Membrane Treatment to Improve Water Recycling in an Italian Textile District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Characteristics
2.2. Experimental Setup
2.3. Sample Analysis Procedure
2.4. Retentate Treatment
3. Results and Discussion
3.1. System Rejection Analysis
3.2. Pilot Plant Study with Different Types of NF Membranes
3.3. Pilot Plant Study with Different Permeate Fluxes
3.4. Retentate Treatment
3.5. Electricity Demand
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.N.R.; Ang, W.L.; Teow, Y.H.; Mohammad, A.W.; Hilal, N. Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review. J. Water Process Eng. 2022, 45, 102478. [Google Scholar] [CrossRef]
- Vajnhandl, S.; Valh, J.V. The status of water reuse in European textile sector. J. Environ. Manag. 2014, 141, 29–35. [Google Scholar] [CrossRef]
- Yang, X.; López-Grimau, V.; Vilaseca, M.; Crespi, M. Treatment of textilewaste water by CAS, MBR, and MBBR: A comparative study from technical, economic, and environmental perspectives. Water 2020, 12, 1306. [Google Scholar] [CrossRef]
- Marszałek, J.; Żyłła, R. Recovery of water from textile dyeing using membrane filtration processes. Processes 2021, 9, 1833. [Google Scholar] [CrossRef]
- Muoio, R.; Palli, L.; Ducci, I.; Coppini, E.; Bettazzi, E.; Daddi, D.; Fibbi, D.; Gori, R. Optimization of a large industrial wastewater treatment plant using a modeling approach: A case study. J. Environ. Manag. 2019, 249, 109436. [Google Scholar] [CrossRef] [PubMed]
- Faisal, S.; Farooq, S.; Hussain, G.; Bashir, E. Influence of hard water on solubility and colorimetric properties of reactive dyes. AATCC J. Res. 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Collivignarelli, C.; Bertanza, G. Ingegneria Sanitaria-Ambientale; CittàStudiEdizioni: Milan, Italy, 2012. [Google Scholar]
- Dupont. Tech Fact: Ion Exchange Resins Fundamentals of Ion Exchange. 2019. Form No. 45-D01462-en, Version 1. Available online: https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/IER-Fundamentals-TechFact-45-D01462-en.pdf (accessed on 2 January 2025).
- Wachinski, A.M. Fundamental Principles and Concepts of Ion Exchange. In Environmental Ion Exchange, Principles and Design; CRC Press: Boca Raton, FL, USA, 2016; pp. 25–74. [Google Scholar]
- Micari, M.; Moser, M.; Cipollina, A.; Tamburini, A.; Micale, G.; Bertsch, V. Towards the implementation of circular economy in the water softening industry: A technical, economic and environmental analysis. J. Clean. Prod. 2020, 255, 120291. [Google Scholar] [CrossRef]
- Ministero dell’Ambiente e della Tutela del Territorio. Decreto Ministeriale 185/2003: Regolamento recante norme tecniche per il riutilizzo delle acque reflue in attuazione dell’articolo 26, comma 2, del D.Lgs. 11 maggio 1999, n. 152. Gazzetta Ufficiale, 23 July 2003. [Google Scholar]
- Schaep, J.; Van Der Bruggen, B.; Uytterhoeven, S.; Croux, R.; Vandecasteele, C.; Wilms, D.; Van Houtte, E.; Vanlerberghe, F. Removal of hardness from groundwater by nanofiltration. Desalination 1998, 119, 295–302. [Google Scholar] [CrossRef]
- Orecki, A.; Tornaszewska, M.; Karakulski, K.; Morawski, A.W. Surface water treatment by the nanofiltration method. Desalination 2004, 162, 47–54. [Google Scholar] [CrossRef]
- Izadpanah, A.A.; Javidnia, A. The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater. Water 2012, 4, 283–294. [Google Scholar] [CrossRef]
- Elazhar, F.; Elazhar, M.; El-Ghzizel, S.; Tahaikt, M.; Zait, M.; Dhiba, D.; Elmidaoui, A.; Taky, M. Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges. Process Saf. Environ. Prot. 2021, 153, 376–383. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, L.; Xu, F.; Tian, L.; Jia, R.; Song, W.; Li, Y.; Liu, B. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. Environ Res. 2020, 182, 109063. [Google Scholar] [CrossRef]
- Ketharani, J.; Hansima, M.A.C.K.; Indika, S.; Samarajeewa, D.R.; Makehelwala, M.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Rathnayake, R.M.L.D.; Nanayakkara, K.G.N.; Wei, Y.; et al. A comparative study of community reverse osmosis and nanofiltration systems for total hardness removal in groundwater. Groundw. Sustain. Dev. 2022, 18, 100800. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, L.; Tang, J.; Li, D.; Yu, F.; Bai, F.; Ye, Z.; Cao, L.; Geng, N. A Pilot-Scale Nanofiltration–Ultrafiltration Integrated System for Advanced Drinking Water Treatment: Process Performance and Economic Analysis. Processes 2023, 11, 1300. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 2008, 63, 251–263. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M.; Nguyen, M.N.; Lee, W. Treating reverse osmosis concentrate to address scaling and fouling problems in zero-liquid discharge systems: A scientometric review of global trends. Sci. Total Environ. 2022, 844, 157081. [Google Scholar] [CrossRef]
- Tuci, F.; Allocca, M.; Fibbi, D.; Gori, R. Membrane treatment for water recycling and resource recovery in a textile district. In Proceedings of the 7th International Symposium on Membrane Technologies and Applications, Istanbul, Turkey, 17–19 October 2023; ITU Press: Istanbul, Turkey, 2023; pp. 117–123. [Google Scholar]
- Fritzmann, C.; Löwenberg, J.; Wintgens, T.; Melin, T. State-of-the-art of reverse osmosis desalination. Desalination 2007, 216, 1–76. [Google Scholar] [CrossRef]
- Alcaina-Miranda, M.I.; Barredo-Damas, S.; Bes-Piá, A.; Iborra-Clar, M.I.; Iborra-Clar, A.; Mendoza-Roca, J.A. Nanofiltration as a final step towards textile wastewater reclamation. Desalination 2009, 240, 290–297. [Google Scholar] [CrossRef]
- Keskin, B.; Ersahin, M.E.; Ozgun, H.; Koyuncu, I. Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. J. Water Process Eng. 2021, 42, 102172. [Google Scholar] [CrossRef]
- Dupont. Water Solutions: FilmTecTM Reverse Osmosis Membranes Technical Manual. 2023. Form No. 45-D01504-en, Version 16. Available online: https://www.dupont.com/content/dam/water/amer/us/en/water/public/documents/en/RO-NF-FilmTec-Manual-45-D01504-en.pdf (accessed on 9 September 2024).
- Peng, W.; Escobar, I.C. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes. Environ. Sci. Technol. 2003, 37, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Qadir, D.; Mukhtar, H.; Nasir, R.; Mannan, H.A. Performance-based comparative study of commercial polymeric nanofiltration membranes for ionic retention from synthetic water. Int. J. Environ. Sci. Technol. 2023, 20, 1439–1450. [Google Scholar] [CrossRef]
- Lau, W.-J.; Ismail, A.F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination 2009, 245, 321–348. [Google Scholar] [CrossRef]
- Sudhakar, M.; Vijayalakshmi, P.; Nilavunesan, D.; Thiruvengadaravi, K.V.; Baskaralingam, P.; Sivanesan, S. High Permeate Recovery for Concentrate Reduction by Integrated Membrane Process in Textile Effluent. Source Water Environ. Res. 2016, 88, 838–846. [Google Scholar] [CrossRef]
- Cipolletta, G.; Lancioni, N.; Akyol, Ç.; Eusebi, A.L.; Fatone, F. Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. J. Environ. Manag. 2021, 300, 113681. [Google Scholar] [CrossRef]
- Partal, R.; Basturk, I.; Murat Hocaoglu, S.; Baban, A.; Yilmaz, E. Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: A case study. Water Resour. Ind. 2022, 27, 100174. [Google Scholar] [CrossRef]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Mannina, G.; Cosenza, A. The fouling phenomenon in membrane bioreactors: Assessment of different strategies for energy saving. J. Membr. Sci. 2013, 444, 332–344. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.J. Environmental impacts of desalination and brine treatment—Challenges and mitigation measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef]
- Chong, T.H.; Loo, S.L.; Krantz, W.B. Energy-efficient reverse osmosis desalination process. J. Membr. Sci. 2015, 473, 177–188. [Google Scholar] [CrossRef]
Parameter | Unit | Refining Plant |
---|---|---|
pH | - | 7.54 ± 0.16 |
TSS | mg·L−1 | 1.01 ± 0.11 |
Hardness | °F | 31.6 ± 4.9 |
Chlorides | mg·L−1 | 702 ± 155 |
Turbidity | NTU | 0.53 ± 0.24 |
COD | mg·L−1 | 20.3 ± 5.43 |
N-NH4+ | mg·L−1 | 2.82 ± 4.25 |
N-NO2− | mg·L−1 | 0.20 ± 0.22 |
N-NO3− | mg·L−1 | 12.5 ± 6.17 |
Absorbance (λ = 420 nm) | - | 0.007 ± 0.006 |
Module Specification | Unit | UF Module | NF Module | |
---|---|---|---|---|
Reference | dizzer XL 1.5 MB 25W | NANO9 2540 | NANO7 2540 | |
Manufacturer | Inge GmbH | Oltremare S.p.A. | Oltremare S.p.A. | |
Active membrane area | m2 | 25 | 2.6 | 2.6 |
Membrane configuration | Hollow Fiber | Spiral-Wound | Spiral-Wound | |
MgSO4 rejection | % | - | >97 1 | >97 1 |
NaCl rejection | % | - | 89–95 1 | 45–55 1 |
Pore size | nm | 20 | - | - |
Pressure max | bar | 5 | 41 | 41 |
Temperature max | °C | 40 | 45 | 45 |
pH range | - | 1–13 | 3–10 | 3–10 |
Parameter | Unit | UF Feed | UF Permeate | NF Permeate | NF Retentate | System Rejection |
---|---|---|---|---|---|---|
SDI | - | 5.15 ± 0.60 | - | - | - | - |
Conductivity | mS·cm−1 | 2.96 ± 0.59 | 2.96 ± 0.58 | 0.34 ± 0.15 | 5.93 ± 1.26 | 89 ± 4% |
Temperature | °C | 27.0 ± 6.1 | 27.0 ± 5.1 | 28.0 ± 5.3 | 28.0 ± 5.2 | - |
Hardness | °F | 26.0 ± 4.0 | 26.0 ± 4.0 | 0.48 ± 0.25 | 84.0 ± 106 | 98 ± 1% |
Chlorides | mg·L−1 | 740 ± 166 | 737 ± 166 | 72.0 ± 37.0 | 2126 ± 1768 | 91 ± 4% |
Turbidity | NTU | 0.65 ± 0.34 | 0.34 ± 0.20 | 0.22 ± 0.15 | 0.30 ± 0.14 | 61 ± 26% |
Permeate Flux [L·m−2·h−1] | Membrane | Rejection [%] | T [°C] | Dynamic Viscosity [Pa·s] | |||
---|---|---|---|---|---|---|---|
Conductivity | Hardness | Chlorides | Turbidity | ||||
27 | NANO 7 | 87 ± 6 | 98 ± 1 | 88 ± 6 | 33 ± 41 | 23 ± 5 | 9.32 × 10−4 |
27 | NANO 9 | 94 ± 1 | 99 ± 1 | 95 ± 1 | 5 ± 6 | 25 ± 2 | 8.90 × 10−4 |
35 | NANO 9 | 90 ± 2 | 98 ± 1 | 92 ± 2 | 38 ± 26 | 31 ± 2 | 7.81 × 10−4 |
38 | NANO 9 | 87 ± 2 | 98 ± 1 | 90 ± 1 | 37 ± 56 | 33 ± 2 | 7.49× 10−4 |
Flow Rates | U. o. M.* | NANO9 38 L·m−2·h−1 | NANO9 35 L·m−2·h−1 | NANO9 27 L·m−2·h−1 | NANO7 27 L·m−2·h−1 |
---|---|---|---|---|---|
Permeate | m3·h−1 | 0.19 ± 0.03 | 0.16 ± 0.04 | 0.12 ± 0.04 | 0.12 ± 0.02 |
Feed | m3·h−1 | 0.25 ± 0.02 | 0.22 ± 0.06 | 0.18 ± 0.05 | 0.17 ± 0.06 |
NF recovery | - | 75 ± 8% | 73 ± 3% | 67 ± 15% | 69 ± 10% |
Conductivity | Turbidity | Chlorides | Hardness | |
---|---|---|---|---|
mg·L−1 | NTU | mg·L−1 | °F | |
Retentate | 6.11 ± 0.01 | 1.9 ± 1.6 | 1794 ± 17 | 69 ± 0.8 |
Permeate | 0.66 ± 0.21 | 0.2 ± 0.1 | 163 ± 61 | 1.07 ± 0.21 |
Concentrated retentate | 9.69 ± 1.94 | 15 ± 24 | 3835 ± 1073 | 149 ± 43 |
Rejection | 89 ± 3% | 71 ± 40% | 91 ± 3% | 98 ± 0.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuci, F.; Allocca, M.; Fibbi, D.; Daddi, D.; Gori, R. Membrane Treatment to Improve Water Recycling in an Italian Textile District. Membranes 2025, 15, 18. https://doi.org/10.3390/membranes15010018
Tuci F, Allocca M, Fibbi D, Daddi D, Gori R. Membrane Treatment to Improve Water Recycling in an Italian Textile District. Membranes. 2025; 15(1):18. https://doi.org/10.3390/membranes15010018
Chicago/Turabian StyleTuci, Francesca, Michele Allocca, Donatella Fibbi, Daniele Daddi, and Riccardo Gori. 2025. "Membrane Treatment to Improve Water Recycling in an Italian Textile District" Membranes 15, no. 1: 18. https://doi.org/10.3390/membranes15010018
APA StyleTuci, F., Allocca, M., Fibbi, D., Daddi, D., & Gori, R. (2025). Membrane Treatment to Improve Water Recycling in an Italian Textile District. Membranes, 15(1), 18. https://doi.org/10.3390/membranes15010018