Synthesis and Gas Transport Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)–Silica Nanocomposite Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of Silica Nanoparticles
2.3. Synthesis and Characterization of Membranes
3. Results and Discussion
3.1. Conversion of TEOS and Properties of Silica Powder
3.2. Effect of Compatibilizer, Aging Time, and Reaction Time on the Conversion of TEOS in Silica Powder
3.3. Conversion of TEOS in EPMM Membranes
3.4. Gas Transport Properties of EPMM Membranes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chung, T.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Aroon, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Jusoh, N.; Yeong, Y.F.; Chew, T.L.; Lau, K.K.; Shariff, A.M. Current development and challenges of mixed matrix membranes for CO2/CH4 separation. Sep. Purif. Rev. 2016, 45, 321–344. [Google Scholar] [CrossRef]
- Friebe, S.; Diestel, L.; Knebel, A.; Wollbrink, A.; Caro, J. MOF-based mixed-matrix membranes in gas separation-mystery and reality. Chem. Ing. Tech. 2016, 88, 1788–1797. [Google Scholar] [CrossRef]
- Koros, W.; Mahajan, R. Pushing the limits on possibilities for large scale gas separation: Which strategies? J. Membr. Sci. 2000, 175, 181–196. [Google Scholar] [CrossRef]
- Cong, H.; Radosz, M.; Towler, B.F.; Shen, Y. Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 2007, 55, 281–291. [Google Scholar] [CrossRef]
- Freeman, B. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Budd, P.; Msayib, K.; Tattershall, C.; Ghanem, B.; Reynolds, K.; McKeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Ma, Y.; Kanezashi, M.; Tsuru, T. Preparation of organic/inorganic hybrid silica using methyltriethoxysilane and tetraethoxysilane as co-precursors. J. Sol-Gel Sci. Technol. 2010, 53, 93–99. [Google Scholar] [CrossRef]
- Wei, L.; Hu, N.; Zhang, Y. Synthesis of polymer-mesoporous silica nanocomposites. Materials 2010, 3, 4066–4079. [Google Scholar] [CrossRef]
- Nasir, R.; Mukhtar, H.; Man, Z.; Mohshim, D.F. Material advancements in fabrication of mixed-matrix membranes. Chem. Eng. Technol. 2013, 36, 717–727. [Google Scholar] [CrossRef]
- Giel, V.; Perchacz, M.; Kredatusova, J.; Pientka, Z. Gas transport properties of polybenzimidazole and poly(phenylene oxide) mixed matrix membranes incorporated with PDA-functionalised titanate nanotubes. Nanoscale Res. Lett. 2017, 12, 3. [Google Scholar] [CrossRef]
- Japip, S.; Liao, K.-S.; Chung, T.-S. Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 °C. Adv. Mater. 2017, 29, 1603833. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rashidi, A.; Rashtchian, D.; Lotfi, R.; Amrollahi, A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim. Acta 2012, 549, 87–94. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rashidi, A.; Soleimanisalim, A.H.; Rashtchian, D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta 2014, 578, 53–58. [Google Scholar] [CrossRef]
- Sober, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Brinker, C.J. Hydrolysis and condensation of silicates: Effects on structure. J. Non-Cryst. Solids 1988, 100, 31–50. [Google Scholar] [CrossRef]
- Klein, L. Sol-gel processing of silicates. Annu. Rev. Mater. Sci. 1985, 15, 227–248. [Google Scholar] [CrossRef]
- Cellesi, F.; Tirelli, N. Sol-gel synthesis at neutral pH in W/O microemulsion: A method for enzyme nanoencapsulation in silica gel nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 288, 52–61. [Google Scholar] [CrossRef]
- Ab Rahman, I.; Padavettan, V. Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites. A review. J. Nanomater. 2012, 2012, 132424. [Google Scholar] [CrossRef]
- Abarkan, I.; Doussineau, T.; Smaihi, M. Tailored macro/micro structural properties of colloidal silica nanoparticles via microemulsion preparation. Polyhedron 2006, 25, 1763–1770. [Google Scholar] [CrossRef]
- Osseoasare, K.; Arriagada, F. Preparation of SiO2 nanoparticles in a nonionic reverse micellar system. Colloids Surf. A 1990, 50, 321–339. [Google Scholar] [CrossRef]
- Chang, C.; Fogler, H. Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS. AICHE J. 1996, 42, 3153–3163. [Google Scholar] [CrossRef]
- Yamauchi, H.; Ishikawa, T.; Kondo, S. Surface characterization of ultramicro spherical-particles of silica prepared by W/O microemulsion method. Colloids Surf. A 1989, 37, 71–80. [Google Scholar] [CrossRef]
- Darbandi, M.; Thomann, R.; Nann, T. Hollow silica nanospheres: In situ, semi-in situ, and two-step synthesis. Chem. Mater. 2007, 19, 1700–1703. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Hajji, P.; David, L.; Gerard, J.; Pascault, J.; Vigier, G. Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. J. Polym. Sci. B Polym. Phys. 1999, 37, 3172–3187. [Google Scholar] [CrossRef]
- Huang, S.; Chin, W.; Yanga, W. Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethyloxysilane (TEOS) with PHEMA. Polymer 2005, 46, 1865–1877. [Google Scholar] [CrossRef]
- Jang, J.; Park, H. Formation and structure of polyacrylamide-silica nanocomposites by sol-gel process. J. Appl. Polym. Sci. 2002, 83, 1817–1823. [Google Scholar] [CrossRef]
- Yasuda, H.; Rosengren, K.J. Isobaric measurement of gas permeability of polymers. J. Appl. Polym. Sci. 1970, 14, 2839–2877. [Google Scholar] [CrossRef]
- Le Roux, J.D.; Paul, D.R.; Kampa, J.; Lagow, R.J. Surface fluorination of poly (phenylene oxide) composite membranes Part I. Transport properties. J. Membr. Sci. 1994, 90, 21–35. [Google Scholar] [CrossRef]
- Ghosal, K.; Chern, R.T. Aryl-nitration of poly(phenylene oxide) and polysulfone: Structural characterization and gas permeability. J. Membr. Sci. 1992, 72, 91–97. [Google Scholar] [CrossRef]
- Alentiev, A.; Drioli, E.; Gokzhaev, M.; Golemme, G.; Yampolskii, Y. Gas permeation properties of phenylene oxide polymers. J. Membr. Sci. 1998, 138, 99–107. [Google Scholar] [CrossRef]
- Aguilar-Vega, M.; Paul, D.R. Gas transport properties of polyphenylene ethers. J. Polym. Sci. B Polym. Phys. 1993, 31, 1577–1589. [Google Scholar] [CrossRef]
- Shaver, A.; Moon, J.D.; Savacool, D.; Zhang, W.; Narang, G.; Miller, G.; Vondrasek, B.; Leskoa, J.J.; Freeman, B.D.; Riffle, J.S.; et al. Poly(2,6-dimethyl-1,4-phenylene oxide) blends with a poly(arylene ether ketone) for gas separation membranes. Polymer 2017, 114, 135–143. [Google Scholar] [CrossRef]
- Guo, L.; Yu, B.; Cong, H.L.; Zhang, X.L.; Li, Z.J.; Liu, X.M.; Zhai, F.; Yuan, H.; Hao, T.Z. Brominated poly(2,6-dimethyl-1,4-phenylene oxide)/carbon materials nanocomposite membranes for CO2/N2 separation. Adv. Mater. Res. 2015, 1118, 176–181. [Google Scholar] [CrossRef]
- Ebrasu, D.; Petreanu, I.; Varlam, M.; Schitea, D.; Stefanescu, I.; Vaseashta, A. On the synthesis and characterization of silica-doped/sulfonated poly-(2,6-dimethyl-1,4-phenylene oxide) composite membranes for fuel cells. J. Fuel Cell Sci. Technol. 2014, 11, 1–6. [Google Scholar] [CrossRef]
- Yu, B.; Cong, H.; Zhao, X. Hybrid brominated sulfonated poly(2,6-diphenyl-1,4-phenylene oxide) and SiO2 nanocomposite membranes for CO2/N2 separation. Prog. Nat. Sci.-Mater. 2012, 22, 662–669. [Google Scholar] [CrossRef]
- Cong, H.; Hu, X.; Radosz, M.; Shen, Y. Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation. Ind. Eng. Chem. Res. 2007, 46, 2567–2575. [Google Scholar] [CrossRef]
- Hu, X.; Cong, H.; Shen, Y.; Radosz, M. Nanocomposite membranes for CO2 separations: Silica/brominated poly(phenylene oxide). Ind. Eng. Chem. Res. 2007, 46, 1547–1551. [Google Scholar] [CrossRef]
- Dlamini, D.S.; Mishra, S.B.; Mishra, A.K.; Mamba, B.B. Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blending methods. J. Compos. Mater. 2011, 45, 2211–2216. [Google Scholar] [CrossRef]
- Bissadi, G.; Kruczek, B. Poly(2,6-dimethyl-1,4-diphenyl oxide)-Silica Nanocomposite Membranes: Development and Characterization, 1st ed.; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2013. [Google Scholar]
- Raman, N.; Sudharsan, S.; Pothiraj, K. Synthesis and structural reactivity of inorganic–organic hybrid nanocomposites—A review. J. Saudi Chem. Soc. 2012, 16, 339–352. [Google Scholar] [CrossRef]
- Sadeghi, F.; Tremblay, A.Y.; Kruczek, B. Synthesis and characterization of emulsion polymerized mixed matrix aluminum silicate/poly(2,6-dimethyl 1,4-phenylene oxide) films. J. Appl. Polym. Sci. 2008, 109, 1454–1460. [Google Scholar] [CrossRef]
- Bissadi, G.; Kruczek, B. Thermal properties of silica/poly(2,6-dimethyl-1,4-phenylene oxide) films prepared by emulsion polymerization. J. Therm. Anal. Calorim. 2014, 117, 73–83. [Google Scholar] [CrossRef]
- Eliseev, A.; Kalinin, S.; Privalov, V.; Vertegel, A.; Tretyakov, Y. The effect of copolymerization of tetraethylorthosilicate and aluminum hydroxonitrates. J. Solid State Chem. 1999, 147, 304–308. [Google Scholar] [CrossRef]
- Maeda, Y.; Paul, D.R. Effect of antiplasticization on selectivity and productivity of gas separation membranes. J. Membr. Sci. 1987, 30, 1–9. [Google Scholar] [CrossRef]
- Moe, M.; Koros, W.J.; Hoehn, H.H.; Husk, G.R. Effects of film history on gas transport in a fluorinated aromatic polyimide. J. Appl. Polym. Sci. 1988, 36, 1833–1846. [Google Scholar] [CrossRef]
- Chiang, T.H.; Liu, S.; Lee, S.; Hsieh, T. Preparation, microstructure, and property characterizations of fluorinated polyimide–organosilicate hybrids. Eur. Polym. J. 2008, 44, 3482–3492. [Google Scholar] [CrossRef]
- Atkins, G.; Krolikowska, R.; Samoc, A. Optical properties of an ormosil system comprising methyl- and phenyl-substituted silica. J. Non-Cryst. Solids 2000, 265, 210–220. [Google Scholar] [CrossRef]
- Chowdhuri, A.; Takoudis, C.; Klie, R.; Browning, N. SiO2 formation at the aluminum oxide/Si(100) interface. MRS Proc. 2002, 747. [Google Scholar] [CrossRef]
- Shih, A.; Yeh, S.; Lee, S.; Yang, T. Structural differences between deuterated and hydrogenated silicon nitride/oxynitride. J. Appl. Phys. 2001, 89, 5355–5361. [Google Scholar] [CrossRef]
- Rubio, F.; Rubio, J.; Oteo, J. A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectrosc. Lett. 1998, 31, 199–219. [Google Scholar] [CrossRef]
- Čolović, B.; Jokanović, V.; Jović, N. Creating of highly active calcium-silicate phases for application in endodontics. Sci. Sinter. 2013, 45, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Mhaisagar, Y.S.; Joshi, B.N.; Mahajan, A.M. Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation. Bull. Mater. Sci. 2012, 35, 151–155. [Google Scholar] [CrossRef]
- Vogiatzis, G.G.; Theodorou, D.N. Structure of polymer layers grafted to nanoparticles in silica-polystyrene nanocomposites. Macromolecules 2013, 46, 4670–4683. [Google Scholar] [CrossRef]
- Hansen, C.M.; Beerbower, A. Solubility Parameters. In Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed.; Standen, A., Ed.; Interscience: New York, NY, USA, 1971; pp. 889–910. [Google Scholar]
- Bissadi, G.; Weberskirch, R. Efficient synthesis of polyoxazoline-silica hybrid nanoparticles by using the “grafting-onto” approach. J. Polym. Chem. 2016, 7, 1271–1280. [Google Scholar] [CrossRef]
- Bissadi, G.; Weberskirch, R. Formation of polyoxazoline-silica nanoparticles via the surface-initiated cationic polymerization of 2-methyl-2-oxazoline. J. Polym. Chem. 2016, 7, 5157–5168. [Google Scholar] [CrossRef]
- Sadeghi, M.; Semsarzadeh, M.A.; Moadel, H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J. Membr. Sci. 2009, 331, 21–30. [Google Scholar] [CrossRef]
- Ahn, J.; Chung, W.; Pinnau, I.; Guiver, M.D. Poly sulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 2008, 314, 123–133. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Agranova, S.A.; Gazdina, N.V.; Kuznetsov, Yu.P.; Nesterov, V.V. Effect of Molecular weight parameters on gas transport properties of poly(2,6-dimethyl-1,4-phenylene oxide). J. Appl. Polym. Sci. 1996, 62, 2215–2218. [Google Scholar] [CrossRef]
- Chern, R.; Jia, L.; Shimoda, S.; Hopfenberg, H. A note on the effects of mono-bromination and di-bromination on the transport-properties of poly(2,6-dimethylphenylene oxide). J. Membr. Sci. 1990, 48, 333–341. [Google Scholar] [CrossRef]
- Percec, S.; Li, G. Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) and properties of the resulting polymers. ACS Symp. Ser. 1988, 364, 46–59. [Google Scholar]
- Story, B.; Koros, W. Sorption and transport of CO2 and CH4 in chemically modified poly(phenylene oxide). J. Membr. Sci. 1992, 67, 191–210. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Japip, S.; Wang, H.; Xiao, Y.; Chung, T.S. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci. 2014, 467, 162–174. [Google Scholar] [CrossRef]
- Kruczek, B. Effect of solvent on properties of solution-cast dense SPPO films. J. Appl. Polym. Sci. 2003, 88, 1100–1110. [Google Scholar] [CrossRef]
Powder Code | Emulsion One = 10 mL of TCE + 0.1 mL of Aqueous Solution 1 + Additives | Emulsion Two = Emulsion One + 0.3 mL of TEOS | ||||
---|---|---|---|---|---|---|
Additives | Sonication 2 | Sonication 2 | ||||
EtOH (mL) | Acetone (mL) | Power Level | Time (min) | Power Level | Time (min) | |
GPM/EtOH | 0.3 | - | 7 | 1 | 7 | 10–40 |
GPM/Acet | - | 0.3 | 7 | 1 | 7 | 10–40 |
Powder Code | Net Powder Mass | TEOS Conversion | ||
---|---|---|---|---|
Q2 | Q3 | Q4 | ||
GPM/EtOH | 0.058 | 54.8% | 62.0% | 71.3% |
GPM/Acet | 0.082 | 77.5% | 87.6% | 100% |
Powder Code | Emulsion One | Emulsion Two | TEOS Conversion (%) | ||||
---|---|---|---|---|---|---|---|
Compatibilizer | Sonication | Sonication | |||||
EtOH (mL) | Acet (mL) | Power level | Time (min) | Power level | Time (min) | ||
GPM/EtOH-A | 0.3 | - | 7 | 1 | 7 | 10 | 35 ± 5 |
GPM/EtOH-B | 0.3 | - | 7 | 1 | 7 | 20 | 53 ± 4 |
GPM/EtOH-C | 0.3 | - | 7 | 1 | 7 | 30 | 62 ± 2 |
GPM/EtOH-D | 0.3 | - | 7 | 1 | 7 | 40 | 64 ± 4 |
GPM/Acet-A | - | 0.3 | 7 | 1 | 7 | 10 | 52 ± 5 |
GPM/Acet-B | - | 0.3 | 7 | 1 | 7 | 20 | 66 ± 3 |
GPM/Acet-C | - | 0.3 | 7 | 1 | 7 | 30 | 88 ± 3 |
GPM/Acet-D | - | 0.3 | 7 | 1 | 7 | 40 | 89 ± 2 |
Solvents | |||||
---|---|---|---|---|---|
MPa1/2 | MPa1/2 | MPa1/2 | MPa1/2 | MPa1/2 | |
TCE | 18.0 | 3.1 | 5.3 | 19.0 | 18.7 |
water | 15.6 | 16.0 | 42.3 | 47.8 | 48.0 |
ethanol | 15.8 | 8.8 | 19.4 | 26.5 | 26.2 |
Acetone | 15.5 | 10.4 | 7.0 | 20.0 | 19.7 |
Membrane | Contact Angle | TEOS Conversion (%) | Inorganic Loading (wt %) | ||
---|---|---|---|---|---|
Q2 | Q3 | Q4 | |||
PPO | 77.7 ± 2.1 | - | - | - | - |
EPMM/EtOH | 76.9 ± 1.8 | 29.6 ± 0.6 | 3.0 ± 0.1 | 2.7 ± 0.1 | 2.3 ± 0.1 |
EPMM/Acet | 73.2 ± 2.5 | 35.7 ± 0.8 | 3.6 ± 0.1 | 3.2 ± 0.1 | 2.8 ± 0.1 |
Membrane | PO2 | PN2 | PCH4 | PCO2 | α(O2/N2) | α(CO2/CH4) |
---|---|---|---|---|---|---|
(Barrer) | (Barrer) | (Barrer) | (Barrer) | (-) | (-) | |
PPO | 14.0 ± 2.1 | 3.1 ± 0.6 | 3.4 ± 0.2 | 50.5 ± 3.3 | 4.5 | 14.9 |
EPMM/EtOH | 21.2 ± 3.1 | 4.7 ± 0.7 | 8.5 ± 0.6 | 81.2 ± 4.1 | 4.5 | 9.5 |
EPMM/Acet | 22.8 ± 4.9 | 4.8 ± 1.2 | 7.9 ± 1.4 | 99.6 ± 8.3 | 4.8 | 12.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bissadi, G.; Melo Santos, T.; Kruczek, B. Synthesis and Gas Transport Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)–Silica Nanocomposite Membranes. Membranes 2018, 8, 125. https://doi.org/10.3390/membranes8040125
Bissadi G, Melo Santos T, Kruczek B. Synthesis and Gas Transport Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)–Silica Nanocomposite Membranes. Membranes. 2018; 8(4):125. https://doi.org/10.3390/membranes8040125
Chicago/Turabian StyleBissadi, Golnaz, Thiago Melo Santos, and Boguslaw Kruczek. 2018. "Synthesis and Gas Transport Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)–Silica Nanocomposite Membranes" Membranes 8, no. 4: 125. https://doi.org/10.3390/membranes8040125
APA StyleBissadi, G., Melo Santos, T., & Kruczek, B. (2018). Synthesis and Gas Transport Properties of Poly(2,6-dimethyl-1,4-phenylene oxide)–Silica Nanocomposite Membranes. Membranes, 8(4), 125. https://doi.org/10.3390/membranes8040125