PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
- Adding a non-solvent (non-solvent induced phase separation, NIPS).
- Exposing the polymeric solution to a non-solvent vapour (vapour induced phase separation, VIPS) up to the complete polymer precipitation or prior to immersion in a non-solvent coagulation bath.
- Evaporating the solvent (evaporation induced phase separation, EIPS).
- Cooling down a polymer solution obtained at elevated temperature promoting polymer precipitation and the formation of the final membrane (thermally induced phase separation, TIPS).
- The liquid phase (NMP and PEG) was magnetically stirred.
- Kaolin was added and the suspension sonicated in an ultrasonic bath (for 90 min at 25 °C) in order to assure a homogeneous nanoparticles dispersion.
- The solid components (i.e., PES and PVP) were added and kept under stirring until a homogeneous casting suspension was observed.
2.3. Experimental Set up
2.4. Pure Water Permeability (PWP)
2.5. Thickness
2.6. Porosity
2.7. Pore Size and Pore Size Distribution
2.8. Mechanical Properties of Membranes
2.9. Scanning Electron Microscopy (SEM) Analysis
2.10. Contact Angle
3. Results and Discussions
3.1. Membrane Morphology
3.2. Membrane Pore Size
3.3. Thickness, Porosity, Contact Angle and Mechanical Properties
3.4. Pure Water Permeability (PWP)
3.5. Membrane Performance Evaluation: As Removal from Water
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Mandal, B.K.; Suzuki, T.K. Arsenic round the world—A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Jain, C.K.; Ali, I. Arsenic: Occurence, toxicity and speciation techniques. Water Res. 2000, 34, 4304–4312. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EPA). Technical Fact Sheet: Final Rule for Arsenic in Drinking Water; 815-F-00-016; United States Environmental Protection Agency: Washington, DC, USA, January 2001.
- Mukherjee, A.; Bhattacharya, P.; Savage, K.; Foster, A.; Bundschuh, J. Distribution of geogenic arsenic in hydrologic systems: Controls and challenges. J. Contam. Hydrol. 2008, 99, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Marino, T.; Figoli, A. Arsenic removal by liquid membranes. Membranes 2014, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Criscuoli, A.; Carnevale, M. Membrane Distillation for the Treatment of Waters Contaminated by Arsenic, Fluoride and Uranium in Membrane Technologies for Water Treatament: Removal of Toxic Trace Elements whit Emphasis on Arsenic, Fluoride and Uranium; Figoli, A., Hoinkis, H., Bundschuh, J., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Volume 13, pp. 238–252. [Google Scholar]
- Norton, M.V.; Chang, Y.J.; Galeziewski, T.; Kommineni, S.; Chowdhury, Z. Throwawayiron and aluminium sorbents versus conventional activate dalumina for arsenic removal—Pilot testing results. In Proceedings—Annual Conference; Water Works Association: Washington, DC, USA, 2001; pp. 2073–2087. [Google Scholar]
- Oehmen, A.; Viegas, R.; Velizarov, S.; Reis, M.A.M.; Crespo, J.G. Removal of heavy metals from drinking water supplie sthrough the ionex change membrane bioreactor. Desalination 2006, 199, 405–407. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Ghaffour, N.; Goosen, M. Fluoride Arsenic and Uranium Removal from Water Using Adsorbent Materials and Inegrated Membrane Systems; Figoli, A., Hoinkis, H., Bundschuh, J., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Volume 13, pp. 91–113. [Google Scholar]
- Mar, K.K.; Karnawati, D.; Putra Sarto, D.P.E.; Igarashi, T.; Tabelina, C.B. Comparison of arsenic adsorption on lignite, bentonite, shale, and ironsand from Indonesia. Procedia Earth Planet. Sci. 2013, 6, 242–250. [Google Scholar] [CrossRef]
- Hua, J. Synthesis and characterization of bentonite base dinorgano–organo-composites and their performances for removing arsenic from water. Appl. Clay Sci. 2015, 114, 239–246. [Google Scholar] [CrossRef]
- Basso, M.C.; Cerrella, E.G.; Cukierman, A.L. Empleo de algas marinas para la biosorcion de metales pesados de aguas contaminadas. Avances en Energias Renovables y. Medio Ambiente 2002, 6, 669–674. [Google Scholar]
- Criscuoli, A.; Figoli, A.; Leopold, A.; Simone, S.; Benamor, M.; Drioli, E. Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. Desalination 2010, 264, 193–200. [Google Scholar]
- Criscuoli, A.; Bafaro, P.; Drioli, E. Vacuum membrane distillation for purifying waters containing arsenic. Desalination 2013, 323, 17–21. [Google Scholar] [CrossRef]
- Mondal, P.; Bhowmick, S.; Chatterjee, D.; Figoli, A.; Van der Bruggen, B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013, 92, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Gohari, R.J.; Lau, W.J.; Matsuura, T.; Ismail, A.F. Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Sep. Purif. Technol. 2013, 118, 64–72. [Google Scholar] [CrossRef]
- Zheng, Y.-M.; Zhou, S-.W.; Nanayakkara, K.G.N.; Matsuura, T.; Paul Chen, J. Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. J. Membr. Sci. 2011, 374, 1–11. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/waste water using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Hering, J.G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Stuben, D.; Berner, Z. Removal of arsenic from aqueous solution by natural siderite and hematite. Appl. Geochem. 2007, 22, 1039–1051. [Google Scholar] [CrossRef]
- Jönsson, J.; Sherman, D.M. Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic ground waters. Chem. Geol. 2008, 255, 173–181. [Google Scholar] [CrossRef]
- Lin, Z.; Pulse, R.W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environ. Geol. 2000, 39, 753–759. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Ramaswamy, S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl. Clay Sci. 2002, 21, 133–142. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Ahmadi, A. Biological beneficiation of Kaolin: A review on ironremoval. Appl. Clay Sci. 2015, 107, 238–245. [Google Scholar] [CrossRef]
- PubChem Home Page. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/kaolin (accessed on 11 August 2017).
- De Mesquita, L.M.S.; Rodrigues, T.; Gomes, S.S. Bleaching of Brazilian kaolin using organic acids and fermented medium. Miner. Eng. 1996, 9, 965–971. [Google Scholar] [CrossRef]
- Zen, S.; El Berrichi, F.Z. Adsorption of tannery anionic dyes by modified kaolin from aqueous solution. Desalin. Water Treat. 2014, 52, 1–9. [Google Scholar] [CrossRef]
- Gürses, A.; Karaca, S.; Dogar, C.; Bayrak, R.; Acikyildiz, M.; Yalcin, M. Determination of adsorptive properties of clay/water system: Methylene blue sorption. J. Colloid Int. Sci. 2004, 269, 310–314. [Google Scholar] [CrossRef]
- Sarbatly, R. Effect of kaolin/PESf ration and sintering temperature on pore size and porosity of the kaolin membrane support. J. Appl. Sci. 2011, 11, 2306–2312. [Google Scholar]
- Han, L.F.; Xu, Z.L.; Cao, Y.; Wei, Y.M.; Xu, H.T. Preparation, characterization and permeation property of Al2O3, Al2O3–SiO2 and Al2O3–kaolin hollow fiber membranes. J. Membr. Sci. 2011, 372, 154–164. [Google Scholar] [CrossRef]
- Dizman, C.; Tasdelen, M.A.; Yagci, Y. Recent advances in the preparation of functionalized polysulfones. Polym. Int. 2013, 62, 991–1007. [Google Scholar] [CrossRef]
- Mierzwa, J.C.; Arieta, V.; Verlage, M.; Carvalho, J.; Vecitis, C.D. Effect of clay nanoparticles on the structure and performance of polyethersulfone ultra filtration membranes. Desalination 2013, 314, 147–158. [Google Scholar] [CrossRef]
- Yip, Y.; McHugh, A.J. Modeling and simulation of nonsolvent vapor-induced phase separation. J. Membr. Sci. 2006, 271, 163–176. [Google Scholar] [CrossRef]
- Marino, T.; Blefari, S.; Di Nicolò, E.; Figoli, A. A more sustainable membrane preparation using triethyl phosphate as solvent. Green Process. Synth. 2017, 6, 295–300. [Google Scholar] [CrossRef]
- Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 2016, 510, 238–248. [Google Scholar] [CrossRef]
- Khare, V.P.; Greenberg, A.R.; Krantz, W.B. Vapor-induced phase separation—Effect of the humid air exposure step on membrane morphology: Part I. Insights from mathematical modeling. J. Membr. Sci. 2005, 258, 140–156. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lan, G.S.; Tuan, W.H. Preparation of mullite by the reaction sintering of kaolinite and alumina. J. Eur. Ceram. Soc. 2000, 20, 2519–2525. [Google Scholar] [CrossRef]
- Susanto, H.; Stahra, N.; Ulbricht, M. High performance polyethersulfone microfiltration membranes having high flux and stable hydrophilic property. J. Membr. Sci. 2009, 342, 153–164. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, F.; Wang, Z.; Wu, M.; Ma, J.; Gao, C. Preparation and characterization of PSf/clay nanocomposite membranes with PEG 400 as a pore forming additive. Desalination 2012, 286, 131–137. [Google Scholar] [CrossRef]
- Tan, P.C.; Low, S.C. Role of hygroscopic triethylene glycol and relative humidity in controlling morphology of polyethersulfone ultrafiltration membrane. Desalin. Water Treat. 2015, 57, 1–11. [Google Scholar] [CrossRef]
- Keurentjes, J.T.F.; Harbrecht, J.G.; Brinkman, D.; Hanemaajer, J.H.; Cohen Stuart, M.A.; van’t Riet, H. Hydrophobicity measurements of MF and UF membranes. J. Membr. Sci. 1989, 47, 333–337. [Google Scholar] [CrossRef]
- Palacio, L.; Calvo, J.I.; Prádanos, P.; Hernández, A.; Väisänen, P.; Nyström, M. Contact angles and external protein adsorption onto ultrafiltration membranes. J. Membr. Sci. 1999, 152, 189–201. [Google Scholar] [CrossRef]
- Anadão, P.; Sato, L.F.; Wiebeck, H.; Valenzuela-Díaz, F.R. Montmorillonite as a component of polysulfone nanocomposite membranes. Appl. Clay Sci. 2010, 48, 127–132. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Alizadeh, A.; Rajabi, H.; Daraei, P. Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides. J. Membr. Sci. 2011, 382, 135–147. [Google Scholar] [CrossRef]
- Monticelli, O.; Bottino, A.; Scandale, I.; Capanelli, G.; Russo, S. Preparation and propertiesof polysulfone-clay composite membranes. J. Appl. Polym. Sci. 2007, 103, 3637–3644. [Google Scholar] [CrossRef]
- Han, M.-J.; Nam, S.-T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversionmembrane. J. Membr. Sci. 2002, 202, 55–61. [Google Scholar] [CrossRef]
- Zen, S.; El. Berrichi, F.Z.; Abidi, N.; Duplay, J.; Jada, A.; Gasmi, B. Activated Algerian kaolin’s as low-coast potential adsorbents for the removal from industrial effluents of Derma Blue R67 acid dye. Kinetic and thermodynamic studies. In Proceedings of the 5th International Conference on Sustainable Solid Waste Management, Athens, Greece, 21–24 June 2017. [Google Scholar]
- Khalil, M.I.; Aly, A.A. Use of cationic starch derivatives for the removal of anionic dyes from textile effluents. J. Appl. Polym. Sci. 2004, 93, 227–234. [Google Scholar] [CrossRef]
- Constantina, M.; Asmarandeia, I.; Harabagiua, V.; Ghimicia, L.; Ascenzib, P. Removal of anionic dyes from aqueous solutions by an ion-exchange based on pullulan microspheres. Carbohyd. Polym. 2013, 91, 74–84. [Google Scholar] [CrossRef] [PubMed]
Components (wt %) | ||||||||
---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O 3 | MgO | CaO | Na2O | K2O | TiO2 | LOI |
49.30 | 33.50 | 1.59 | 0.40 | 0.08 | 0.09 | 2.75 | 0.24 | 10.50 |
Membrane Code | PES (wt %) | KT2 Kaolin (wt %) | PVP K17 (wt %) | PEG 200 (wt %) | NMP (wt %) | Exposure Time to RH % (min) |
---|---|---|---|---|---|---|
M1 | 12 | 0 | 5 | 35 | 48 | 0 |
M2 | 5 | |||||
M3 | 12 | 1.25 | 5 | 35 | 46.75 | 0 |
M4 | 5 | |||||
M5 | 12 | 2.5 | 5 | 35 | 45.5 | 0 |
M6 | 5 | |||||
M7 | 12 | 5 | 5 | 35 | 43 | 0 |
M8 | 5 |
Membrane Code | Pore Size | |||||
---|---|---|---|---|---|---|
Smallest Pore Size (μm) | Mean Flow Pore Diameter (μm) | Largest Pore Size (μm) | ||||
Average | Std. Dev. | Average | Std. Dev. | Average | Std. Dev. | |
M1 | 0.03 | 0.01 | 0.05 | 0.01 | 0.06 | 0.02 |
M2 | 0.13 | 0.02 | 0.14 | 0.01 | 0.15 | 0.02 |
M3 | 0.05 | 0.01 | 0.10 | 0.01 | 0.18 | 0.01 |
M4 | 0.06 | 0.02 | 0.17 | 0.01 | 0.23 | 0.03 |
M5 | 0.05 | 0.02 | 0.12 | 0.02 | 0.23 | 0.01 |
M6 | 0.08 | 0.02 | 0.23 | 0.01 | 0.31 | 0.01 |
M7 | 0.05 | 0.03 | 0.21 | 0.02 | 0.33 | 0.02 |
M8 | 0.02 | 0.01 | 0.26 | 0.01 | 0.32 | 0.02 |
Membrane Code | Thickness (mm) | Porosity (%) | Contact Angle (°) | Mechanical Properties | |
---|---|---|---|---|---|
Top Surface | Young’s Modulus (n/mm2) | Elongation at Break (%) | |||
M1 | 0.099 ± 0.000 | 85.40 ± 0.18 | 52.30 ± 0.14 | 98.85 ± 1.69 | 2.48 ± 0.70 |
M2 | 0.094 ± 0.001 | 86.45 ± 0.99 | 66.11 ± 1.17 | 96.77 ± 1.04 | 2.62 ± 0.49 |
M3 | 0.103 ± 0.013 | 89.36 ± 0.45 | 66.48 ± 0.24 | 77.35 ± 1.72 | 2.81 ± 0.40 |
M4 | 0.099 ± 0.002 | 89.74 ± 0.69 | 62.04 ± 0.89 | 76.52 ± 1.88 | 2.29 ± 0.54 |
M5 | 0.109 ± 0.004 | 89.67 ± 0.00 | 71.97 ± 2.38 | 74.85 ± 2.54 | 2.81 ± 0.95 |
M6 | 0.110 ± 0.001 | 89.97 ± 0.43 | 75.32 ± 1.09 | 72.41 ± 2.09 | 2.94 ± 0.55 |
M7 | 0.111 ± 0.008 | 90.54 ± 0.78 | 73.80 ± 3.66 | 72.15 ± 0.75 | 1.17 ± 0.76 |
M8 | 0.100 ± 0.013 | 90.57 ± 2.30 | 67.26 ± 2.45 | 70.94 ± 2.55 | 1.15 ± 0.36 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, T.; Russo, F.; Rezzouk, L.; Bouzid, A.; Figoli, A. PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water. Membranes 2017, 7, 57. https://doi.org/10.3390/membranes7040057
Marino T, Russo F, Rezzouk L, Bouzid A, Figoli A. PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water. Membranes. 2017; 7(4):57. https://doi.org/10.3390/membranes7040057
Chicago/Turabian StyleMarino, Tiziana, Francesca Russo, Lina Rezzouk, Abderrazak Bouzid, and Alberto Figoli. 2017. "PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water" Membranes 7, no. 4: 57. https://doi.org/10.3390/membranes7040057
APA StyleMarino, T., Russo, F., Rezzouk, L., Bouzid, A., & Figoli, A. (2017). PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water. Membranes, 7(4), 57. https://doi.org/10.3390/membranes7040057