. [Google Scholar] [CrossRef]
- Marshall, J.E.; Zhenova, A.; Roberts, S.; Petchey, T.; Zhu, P.; Dancer, C.E.J.; McElroy, C.R.; Kendrick, E.; Goodship, V. On the solubility and stability of polyvinylidene fluoride. Polymers 2021, 13, 1354. [Google Scholar] [CrossRef]
- Kim, J.R.; Choi, S.W.; Jo, S.M.; Lee, W.S.; Kim, B.C. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim. Acta 2004, 50, 69–75. [Google Scholar] [CrossRef]
- Cheng, C.L.; Wan, C.C.; Wang, Y.Y. Microporous PVdF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochem. Commun. 2004, 6, 531–535. [Google Scholar] [CrossRef]
- ElGharbi, H.; Henni, A.; Salama, A.; Zoubeik, M.; Kallel, M. Toward an Understanding of the Role of Fabrication Conditions During Polymeric Membranes Modification: A Review of the Effect of Titanium, Aluminum, and Silica Nanoparticles on Performance. Arab. J. Sci. Eng. 2023, 48, 8253–8285. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Memb. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Yan, L.; Li, Y.S.; Xiang, C.B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 2005, 46, 7701–7706. [Google Scholar] [CrossRef]
- Liu, C.; Wu, L.; Zhang, C.; Chen, W.; Luo, S. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine. Appl. Surf. Sci. 2018, 457, 695–704. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Sadam, H.; Ma, J.; Bai, Y.; Shen, X.; Kim, J.K.; Shao, L. Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance. J. Memb. Sci. 2019, 582, 1–8. [Google Scholar] [CrossRef]
- Sukitpaneenit, P.; Chung, T.S. Molecular elucidation of morphology and mechanical properties of PVDF hollow fiber membranes from aspects of phase inversion, crystallization, and rheology. Hollow Fiber Membr. Fabr. Appl. 2009, 340, 192–205. Available online: https://api.semanticscholar.org/CorpusID:98463059 (accessed on 20 November 2024). [CrossRef]
- Zhao, Y.H.; Qian, Y.L.; Zhu, B.K.; Xu, Y.Y. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. J. Memb. Sci. 2008, 310, 567–576. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, A.K.; Singh, J.K. Ferrous sulfide and carboxyl-functionalized ferroferric oxide incorporated PVDF-based nanocomposite membranes for simultaneous removal of highly toxic heavy-metal ions from industrial ground water. J. Memb. Sci. 2020, 593, 117422. [Google Scholar] [CrossRef]
- Sapalidis, A.; Sideratou, Z.; Panagiotaki, K.N.; Sakellis, E.; Kouvelos, E.P.; Papageorgiou, S.; Katsaros, F. Fabrication of antibacterial poly(vinyl alcohol) nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes. Front. Mater. 2018, 5, 11. [Google Scholar] [CrossRef]
- Wang, X.; Fang, D.; Yoon, K.; Hsiao, B.S.; Chu, B. High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. J. Memb. Sci. 2006, 278, 261–268. [Google Scholar] [CrossRef]
- Sapalidis, A.A. Porous Polyvinyl alcohol membranes: Preparation Methods and Applications. Porous Polyvinyl alcohol membranes: Preparation methods and applications. Symmetry 2020, 12, 960. [Google Scholar] [CrossRef]
- Ahn, H.R.; Tak, T.M.; Kwon, Y.N. Preparation and applications of poly vinyl alcohol (PVA) modified cellulose acetate (CA) membranes for forward osmosis (FO) processes. Desalin. Water Treat. 2015, 53, 1–7. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Llang, L. Poly(acry1ic acid)-Poly(viny1 alcohol) Semi- and Interpenetrating Polymer Network Pervaporation Membranes. J. Appl. Polym. Sci. 1996, 62, 973–987. [Google Scholar] [CrossRef]
- Sanderson, R.D.; Immelman, E.; Bezuidenhout, D.; Jacobs, E.P.; Van Reenen, A.J. Polyvinyl alcohol and modified polyvinyl alcohol reverse osmosis membranes. Desalination 1993, 90, 15–29. [Google Scholar] [CrossRef]
- Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenen, A.J.; Background, R. Poly(vinyl alcohol) Gel Sublayers for Reverse Osmosis Membranes. I. Insolubilization by acid-catalyzed dehydration. J. Appl. Polym. Sci. 1993, 50, 1013–1034. [Google Scholar] [CrossRef]
- Gao, Z.; Yue, Y.; Li, W. Application of Zeolite-filled Pervaporation Membrane. Zeolites 1996, 16, 70–74. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, S.H.; So, W.W.; Moon, S.J. Pervaporation separation of aqueous organic mixtures through sulfated zirconia-poly(vinyl alcohol) membrane. J. Appl. Polym. Sci. 2001, 79, 1450–1455. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, M.; Pan, G.; Yan, H.; Xu, J.; Shi, Y.; Shi, H.; Liu, Y. Preparation and properties of novel pH-stable TFC membrane based on organic-inorganic hybrid composite materials for nanofiltration. J. Memb. Sci. 2015, 476, 500–507. [Google Scholar] [CrossRef]
- Bolto, B.; Zhang, J.; Wu, X.; Xie, Z. A review on current development of membranes for oil removal from wastewaters. Membranes 2020, 10, 65. [Google Scholar] [CrossRef]
- Ma, H.; Hsiao, B.S.; Chu, B. Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids. Polymer 2011, 52, 2594–2599. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, H.; Chu, B.; Hsiao, B.S. Fabrication of cellulose nanofiber-based ultrafiltration membranes by spray coating approach. J. Appl. Polym. Sci. 2017, 134, 44583. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J. Memb. Sci. 2014, 454, 272–282. [Google Scholar] [CrossRef]
- Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 2016, 53, 169–206. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, H.; Hsiao, B.S.; Chu, B. Nanofibrous ultrafiltration membranes containing cross-linked poly(ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 2014, 55, 366–372. [Google Scholar] [CrossRef]
- Demirci, S.; Celebioglu, A.; Uyar, T. Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydr. Polym. 2014, 113, 200–207. [Google Scholar] [CrossRef]
- Sivakumar, M.; Mohan, D.R.; Rangarajan, R. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. J. Memb. Sci. 2006, 268, 208–219. [Google Scholar] [CrossRef]
- Ounifi, I.; Ursino, C.; Santoro, S.; Chekir, J.; Hafiane, A.; Figoli, A.; Ferjani, E. Cellulose acetate nanofiltration membranes for cadmium remediation. J. Membr. Sci. Res. 2020, 6, 226–234. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, S.; Hu, P.; Cui, J.; Niu, Q.J. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification. Nat. Commun. 2020, 11, 6102. [Google Scholar] [CrossRef]
- Jiang, C.; Fei, Z.; Hou, Y. High-Performance Polyamide Reverse Osmosis Membrane Containing Flexible Aliphatic Ring for Water Purification. Polymers 2023, 15, 944. [Google Scholar] [CrossRef]
- Baig, U.; Waheed, A.; Salih, H.A.; Matin, A.; Alshami, A.; Aljundi, I.H. Facile modification of nf membrane by multi-layer deposition of polyelectrolytes for enhanced fouling resistance. Polymers 2021, 13, 3728. [Google Scholar] [CrossRef]
- Karabacak, A.; Dilek, F.B.; Yılmaz, L.; Kitis, M.; Yetis, U. Sulfate removal from drinking water by commercially available nanofiltration membranes: A parametric study. Desalin. Water Treat. 2020, 205, 296–307. [Google Scholar] [CrossRef]
- Hamingerova, M.; Borunsky, L.; Beckmann, M. Membrane Technologies for Water and Wastewater Treatment on the European and Indian Market. Techview Report, Publisher M. Fraunhofer, 2014. Available online: https://publica.fraunhofer.de/entities/publication/dcc2fc85-157f-4286-9389-3f893c018609/fullmeta (accessed on 20 November 2024).
- Roy, Y.; Warsinger, D.M.; Lienhard, J.H. Effect of temperature on ion transport in nanofiltration membranes: Diffusion, convection and electromigration. Desalination 2017, 420, 241–257. [Google Scholar] [CrossRef]
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Kim, J.; Van Der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, J.H.; Murthy, Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379, 137–154. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Mahmud, N.; Benamor, A.; Mahmoudi, E.; Takriff, M.S.; Mohammad, A.W. Improved properties and salt rejection of polysulfone membrane by incorporation of hydrophilic cobalt-doped ZnO nanoparticles. Emergent Mater. 2024, 7, 509–519. [Google Scholar] [CrossRef]
- Wu, H.; Tang, B.; Wu, P. Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J. Memb. Sci. 2013, 428, 341–348. [Google Scholar] [CrossRef]
- Agboola, O.; Mokrani, T.; Sadiku, E.R.; Kolesnikov, A.; Olukunle, O.I.; Maree, J.P. Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water. Mine Water Environ. 2017, 36, 401–408. [Google Scholar] [CrossRef]
- Juholin, P.; Kääriäinen, M.L.; Riihimäki, M.; Sliz, R.; Aguirre, J.L.; Pirilä, M.; Fabritius, T.; Cameron, D.; Keiski, R.L. Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Sep. Purif. Technol. 2018, 192, 69–77. [Google Scholar] [CrossRef]
- Al-Nahari, A.; Li, S.; Su, B. Negatively charged nanofiltration membrane with high performance via the synergetic effect of benzidinedisulfonic acid and trimethylamine during interfacial polymerization. Sep. Purif. Technol. 2022, 291, 120947. [Google Scholar] [CrossRef]
- Wang, L.; Song, X.; Wang, T.; Wang, S.; Wang, Z.; Gao, C. Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application. Appl. Surf. Sci. 2015, 330, 118–125. [Google Scholar] [CrossRef]
- Qu, S.; Dilenschneider, T.; Phillip, W.A. Preparation of Chemically-Tailored Copolymer Membranes with Tunable Ion Transport Properties. ACS Appl. Mater. Interfaces 2015, 7, 19746–19754. [Google Scholar] [CrossRef]
- Alam, J.; Dass, L.A.; Ghasemi, M.; Alhoshan, M. Synthesis and Optimization of PES-Fe3O4 Mixed Matrix Nanocomposite Membrane: Application Studies in Water Purification. Polym. Compos. 2013, 16, 101–113. [Google Scholar] [CrossRef]
- Kong, Q.; Xu, H.; Liu, C.; Yang, G.; Ding, M.; Yang, W.; Lin, T.; Chen, W.; Gray, S.; Xie, Z. Fabrication of high performance TFN membrane containing NH2-SWCNTs: Via interfacial regulation. RSC Adv. 2020, 10, 25186–25199. [Google Scholar] [CrossRef] [PubMed]
- Zoubeik, M.; Ismail, M.; Salama, A.; Henni, A. New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review. Arab. J. Sci. Eng. 2018, 43, 2093–2118. [Google Scholar] [CrossRef]
- Drioli, E.; Curcio, E.; Di Profio, G. State of the art and recent progresses in membrane contactors. Chem. Eng. Res. Des. 2005, 83, 223–233. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technologies and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Zirehpour, A.; Rahimpour, A. Membranes for Wastewater Treatment. Nanostruct. Polym. Membr. 2016, 2, 159–207. [Google Scholar]
- Singh, R. Hybrid Membrane Systems for Water Purification: Technology, Systems Design and Operations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Singh, R. Membrane Technology and Engineering for Water Purification; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780444634092. [Google Scholar]
- Cheryan, M. Ultrafiltration and Microfiltration Handbook; CRC Press: Boca Raton, FL, USA, 1998; ISBN 1566765986. [Google Scholar]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Sterlitech Corporation. Crossflow Filtration Handbook; Sterlitech Corporation: Kent, WA, USA, 2018; Volume 21. [Google Scholar]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Abdelrasoul, A. Advances in Membrane Technologies; InTechOpen: London, UK, 2020; ISBN 9781789848069. [Google Scholar]
- Bellona, C.; Drewes, J.E.; Xu, P.; Amy, G. Factors affecting the rejection of organic solutes during NF/RO treatment—A literature review. Water Res. 2004, 38, 2795–2809. [Google Scholar] [CrossRef]
- Bellona, C.; Drewes, J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Memb. Sci. 2005, 249, 227–234. [Google Scholar] [CrossRef]
- Van Der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Memb. Sci. 1999, 156, 29–41. [Google Scholar] [CrossRef]
- Technical Bulletin, Trisep® & Nadir® Membrane Products. Available online: https://water-membrane-solutions.mann-hummel.com/en/products.html (accessed on 16 November 2024).
- The Dow Chemical Company: FILMTEC Membranes. Basics of RO and NF: Element Performance; Dow: Midland, MI, USA, 2008; pp. 2–3. [Google Scholar]
- Membranes, F.S. Flat Sheet Membranes Ultrafiltration Membranes; Alfa Laval, 14 Healey Cct: Huntingwood, NSW, Australia, 2002. [Google Scholar]
- Alfa Laval Corporate AB. Alfa Laval NF and RO Flat Sheet Membranes; Alfa Laval, 14 Healey Cct: Huntingwood, NSW, Australia, 2022. [Google Scholar]
- Paugam, L.; Diawara, C.K.; Schlumpf, J.P.; Jaouen, P.; Quéméneur, F. Transfer of monovalent anions and nitrates especially through nanofiltration membranes in brackish water conditions. Sep. Purif. Technol. 2004, 40, 237–242. [Google Scholar] [CrossRef]
- Lopez, J.; Reig, M.; Gibert, O.; Valderrama, C.; Cortina, J.L. Evaluation of NF membranes as treatment technology of acid mine drainage: Metals and sulfate removal. Desalination 2018, 440, 122–134. [Google Scholar] [CrossRef]
- Gozálvez-Zafrilla, J.M.; Sanz-Escribano, D.; Lora-García, J.; León Hidalgo, M.C. Nanofiltration of secondary effluent for wastewater reuse in the textile industry. Desalination 2008, 222, 272–279. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Marathe, K.V.; Rathod, V.K. A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach. J. Water Process Eng. 2016, 13, 153–167. [Google Scholar] [CrossRef]
- Hilal, N.; Al-Zoubi, H.; Darwish, N.A.; Mohammad, A.W. Performance of nanofiltration membranes in the treatment of synthetic and real seawater. Sep. Sci. Technol. 2007, 42, 493–515. [Google Scholar] [CrossRef]
- Krieg, H.M.; Modise, S.J.; Keizer, K.; Neomagus, H.W.J.P. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination 2005, 171, 205–215. [Google Scholar] [CrossRef]
- Bowen, W.R.; Jones, M.G.; Welfoot, J.S.; Yousef, H.N.S. Predicting Salt Rejections at Nanofiltration Membranes Using Artificial Neural Networks. Desalination 2000, 129, 147–162. [Google Scholar] [CrossRef]
- Ağtaş, M.; Ormancı-Acar, T.; Keskin, B.; Türken, T.; Koyuncu, I. Nanofiltration membranes for salt and dye filtration: Effect of membrane properties on performances. Water Sci. Technol. 2021, 83, 2146–2159. [Google Scholar] [CrossRef]
- Ng, L.Y.; Leo, C.P.; Mohammad, A.W. Optimizing the Incorporation of Silica Nanoparticles in Polysulfone/Poly(vinyl alcohol) Membranes with Response Surface Methodology. J. Appl. Polym. Sci. 2011, 116, 2658–2667. [Google Scholar] [CrossRef]
- Lee, H.S.; Im, S.J.; Kim, J.H.; Kim, H.J.; Kim, J.P.; Min, B.R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 2008, 219, 48–56. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.J.; Patel, R.; Im, S.J.; Kim, J.H.; Min, B.R. Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties. Polym. Adv. Technol. 2007, 18, 229–236. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Gaikwad, M.S. Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions. Nanoscale Microscale Thermophys. Eng. 2013, 17, 245–262. [Google Scholar] [CrossRef]
- Ganesh, B.M.; Isloor, A.M.; Ismail, A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 2013, 313, 199–207. [Google Scholar] [CrossRef]
- Kim, E.S.; Hwang, G.; Gamal El-Din, M.; Liu, Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Memb. Sci. 2012, 394–395, 37–48. [Google Scholar] [CrossRef]
- Chaudhari, L.B.; Murthy, Z.V.P. Preparation, Characterization, and Performance of Sulfated Chitosan/Polyacrylonitrile Composite Nanofiltration Membranes. J. Dispers. Sci. Technol. 2013, 34, 389–399. [Google Scholar] [CrossRef]
- Huang, R.; Chen, G.; Sun, M.; Gao, C. Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking. Sep. Purif. Technol. 2008, 58, 393–399. [Google Scholar] [CrossRef]
- Gao, F.; Liu, H.; Zhang, Y.; Liu, D.; Xie, Z.; Peng, W.; Song, Y.; Hu, R.; Chen, D.; Kang, J.; et al. Polyamide membrane with nanoscale stripes and internal voids for high-performance nanofiltration. J. Memb. Sci. 2023, 671, 121406. [Google Scholar] [CrossRef]
- Ekambaram, K.; Doraisamy, M. Surface modification of PVDF nanofiltration membrane using Carboxymethylchitosan-Zinc oxide bionanocomposite for the removal of inorganic salts and humic acid. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 525, 49–63. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, S.; Yang, F.; Yan, C.; Jian, X. Preparation and performance of novel thermal stable composite nanofiltration membrane. Front. Chem. Eng. China 2008, 2, 402–406. [Google Scholar] [CrossRef]
- Ormanci-Acar, T.; Celebi, F.; Keskin, B.; Mutlu-Salmanlı, O.; Agtas, M.; Turken, T.; Tufani, A.; Imer, D.Y.; Ince, G.O.; Demir, T.U.; et al. Fabrication and characterization of temperature and pH resistant thin film nanocomposite membranes embedded with halloysite nanotubes for dye rejection. Desalination 2018, 429, 20–32. [Google Scholar] [CrossRef]
- Hu, D.; Xu, Z.L.; Wei, Y.M. A high performance silica-fluoropolyamide nanofiltration membrane prepared by interfacial polymerization. Sep. Purif. Technol. 2013, 110, 31–38. [Google Scholar] [CrossRef]
- Loeb, S.; Sourirajan, S. Sea Water Demineralization by Means of an Osmotic Membrane. Environ. Sci. Chem. 1963, 38, 117–132. [Google Scholar] [CrossRef]
- Hołda, A.K.; Vankelecom, I.F.J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132, 42130. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Q.; Zhuang, X.; Zhang, S.; Duan, C.; Wang, X.; Cheng, B. Hot-pressed wet-laid polyethylene terephthalate nonwoven as support for separation membranes. Polymers 2019, 11, 1547. [Google Scholar] [CrossRef]
- Zsigmondy, R.; Bachmann, W. Über neue Filter. Z. Für Anorg. Allg. Chem. 1918, 103, 119–128. [Google Scholar] [CrossRef]
- Elford, W.J. Principles governing the preparation of membranes having graded porosities. The properties of “gradocol” membranes as ultrafilters. Trans. Faraday Soc. 1937, 33, 1094–1104. [Google Scholar] [CrossRef]
- Ismail, N.; Venault, A.; Mikkola, J.P.; Bouyer, D.; Drioli, E.; Tavajohi Hassan Kiadeh, N. Investigating the potential of membranes formed by the vapor induced phase separation process. J. Memb. Sci. 2020, 597, 117601. [Google Scholar] [CrossRef]
- Lee, H.J.; Jung, B.; Kang, Y.S.; Lee, H. Phase separation of polymer casting solution by nonsolvent vapor. J. Memb. Sci. 2004, 245, 103–112. [Google Scholar] [CrossRef]
- Kerr-Phillips, T.; Schon, B.; Barker, D. Polymeric Materials and Microfabrication Techniques for Liquid Filtration Membranes. Polymers 2022, 14, 4059. [Google Scholar] [CrossRef]
- Zare, S.; Kargari, A. Membrane properties in membrane distillation. In Emerging Technologies for Sustainable Desalination Handbook; Butterworth-Heinemann: Oxford, UK, 2018; pp. 107–156. [Google Scholar] [CrossRef]
- Geleta, T.A.; Maggay, I.V.; Chang, Y.; Venault, A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes 2023, 13, 58. [Google Scholar] [CrossRef]
- Alkandari, S.H.; Castro-Dominguez, B. Advanced and sustainable manufacturing methods of polymer-based membranes for gas separation: A review. Front. Membr. Sci. Technol. 2024, 3, 1390599. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Memb. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Flynn, D.J. The Nalco Water Handbook; McGraw-Hill: New York, NY, USA, 2009; ISBN 9780071548847. [Google Scholar]
- Giwa, A.; Dufour, V.; Al Marzooqi, F.; Al Kaabi, M.; Hasan, S.W. Brine management methods: Recent innovations and current status. Desalination 2017, 407, 1–23. [Google Scholar] [CrossRef]
- Sagle, A.; Freeman, B. Fundamentals of membranes for water treatment. Futur. Desalin. Texas 2004, 2, 137. [Google Scholar]
- Lau, W.J.; Ismail, A.F.; Misdan, N.; Kassim, M.A. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef]
- Li, D.; Wang, H. Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. 2010, 20, 4551–4566. [Google Scholar] [CrossRef]
- Hermans, S.; Bernstein, R.; Volodin, A.; Vankelecom, I.F.J. Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide-polysulfone membranes. React. Funct. Polym. 2015, 86, 199–208. [Google Scholar] [CrossRef]
- Jeong, B.H.; Hoek, E.M.V.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Memb. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Peeters, J.M.M.; Boom, J.P.; Mulder, M.H.V.; Strathmann, H. Retention measurements of nanofiltration membranes with electrolyte solutions. J. Memb. Sci. 1998, 145, 199–209. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Rahbari-Sisakht, M.; Ilbeygi, H.; Rana, D.; Matsuura, T.; Ismail, A.F. Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem. Eng. J. 2015, 281, 243–251. [Google Scholar] [CrossRef]
- Baroña, G.N.B.; Lim, J.; Choi, M.; Jung, B. Interfacial polymerization of polyamide-aluminosilicate SWNT nanocomposite membranes for reverse osmosis. Desalination 2013, 325, 138–147. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Lai, S.O.; Matsuura, T.; Ismail, A.F. Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination 2015, 358, 33–41. [Google Scholar] [CrossRef]
- Ben-Sasson, M.; Lu, X.; Bar-Zeev, E.; Zodrow, K.R.; Nejati, S.; Qi, G.; Giannelis, E.P.; Elimelech, M. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res. 2014, 62, 260–270. [Google Scholar] [CrossRef]
- Hu, D.; Xu, Z.L.; Chen, C. Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization. Desalination 2012, 301, 75–81. [Google Scholar] [CrossRef]
- Lech, M.; Gala, O.; Helińska, K.; Kołodzińska, K.; Konczak, H.; Mroczyński, Ł.; Siarka, E. Membrane Separation in the Nickel-Contaminated Wastewater Treatment. Waste 2023, 1, 482–496. [Google Scholar] [CrossRef]
- Bolton; Menk, Inc.; Barr Engineering Co. Analyzing Alternatives for Sulfate Treatment in Municipal Wastewater; Bolton & Menk, Inc.: Mankato, MN, USA, 2018. [Google Scholar]
- Brown, M.; Barley, B.; Wood, H. Minewater Treatment: Technology, Application and Policy; IWA Publishing: London, UK, 2002; ISBN 9781780402185. [Google Scholar]
- Geldenhuys, A.J.; Maree, J.P.; de Beer, M.; Hlabela, P. An integrated limestone / lime process for partial sulphate removal. J. S. Afr. Inst. Min. Metall. 2003, 103, 345–353. [Google Scholar]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002, 36, 4757–4764. [Google Scholar] [CrossRef]
- Maree, J.P.; De Beer, M.; Strydom, W.F.; Christie, A.D.M.; Waanders, F.B. Neutralizing coal mine effluent with limestone to decrease metals and sulphate concentrations. Mine Water Environ. 2004, 23, 81–86. [Google Scholar] [CrossRef]
- Aubé, B.; Lee, D. The High-Density Sludge (HDS) process and sulphate control. In Proceedings of the 10th International Conference on Acid Rock Drainage & IMWA Annual Conference (ICARD-IMWA 2015), Santiago, Chile, 21–24 April 2015; pp. 1–10. [Google Scholar]
- Tolonen, E.T.; Hu, T.; Rämö, J.; Lassi, U. The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal. J. Environ. Manag. 2016, 181, 856–862. [Google Scholar] [CrossRef]
- Madzivire, G.; Petrik, L.F.; Gitari, W.M.; Ojumu, T.V.; Balfour, G. Application of coal fly ash to circumneutral mine waters for the removal of sulphates as gypsum and ettringite. Miner. Eng. 2010, 23, 252–257. [Google Scholar] [CrossRef]
- Dou, W.; Zhou, Z.; Jiang, L.M.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization. J. Environ. Manag. 2017, 196, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Runtti, H.; Tolonen, E.; Tuomikoski, S.; Luukkonen, T.; Lassi, U. How to tackle the stringent sulfate removal requirements in mine water treatment—A review of potential methods. Environ. Res. 2018, 167, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Smit, J.P. The treatment of polluted mine water. Mine Water Environ. 1999, 31, 467–471. [Google Scholar]
- Tolonen, E.; Luukkonen, T.; Runtti, H.; Rämö, J.; Lassi, U. Sorption of arsenate on ettringite formed in sulphate removal from mine drainage water. Proc. IMW 2016, 867–873. [Google Scholar]
- Dutrizac, J.E. The effectiveness of jarosite species for precipitating sodium jarosite. Zinc Iron 1999, 51, 30–32. [Google Scholar] [CrossRef]
- Nilsson, R.; Jokinen, S. Method For The Treatment of Water Treatment Sludge. U.S. Patent No. 5,674,402, 7 October 1997. [Google Scholar]
- Sasaki, K.; Kaksonen, A.H.; Riekkola-vanhanen, M. Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 2010, 101, 7–14. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.M.; Maree, J.P.; Mamba, B.B. Metals and sulphate removal from acid mine drainage in two steps via ferrite sludge and barium sulphate formation. Miner. Eng. 2015, 81, 79–87. [Google Scholar] [CrossRef]
- Adlem, C.; Maree, J.P.; Du Plessis, P. Treatment of Sulphate-rich Mining Effiuents with the Barium Hydroxide Process and Recovery of Valuable By-products. In Proceedings of the 4th International Mineral Water Association Congress, Ljubljana, Siovenia; Portschach, Austria, September 1991; International Mine Water Association: Lakewood, CO, USA, 2012; pp. 211–222. [Google Scholar]
- Maree, J.P.; Hlabela, P.; Nengovhela, R.; Geldenhuys, A.J.; Mbhele, N.; Nevhulaudzi, T.; Waanders, F.B. Treatment of Mine Water for Sulphate and Metal Removal Using Barium Sulphide. Mine Water Environ. 2004, 23, 195–203. [Google Scholar] [CrossRef]
- Benatti, C.T.; Tavares, C.R.G.; Lenzi, E. Sulfate removal from waste chemicals by precipitation. J. Environ. Manag. 2009, 90, 504–511. [Google Scholar] [CrossRef]
- Hlabela, P.; Maree, J.; Bruinsma, D. Barium carbonate process for sulphate and metal removal from mine water. Mine Water Environ. 2007, 26, 14–22. [Google Scholar] [CrossRef]
- Fernando, W.A.M.; Ilankoon, I.M.S.K.; Syed, T.H.; Yellishetty, M. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Miner. Eng. 2018, 117, 74–90. [Google Scholar] [CrossRef]
- Dvorak, D.H.; Hedin, R.S.; Edenborn, H.M.; McIntire, P.E. Treatment of metal-contaminated water using bacterial sulfate reduction: Results from pilot-scale reactors. Biotechnol. Bioeng. 1992, 40, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Gazea, B.; Adam, K.; Kontopoulos, A. A review of passive systems for the treatment of acid mine drainage. Miner. Eng. 1996, 9, 23–42. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Ziemkiewicz, P.F.; Skousen, J.G.; Brant, D.L.; Sterner, P.L.; Lovett, R.J. Acid Mine Drainage Treatment with Armored Limestone in Open Limestone Channels. J. Environ. Qual. 1997, 26, 1017–1024. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Maree, J.P.; Du Plessis, P.; Van der Walt, C.J. Treatment of acidic effluents with limestone instead of lime. Water Sci. Technol. 1992, 26, 345–355. [Google Scholar] [CrossRef]
- Maree, J.P.; De Beer, M.; Strydom, W.F.; Christie, A.M. Limestone Neutralisation of Acidic Effluent, Including Metal and Partial Sulphate Removal. In Proceedings of the International Mine Water Association Symposium 1998, Johannesburg, South Africa, 7–13 September 1998; pp. 449–460. [Google Scholar]
- Barr Engineering Co. Engineering Cost Analysis of Current and Recently Adopted, Proposed, and Anticipated Changes to Water Quality Standards and Rules for Municipal Stormwater and Wastewater Systems in Minnesota. 2017. Available online: https://www.lrl.mn.gov/docs/2017/mandated/170534.pdf (accessed on 20 November 2024).
- Fact sheet: Impact Area Groundwater Study Program. Technology Information Sheet June Ion Exchange Resins. 2004. Available online: https://jbcc-iagwsp.org/community/facts/Final%20Ion%20Exchange%20Fact%20Sheet%206-21-042.pdf (accessed on 20 November 2024).
- Lawrence, R.W.; Philippe, R.; Fleming, C.A. Sulphide and ion exchange technologies for metal recovery and water treatment in the copper mining industry. In Proceedings of the HydroCopper 07, Viña del Mar, Chile, 16–18 May 2007. [Google Scholar]
- Samee, M. Biological Sulphate Reduction of Reverse Osmosis Brine Concentrate: Process Modeling and Design. Doctoral Dissertation, University of Southern California, Los Angeles, CA, USA, 2007. [Google Scholar]
- Noble, R.; Stern, S.A. Membrane Separations Technology Principles and Applications; Elsevier: Amsterdam, The Netherlands, 1989; Volume 4, p. 731. [Google Scholar]
- Drioli, E.; Curcio, E.; Di Profio, G.; Macedonio, F.; Criscuoli, A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: Energy, exergy and costs analysis. Chem. Eng. Res. Des. 2006, 84, 209–220. [Google Scholar] [CrossRef]
- Drioli, E.; Curcio, E.; Criscuoli, A.; Di Profio, G. Di Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J. Memb. Sci. 2004, 239, 27–38. [Google Scholar] [CrossRef]
- Gómez, J.; Giraldo, H.; Piaggio, G.; Barros, L.; Quilaqueo, M.; Quintero, Y.M.; García, A.; Santoro, S.; Curcio, E.; Estay, H. Recovery of copper sulfate from acidic mine waters by membrane crystallization. J. Memb. Sci. 2024, 700, 122707. [Google Scholar] [CrossRef]
- Frappa, M.; Brunetti, A.; Drioli, E.; Cui, Z.; Pan, J.; Macedonio, F. Membrane condenser for particulate abatement from waste-gaseous streams. J. Membr. Sci. Res. 2020, 6, 81–89. [Google Scholar] [CrossRef]
- Dow, N.; Villalobos García, J.; Niadoo, L.; Milne, N.; Zhang, J.; Gray, S.; Duke, M. Demonstration of membrane distillation on textile wastewater assessment of long-term performance, membrane cleaning and waste heat integration. Environ. Sci. Water Res. Technol. 2017, 3, 433–449. [Google Scholar] [CrossRef]
- Saltworks: Sulfate Discharge: Measurement and Cost-Optimized Removal. 2020. Available online: https://www.saltworkstech.com/applications/sulfate-removal/ (accessed on 20 November 2024).
- Greben, H.A.; Matshusa, M.P.; Maree, J.P. The biological Sulphate removal technology. In Proceedings of the 9th International Mine Water Congress 2005, Asturias, Spain, 5–7 September 2005; pp. 339–346. [Google Scholar]
- Erin, D. MackeyTom Seacord David Stringfield Penny Carlo Salinity Removal Cost Curves for Small to Medium Size Water Wells and Wastewater Effluents. Water Environ. Fed. 2005, 2005, 2175. [Google Scholar]
- Lorax Environmental Inc. Treatment of Sulphate in Mine Effluents. International Network for Acid Prevention. 2003. 1’129. Available online: https://www.inap.com.au/wp-content/uploads/Treatment_of_Sulphate_in_Mine_Effluents_-_Lorax_Report.pdf (accessed on 20 November 2024).
- Hao, T.W.; Xiang, P.Y.; Mackey, H.R.; Chi, K.; Lu, H.; Chui, H.K.; van Loosdrecht, M.C.M.; Chen, G.-H. A review of biological sulfate conversions in wastewater treatment. Water Res. 2014, 65, 1–21. [Google Scholar] [CrossRef]
- Bowell, R.J. A review of sulphate removal options for mine waters. Proc. Int. Mine Water Assoc. Symp. 2004, 2, 75–91. [Google Scholar]
- Chen, G.; Ye, Y.; Yao, N.; Hu, N.; Zhang, J.; Huang, Y. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. J. Clean. Prod. 2021, 329, 129666. [Google Scholar] [CrossRef]
- Rene, E.R.; Sahinkaya, E.; Lewis, A.; Lens, P.N.L. Sustainable Heavy Metal Remediation. In Environmental Chemistry for a Sustainable World; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, ISBN 978-3-319-61145-7. [Google Scholar]
- Kijjanapanich, P.; Annachhatre, A.P.; Esposito, G.; Van Hullebusch, E.D.; Lens, P.N.L. Biological sulfate removal from gypsum contaminated construction and demolition debris. J. Environ. Manag. 2013, 131, 82–91. [Google Scholar] [CrossRef]
- Kijjanapanich, P.; Annachhatre, A.P.; Esposito, G.; Piet, N.L. Chemical sulphate removal for treatment of construction and demolition debris leachate. Environ. Technol. 2014, 35, 1989–1996. [Google Scholar] [CrossRef]
- Rambabu, K.; Banat, F.; Minh, Q.; Ho, S.; Ren, N. Environmental Science and Ecotechnology Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Hurtado, C.; Viedma, P.; Cotoras, D. Hydrometallurgy Design of a bioprocess for metal and sulfate removal from acid mine drainage. Hydrometallurgy 2018, 180, 72–77. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A Review of Acid Mine Drainage: Formation Mechanism, Treatment Technology, Typical Engineering Cases and Resource Utilization. Process Saf. Environ. Prot. 2023, 14, 14203244. [Google Scholar] [CrossRef]
- Li, X.; Lan, S.; Zhu, Z.; Zhang, C.; Zeng, G. Ecotoxicology and Environmental Safety The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicol. Environ. Saf. 2018, 158, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Moosa, S.; Nemati, M.; Harrison, S.T.L. A kinetic study on anaerobic reduction of sulphate, part II: Incorporation of temperature effects in the kinetic model. Chem. Eng. Sci. 2005, 60, 3517–3524. [Google Scholar] [CrossRef]
- Sinharoy, A.; Pakshirajan, K.; Lens, P.N.L. Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage. Braz. J. Chem. Eng. 2020, 6, 328–344. [Google Scholar] [CrossRef]
- Giordani, A.; Hayashi, E.A.; Rodriguez, R.P.; Damasceno, L.H.S.; Azevedo, H.; Brucha, G. Potential of autochthonous sulfate-reducing microbial communities for treating acid mine drainage in a bench-scale sulfidogenic reactor. Braz. J. Chem. Eng. 2019, 36, 733–751. [Google Scholar] [CrossRef]
- Martí-Calatayud, M.C.; García-Gabaldón, M.; Pérez-Herranz, V.; Ortega, E. Determination of transport properties of Ni (II) through a Nafion cation-exchange membrane in chromic acid solutions. J. Memb. Sci. 2011, 379, 449–458. [Google Scholar] [CrossRef]
- Cardoso, D.; Stéphano, L.; Antônio, M.; Rodrigues, S.; Moura, A.; Alberto, J.; Tenório, S. Water recovery from acid mine drainage by electrodialysis. Miner. Eng. 2013, 40, 82–89. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Veolia Electrodialysis Reversal (EDR). 2023. Available online: https://www.watertechnologies.com/products/electrodialysis-reversal-edr (accessed on 20 November 2024).
- NTPC Limited Electro-Dialysis Reversal; NTPC Limited NTPC Bhawan, SCOPE Complex, Institutional Area: New Delhi, India, 2023.
- Bergman, R. Reverse Osmosis and Nanofiltration, 2nd ed.; American Water Works Association: Denver, CO, USA, 2007; ISBN 1583214917. [Google Scholar]
- Reahl, E.R. Half A Century of Desalination with Electrodialysis. Eng. Env. Sc. 2006, 1–5. Available online: https://api.semanticscholar.org/CorpusID:30933100 (accessed on 20 November 2024).
- Lenntech Water Treatment Solutions SUEZ 2020 EDR systems electrodialysis reversal technology. Water Technol. Solut. 2020, 2–4.
- Goodman, N.B.; Taylor, R.J.; Xie, Z.; Gozukara, Y.; Clements, A. A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation. Desalination 2013, 317, 77–83. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Rameetse, M.S.; Aberefa, O.; Daramola, M.O. Effect of loading and functionalization of carbon nanotube on the performance of blended polysulfone/polyethersulfone membrane during treatment of wastewater containing phenol and benzene. Membranes 2020, 10, 54. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Ettorre, V.; Fontana, A. Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J. Nanotechnol. 2014, 5, 1675–1690. [Google Scholar] [CrossRef]
- Garcia, B.D. Fabrication of polymer-metal nanocomposites with complex polymeric matrices for bactericidal and catalytic applications. Clim. Chang. 2013 Phys. Sci. Basis 2017, 53, 1–30. [Google Scholar]
- Drioli, E.; Giorno, L. (Eds.) Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1346–1348. [Google Scholar] [CrossRef]
- Schaep, J.; Vandecasteele, C. Evaluating the charge of nanofiltration membranes. J. Memb. Sci. 2001, 188, 129–136. [Google Scholar] [CrossRef]
- Amy, E.; Childress, M.E. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Memb. Sci. 1996, 86, 24–31. [Google Scholar] [CrossRef]
- Braghetta, B.A.; Digiano, F.A.; Member, W.P.B. Nanofiltration of natural organic matter: pH and ionic strength effects. J. Environ. Eng. 1994, 123, 628–641. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698–7705. [Google Scholar] [CrossRef]
- Hong, S.; Elimelech, M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Memb. Sci. 1997, 132, 159–181. [Google Scholar] [CrossRef]
- Kiso, Y.; Sugiura, Y.; Kitao, T.; Nishimura, K. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes. J. Memb. Sci. 2001, 192, 1–10. [Google Scholar] [CrossRef]
- Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F. Membrane fouling in desalination and its mitigation strategies. Desalination 2018, 425, 130–155. [Google Scholar] [CrossRef]
- Vrouwenvelder, J.S.; Kappelhof, J.W.N.M.; Heijman, S.G.J.; Schippers, J.C.; van der Kooij, D. Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Desalination 2003, 157, 361–365. [Google Scholar] [CrossRef]
- Vrouwenvelder, H.S.; van Paassen, J.A.M.; Folmer, H.C.; Hofman, J.A.M.H.; Nederlof, M.M.; van der Kooij, D. Biofouling of membranes for drinking water production. Water Supply 1999, 17, 225–234. [Google Scholar] [CrossRef]
- Al-Amoudi, A.S.; Farooque, A.M. Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination 2005, 178, 261–271. [Google Scholar] [CrossRef]
- Tran-Ha, M.H.; Wiley, D.E. The relationship between membrane cleaning efficiency and water quality. J. Memb. Sci. 1998, 145, 99–110. [Google Scholar] [CrossRef]
- Zoubeik, M.; Henni, A. Ultrafiltration of oil-in-water emulsion using a 0.04-µm silicon carbide membrane: Taguchi experimental design approach. Desalin. Water Treat. 2017, 62, 108–119. [Google Scholar] [CrossRef]
- Zoubeik, M.; Salama, A.; Henni, A. A novel antifouling technique for the crossflow filtration using porous membranes: Experimental and CFD investigations of the periodic feed pressure technique. Water Res. 2018, 146, 159–176. [Google Scholar] [CrossRef]
- Echakouri, M.; Salama, A.; Henni, A. A comparative study between three of the physical antifouling techniques for oily wastewater filtration using ceramic membranes: Namely; the novel periodic transmembrane pressure technique, pulsatile flow, and backflushing. J. Water Process Eng. 2023, 54, 103921. [Google Scholar] [CrossRef]
- Wan Azelee, I.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wong, K.C.; Subramaniam, M.N. Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination 2017, 409, 163–170. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Naddeo, V.; Banat, F.; Hasan, S.W. Preparation of novel polyvinylidene fluoride (PVDF)-Tin (IV) oxide (SnO2) ion exchange mixed matrix membranes for the removal of heavy metals from aqueous solutions. Sep. Purif. Technol. 2020, 250, 117250. [Google Scholar] [CrossRef]
Property | Spiral/Wound | Flat/Plate | Tubular | Hollow/Fiber |
---|---|---|---|---|
Packing density (m2/m3) | 500–1000 | 200–500 | 70–100 | 500–5000 |
Manufacturing cost | Moderate | High | High | Low |
Ease of cleaning | Poor to good | Good | Excellent | Poor |
Energy demand | Moderate | Low to moderate | High | Low |
Fouling potential | High | Moderate | Low | Very high |
Membrane Process | MF | UF | NF | RO |
---|---|---|---|---|
Pore size | 50–10,000 nm | 5–100 nm | 1–10 nm | <2 nm |
Membrane structure | Asymmetric or symmetric, porous | Asymmetric, microporous | Asymmetric, thin-film composite, tight porous | Asymmetric, thin-film composite, semi-porous |
MWCO | >200,000 Da | 1000–200,000 Da | 200–1000 Da | >100 Da |
Retained | Bacteria, colloids, organics, suspended solids | Proteins, oils, lactose, vitamins, organic | Divalent: anions and cations, organics | Monovalent ions, all contaminants |
Thickness surface film | 10–150 µm | 150–250 µm | 150 µm | 150 µm |
Average permeability | 500 (L/m2 h bar) | 150 (L/m2 h bar) | 10–20 (L/m2 h bar) | 5–10 (L/m2 h bar) |
Filtration mechanism | Molecular sieve | Molecular sieve | Solution diffusion | Solution diffusion |
Membrane materials | PES, PSf, PA, PP | PVDF, PES, PP, PAN | CA, PA, PI, SPSU | CA, PA, PI, SPSU |
Pressure | 0.1–3 bar | 2–4 bar | 5–40 bar | 7–100 bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Mehrate, J.; Shaban, S.; Henni, A. A Review of Sulfate Removal from Water Using Polymeric Membranes. Membranes 2025, 15, 17. https://doi.org/10.3390/membranes15010017
Al Mehrate J, Shaban S, Henni A. A Review of Sulfate Removal from Water Using Polymeric Membranes. Membranes. 2025; 15(1):17. https://doi.org/10.3390/membranes15010017
Chicago/Turabian StyleAl Mehrate, Jamal, Sadek Shaban, and Amr Henni. 2025. "A Review of Sulfate Removal from Water Using Polymeric Membranes" Membranes 15, no. 1: 17. https://doi.org/10.3390/membranes15010017
APA StyleAl Mehrate, J., Shaban, S., & Henni, A. (2025). A Review of Sulfate Removal from Water Using Polymeric Membranes. Membranes, 15(1), 17. https://doi.org/10.3390/membranes15010017