Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials and Extraction Procedure
2.3. Nanofiltration Set-Up
2.4. RP-HPLC/DAD Analysis
2.5. Ferric Reducing Antioxidant Power (FRAP) Test
2.6. DPPH Assay
2.7. ABTS Assay
2.8. Relative Antioxidant Capacity Index (RACI)
2.9. Tyrosinase Inhibitory Activity Test
2.10. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Membrane Productivity
3.2. Chemical Profile
3.3. Antioxidant Activity
3.4. Tyrosinase Inhibitory Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Charlebois, D.; Byers, P.L.; Finn, C.E.; Thomas, A.L. Elderberry: Botany, Horticulture, Potential, in Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 37, pp. 213–280. [Google Scholar]
- Mikulic-Petkovsek, M.; Samoticha, J.; Eler, K.; Stampar, F.; Veberic, R. Traditional elderflower beverages: A rich source of phenolic compounds with high antioxidant activity. J. Agric. Food Chem. 2015, 63, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Uncini Manganelli, R.E.; Zaccaro, L.; Tomei, P.E. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. J. Ethnopharmacol. 2005, 98, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Samli, R.; Birteksöz Tan, A.S.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 2018, 22, 1056. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Xiao, J.; Tundis, R.; Aiello, F.; Sicari, V.; Loizzo, M.R. Advances in the tyrosinase inhibitors from plant source. Curr. Med. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Akin, O.; Temelli, F.; Köseoğlu, S. Membrane applications in functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2012, 52, 347–371. [Google Scholar] [CrossRef]
- Castro-Munoz, R.; Conidi, C.; Cassano, A. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit. Rev. Food Sci. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Sicari, V.; Ursino, C.; Manfredi, I.; Conidi, C.; Figoli, A.; Cassano, A. Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. Plant Foods Human Nutr. 2018, 73, 336–343. [Google Scholar] [CrossRef]
- Marchetti, M.F.; Solomon, J.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef]
- Nagy, E. Nanofiltration. In Basic Equations of Mass Transport Through a Membrane Layer, 1st ed.; Nagy, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 249–266. [Google Scholar]
- Buonomenna, M.G.; Bae, J. Organic solvent nanofiltration in pharmaceutical industry. Sep. Purif. Rev. 2015, 44, 157–182. [Google Scholar] [CrossRef]
- Machado, D.R.; Hasson, D.; Semiat, R. Effect of solvent properties on permeate flow through nanofiltration membranes. Part I: Investigation of parameters affecting solvent flux. J. Membr. Sci. 1999, 163, 93–102. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Geens, J. Nanofiltration in Advanced Membrane Technology and Applications; Norman, N.L., Anthony, G., Fane, W.S., Winston Ho, T.M., Eds.; Wiley & Sons, Inc: Hoboken, NJ, USA, 2008; Chapter 11; pp. 271–295. [Google Scholar]
- Mohammad, A.W.; Teowa, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Müller, H.-J. A new solvent resistant membrane based on ECTFE. Desalination 2006, 199, 191–192. [Google Scholar] [CrossRef]
- Available online: https://www.sartorius.de/mediafile/Manual_Minisart_Chemical_Compatibility_SL-6190-e.pdf. (accessed on 17 September 2019).
- Available online: https://www.sterlitech.com/pub/media/pdf_resources/Chemical_Compatibility.pdf. (accessed on 17 September 2019).
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Amirilargani, M.; Sadrzadeh, M.; Sudhölter, E.J.R.; de Smet, L.C.P.M. Surface modification methods of organic solvent nanofiltration membranes. Chem. Eng. J. 2016, 289, 562–582. [Google Scholar] [CrossRef]
- Cui, Z.; Drioli, E.; Lee, Y.M. Recent progress in fluoropolymers for membranes. Prog. Polym. Sci. 2014, 39, 164–198. [Google Scholar] [CrossRef]
- Ursino, C.; Simone, S.; Donato, L.; Santoro, S.; De Santo, M.P.; Drioli, E.; Di Nicolò, E.; Figoli, A. ECTFE membranes produced by non-toxic diluents for organic solvent filtration separation. RSC Adv. 2016, 6, 81001–81012. [Google Scholar] [CrossRef]
- Simone, S.; Figoli, A.; Santoro, S.; Galiano, F.; Alfadul, S.M.; Al-Harbi, A.; Omar Drioli, E. Preparation and characterization of ECTFE solvent resistant membranes and their application in pervaporation of toluene/water mixtures. Sep. Purif. Technol. 2012, 90, 147–161. [Google Scholar] [CrossRef]
- Falbo, F.; Santoro, S.; Galiano, F.; Simone, S.; Davoli, M.; Drioli, E.; Figoli, A. Organic/organic mixture separation by using novel ECTFE polymeric pervaporation membranes. Polymer 2016, 98, 110–117. [Google Scholar] [CrossRef]
- Drioli, E.; Santoro, S.; Simone, S.; Barbieri, G.; Brunetti, A.; Macedonio, F.; Figoli, A. ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. Reactive Funct. Polym. 2014, 79, 1–7. [Google Scholar] [CrossRef]
- Pan, J.; Xiao, C.; Huang, Q.; Liu, H.; Hu, J. ECTFE porous membranes with conveniently controlled microstructures for vacuum membrane distillation. J. Mater. Chem. A 2015, 3, 23549–23559. [Google Scholar] [CrossRef]
- Yao, N.; Chau, J.; Elele, E.; Khusid, B.; Sirkara, K.K.; Dehn, D. Characterization of microporous ECTFE membrane after exposure to different liquid media and radiation. J. Membr. Sci. 2017, 532, 89–104. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Chandrika, U.G.; Abeysekera, A.M.; Menichini, F.; Frega, N.G. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpus heterophyllus Lam. (Moraceae) leaves extracts. J. Food Sci. 2010, 75, M291–M295. [Google Scholar] [CrossRef]
- Sun, T.; Tanumihardjo, S.A. An Integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72, 159–165. [Google Scholar] [CrossRef]
- Tundis, R.; Bonesi, M.; Pugliese, A.; Nadjafi, F.; Menichini, F.; Loizzo, M.R. Tyrosinase, acetyl- and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Rec. Nat. Prod. 2015, 9, 81–93. [Google Scholar]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Christensen, L.P.; Kaack, K.; Fretté, X.C. Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur Food Res. Technol. 2008, 227, 293–305. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Thomas, A.L.; Byers, P.L.; Finn, C.E.; Chen, Y.C.; Rottinghaus, G.E.; Malone, A.M.; Applequist, W.L. Occurrence of rutin and chlorogenic acid in elderberry leaf, flower and stem in response to genotype. environment, and season. Acta Horticulture 2008, 765, 197–206. [Google Scholar] [CrossRef]
- Aboul-Enein, A.M.; El-Baz, F.K.; El-Baroty, G.S.; Youssef, A.M.; Abd-El-Baky, H.H. Antioxidant activity of algal extracts on lipid peroxidation. J. Med. Sci. 2003, 3, 87–98. [Google Scholar]
- Viapiana, A.; Wesolowski, M. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef]
- Młynarczyk, K.; Walkowiak-Tomczak, D. Bioactive properties of elderflowers (Sambucus nigra L.). World Sci. News 2017, 73, 115–119. [Google Scholar]
- Stoilova, I.; Wilker, M.; Stoyanova, A.; Krastanov, A.; Stanchev, V. Antioxidant activity of extract from elder flower (Sambucus nigra L.). Herba Polonica 2007, 53, 45–54. [Google Scholar]
- Si, Y.X.; Yin, S.J.; Oh, S.; Wang, Z.J.; Ye, S.; Yan, L.; Yang, J.M.; Park, Y.D.; Lee, J.; Qian, G.Y. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn. 2012, 29, 999–1012. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int. 2017, 100, 226–233. [Google Scholar] [CrossRef]
Contact Angle (°) | Mechanical Tests | Porosity (%) | Pore Size Measurements | ||||||
---|---|---|---|---|---|---|---|---|---|
Top side | Bottom side | EMod (N/mm2) | Tensile strength (N/mm2) | eBreak (%) | Bubble point (bar) | Largest pore size (nm) | Mean flow pore diameter (nm) | Diameter at maximum pore size distribution (nm) | |
105 | 114 | 370 | 17.1 | 155.4 | 42.3 | 2.43 | 180.0 | 10.0 | 10.0 |
mg/100 g ex | Ethanol Extracts | Methanol Extracts | ||
---|---|---|---|---|
Crude Extract | Retentate Fraction | Crude Extract | Retentate Fraction | |
Astragalin | 30.1 ± 1.8 | 37.2 ± 2.1 | 33.1 ± 1.2 | 38.4 ± 1.6 |
Caffeic acid | 5.9 ± 0.8 | n.d. | 8.6 ± 1.8 | n.d. |
Chlorogenic acid | 318.6 ± 4.1 | 25.7 ± 1.5 | 460.9 ± 7.5 | 77.8 ± 1.6 |
3,5-Dicaffeoylquinic acid | 106.1 ± 3.6 | 140.4 ± 15.5 | 320.1 ± 13.5 | 385.7 ± 12.4 |
Ferulic acid | 15.1 ± 0.7 | 17.0 ± 0.3 | 28.1 ± 0.5 | 32.2 ± 0.3 |
Isoquercetin | 57.5 ± 2.7 | 80.8 ± 5.3 | 75.9 ± 2.8 | 93.8 ± 5.3 |
Kaempferol | 237.5 ± 2.9 | 314.8 ± 7.4 | 248.6 ± 2.2 | 394.8 ± 8.6 |
Myricetin | 17.3 ± 2.5 | 22.6 ± 1.2 | 17.0 ± 0.6 | 22.5 ± 1.1 |
Neochlorogenic acid | 112.1 ± 5.0 | 110.1 ± 3.0 | 147.5 ± 2.2 | 137.1 ± 3.0 |
p-Coumaric acid | 4.5 ± 0.7 | n.d. | 4.6 ± 0.5 | n.d. |
Protocateuchic acid | 425.2 ± 11.0 | 438.6 ± 13.0 | 433.6 ± 10.0 | 465.8 ± 13.0 |
Quercetin | 145.5 ± 5.3 | 254.1 ± 3.7 | 157.5 ± 4.1 | 261.1 ± 2.8 |
Rosmarinic acid | 5.5 ± 1.0 | 9.9 ± 0.5 | 8.9 ± 0.7 | 14.7 ± 0.5 |
Rutin | 573.5 ± 5.0 | 615.9 ± 9.8 | 611.2 ± 7.2 | 657.8 ± 8.1 |
mg/100 g ex | Ethanol Extracts | Methanol Extracts | ||
---|---|---|---|---|
Crude Extract | Retentate Fraction | Crude Extract | Retentate Fraction | |
Astragalin | 5.8 ± 1.1 | 7.2 ± 1.4 | 5.0 ± 1.8 | 6.0 ± 1.2 |
Caffeic acid | 2.6 ± 0.6 | n.d. | 18.8 ± 2.2 | n.d. |
Chlorogenic acid | 52.1 ± 2.3 | 4.6 ± 1.0 | 28.6 ± 1.5 | 2.4 ± 0.8 |
3,5-Dicaffeoylquinic acid | 33.4 ± 4.3 | 13.1 ± 3.1 | 62.6 ± 10.5 | 20.8 ± 1.5 |
Isoquercetin | 49.4 ± 3.2 | 33.4 ± 3.3 | 30.2 ± 0.3 | 20.4 ± 1.4 |
Kaempferol | 37.5 ± 2.4 | 42.1 ± 1.5 | 42.6 ± 3.3 | 38.1 ± 2.7 |
Myricetin | 1.3 ± 0.08 | n.d. | 1.1 ± 0.06 | n.d. |
Neochlorogenic acid | 65.1 ± 1.5 | 68.2 ± 1.4 | 45.6 ± 2.2 | 45.0 ± 1.9 |
p-Coumaric acid | 0.6 ± 0.07 | n.d. | 0.8 ± 0.05 | n.d. |
Quercetin | 70.3 ± 3.2 | 160.8 ± 3.5 | 78.3 ± 2.2 | 176.5 ± 6.5 |
Rutin | 37.0 ± 1.5 | 45.7 ± 2.6 | 44.1 ± 1.5 | 50.8 ± 2.7 |
S. nigra | Extraction Solvent | DPPH Test (IC50 μg/mL) | ABTS Test (IC50 μg/mL) | FRAP Test (μM Fe(II)/g)a | RACI |
---|---|---|---|---|---|
Leaves | |||||
Crude extract | methanol | 41.3 ± 2.6** | 66.0 ± 4.0** | 84.4 ± 3.4** | −0.52 |
ethanol | 42.1 ± 3.1** | 80.3 ± 3.3** | 102.7 ± 5.9** | 0.13 | |
Retentate fraction | methanol | 39.2 ± 3.4** | 64.3 ± 3.6** | 90.1 ± 4.8** | −0.51 |
ethanol | 40.6 ± 3.8** | 78.5 ± 3.2** | 110.9 ± 5.3** | 0.21 | |
Flowers | |||||
Crude extract | methanol | 52.4 ± 2.9** | 48.2 ± 3.1** | 102.6 ± 4.6** | 0.03 |
ethanol | 50.0 ± 3.0** | 73.5 ± 4.0** | 101.4 ± 5.3** | 0.31 | |
Retentate fraction | methanol | 48.3 ± 3.8** | 46.4 ± 3.5** | 109.5 ± 5.7** | −0.01 |
ethanol | 48.6 ± 3.7** | 72.1 ± 5.1** | 107.3 ± 4.5** | 0.36 | |
Positive control | |||||
Ascorbic acid | 5.0 ± 0.8 | 1.0 ± 0.03 | |||
BHT | 63.2 ± 4.5 |
Leaves | Extraction Solvent | IC50 (μg/mL) |
---|---|---|
Crude extract | methanol | 204.5 ± 4.8** |
ethanol | 298.4 ± 5.3** | |
Retentate fraction | methanol | 189.3 ± 3.5** |
ethanol | 212.7 ± 4.1** | |
Flowers | ||
Crude extract | methanol | 62.5 ± 1.2** |
ethanol | 188.2 ± 4.4** | |
Retentate fraction | methanol | 53.9 ± 1.8** |
ethanol | 134.7 ± 3.5** | |
Positive control | ||
Kojic acid | 10.8 ± 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tundis, R.; Ursino, C.; Bonesi, M.; Loizzo, M.R.; Sicari, V.; Pellicanò, T.; Manfredi, I.L.; Figoli, A.; Cassano, A. Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties. Membranes 2019, 9, 127. https://doi.org/10.3390/membranes9100127
Tundis R, Ursino C, Bonesi M, Loizzo MR, Sicari V, Pellicanò T, Manfredi IL, Figoli A, Cassano A. Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties. Membranes. 2019; 9(10):127. https://doi.org/10.3390/membranes9100127
Chicago/Turabian StyleTundis, Rosa, Claudia Ursino, Marco Bonesi, Monica R. Loizzo, Vincenzo Sicari, Teresa Pellicanò, Ilaria L. Manfredi, Alberto Figoli, and Alfredo Cassano. 2019. "Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties" Membranes 9, no. 10: 127. https://doi.org/10.3390/membranes9100127
APA StyleTundis, R., Ursino, C., Bonesi, M., Loizzo, M. R., Sicari, V., Pellicanò, T., Manfredi, I. L., Figoli, A., & Cassano, A. (2019). Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties. Membranes, 9(10), 127. https://doi.org/10.3390/membranes9100127