Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications
Abstract
:1. Introduction
2. Microalgae as a Super Food, Energy Feedstock and Water Cleaner
3. Microalgae Cultivation, Harvesting and Dewatering
4. Forward Osmosis for Microalgae Harvesting and Dewatering
4.1. Draw and Feed Solutions
4.2. FO Membrane Type
4.3. Dewatering Rate
5. Future Perspectives
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Water, U. Not a person name. In Water Security and the Global Water Agenda: A UN-Water Analytical Brief; UN University: Hamilton, ON, Canada, 2013. [Google Scholar]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Zhang, Y.-H.P. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Sci. Eng. 2013, 1, 27–41. [Google Scholar] [CrossRef]
- Allen, J.; Unlu, S.; Demirel, Y.; Black, P.; Riekhof, W. Integration of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery. Bioresour. Bioprocess. 2018, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Laurens, L.M.; Markham, J.; Templeton, D.W.; Christensen, E.D.; Van Wychen, S.; Vadelius, E.W.; Chen-Glasser, M.; Dong, T.; Davis, R.; Pienkos, P.T. Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ. Sci. 2017, 10, 1716–1738. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Hernandez, E.; Samsatli, S. Biorefineries and the food, energy, water nexus—Towards a whole systems approach to design and planning. Curr. Opin. Chem. Eng. 2017, 18, 16–22. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Kay, R.A.; Barton, L.L. Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 1991, 30, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Rösch, C.; Roßmann, M.; Weickert, S. Microalgae for integrated food and fuel production. GCB Bioenergy 2019, 11, 326–334. [Google Scholar] [CrossRef]
- Beer, L.L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 2009, 20, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. AMBIO 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Herzog, A.V.; Lipman, T.E.; Edwards, J.L.; Kammen, D.M. Renewable Energy: A Viable Choice. Environ. Sci. Policy Sustain. Dev. 2001, 43, 8–20. [Google Scholar] [CrossRef]
- Rulli, M.C.; Bellomi, D.; Cazzoli, A.; De Carolis, G.; D’Odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 2016, 6, 22521. [Google Scholar] [CrossRef] [Green Version]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Murphy, C.F.; Allen, D.T. Energy-Water Nexus for Mass Cultivation of Algae. Environ. Sci. Technol. 2011, 45, 5861–5868. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 2008, 26, 126–131. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef]
- Demirbas, A.; Fatih Demirbas, M. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Chapter 12-Bioethanol Production from Microalgae. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 197–208. [Google Scholar] [CrossRef]
- de Farias Silva, C.E.; Bertucco, A. Bioethanol from microalgae and cyanobacteria: A review and technological outlook. Process Biochem. 2016, 51, 1833–1842. [Google Scholar] [CrossRef]
- Abobaker, M.S.A.; Anggunsari, R.; Nurlailati, S.; Susilo, B.; Dewi, S.R.; Wibisono, Y. Design and performance of bioreactor for fermentative biogas production from marine microalgae. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012009. [Google Scholar] [CrossRef]
- Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sustain. Energy Rev. 2017, 75, 692–709. [Google Scholar] [CrossRef]
- Cavinato, C.; Ugurlu, A.; de Godos, I.; Kendir, E.; Gonzalez-Fernandez, C. 7-Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 155–182. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosporus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Heathwaite, A.L. Multiple stressors on water availability at global to catchment scales: Understanding human impact on nutrient cycles to protect water quality and water availability in the long term. Freshw. Biol. 2010, 55, 241–257. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Yang, X.-E.; Wu, X.; Hao, H.-L.; He, Z.-L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Shandilya, K.K.; Pattarkine, V.M. Chapter 7-Using Microalgae for Treating Wastewater. In Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts; Hosseini, M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 119–136. [Google Scholar] [CrossRef]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The Use of Microalgae for Coupling Wastewater Treatment With CO2 Biofixation. Front. Bioeng. Biotechnol. 2019, 7. [Google Scholar] [CrossRef]
- Bazilian, M.; Davis, R.; Pienkos, P.T.; Arent, D. The Energy-Water-Food Nexus Through the Lens of Algal Systems. Ind. Biotechnol. 2013, 9, 158–162. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.; Ayoko, G.A.; Ward, A.; Rösch, C.; Brown, R.J.; Rainey, T.J. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019, 8, 851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lage, S.; Kudahettige, N.P.; Ferro, L.; Matsakas, L.; Funk, C.; Rova, U.; Gentili, F.G. Microalgae Cultivation for the Biotransformation of Birch Wood Hydrolysate and Dairy Effluent. Catalysts 2019, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-Q.; Chen, F. Growing phototrophic cells without light. Biotechnol. Lett. 2006, 28, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Vuppaladadiyam, A.K.; Prinsen, P.; Raheem, A.; Luque, R.; Zhao, M. Microalgae cultivation and metabolites production: A comprehensive review. Biofuels Bioprod. Biorefining 2018, 12, 304–324. [Google Scholar] [CrossRef]
- Yousuf, A. Microalgae Cultivation for Biofuels Production; Academic Press: London, UK, 2020. [Google Scholar]
- Muylaert, K.; Bastiaens, L.; Vandamme, D.; Gouveia, L. 5-Harvesting of microalgae: Overview of process options and their strengths and drawbacks. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 113–132. [Google Scholar] [CrossRef]
- Branyikova, I.; Prochazkova, G.; Potocar, T.; Jezkova, Z.; Branyik, T. Harvesting of microalgae by flocculation. Fermentation 2018, 4, 93. [Google Scholar] [CrossRef] [Green Version]
- Hadjoudja, S.; Deluchat, V.; Baudu, M. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J. Colloid Interface Sci. 2010, 342, 293–299. [Google Scholar] [CrossRef]
- Brady, P.V.; Pohl, P.I.; Hewson, J.C. A coordination chemistry model of algal autoflocculation. Algal Res. 2014, 5, 226–230. [Google Scholar] [CrossRef]
- Fayad, N.; Yehya, T.; Audonnet, F.; Vial, C. Harvesting of microalgae Chlorella vulgaris using electro-coagulation-flocculation in the batch mode. Algal Res. 2017, 25, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Song, R.; Tian, C.; Liu, L.; Zheng, T.; Wang, H. Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnol. 2018, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Shobana, S.; Bakonyi, P.; Nemestóthy, N.; Xia, A.; Banu J, R.; Kumar, G. A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol. Rep. 2019, 21, e00302. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Chen, Y.; Shao, Z.; Chen, Z.; Li, Y.; Zhu, H.; Jingyan, Z.; Zheng, W.; Tianling, Z. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant. Bioresour. Technol. 2015, 198. [Google Scholar] [CrossRef] [PubMed]
- Depraetere, O.; Pierre, G.; Deschoenmaeker, F.; Badri, H.; Foubert, I.; Leys, N.; Markou, G.; Wattiez, R.; Michaud, P.; Muylaert, K. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. Bioresour. Technol. 2015, 180, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hou, J.; Bowden, D.; Belovich, J.M. Evaluation of an inclined gravity settler for microalgae harvesting. J. Chem. Technol. Biotechnol. 2014, 89, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.T.; Davis, R.H. Particle concentration using inclined sedimentation via sludge accumulation and removal for algae harvesting. Chem. Eng. Sci. 2013, 91, 79–85. [Google Scholar] [CrossRef]
- Chatsungnoen, T.; Chisti, Y. Harvesting microalgae by flocculation–sedimentation. Algal Res. 2016, 13, 271–283. [Google Scholar] [CrossRef]
- Moorthy, R.K.; Premalatha, M.; Arumugam, M. Batch Sedimentation Studies for Freshwater Green Alga Scenedesmus abundans Using Combination of Flocculants. Front. Chem. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Dassey, A.J.; Theegala, C.S. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 2013, 128, 241–245. [Google Scholar] [CrossRef]
- Coward, T.; Lee, J.G.M.; Caldwell, G.S. Development of a foam flotation system for harvesting microalgae biomass. Algal Res. 2013, 2, 135–144. [Google Scholar] [CrossRef]
- Cheng, Y.-L.; Juang, Y.-C.; Liao, G.-Y.; Tsai, P.-W.; Ho, S.-H.; Yeh, K.-L.; Chen, C.-Y.; Chang, J.-S.; Liu, J.-C.; Chen, W.-M.; et al. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour. Technol. 2011, 102, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Patidar, S.K. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Wileman, A.; Ozkan, A.; Berberoglu, H. Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresour. Technol. 2012, 104, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; van der Meer, W.G.J.; Nijmeijer, K. Two-phase flow in membrane processes: A technology with a future. J. Membr. Sci. 2014, 453, 566–602. [Google Scholar] [CrossRef]
- Leam, J.J.; Bilad, M.R.; Wibisono, Y.; Wirzal, M.D.H.; Ahmed, I. Membrane technology for microalgae harvesting. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Elsevier Science & Technology: Amsterdam, The Netherlands, 2020; pp. 97–110. [Google Scholar]
- Bilad, M.R.; Arafat, H.A.; Vankelecom, I.F.J. Membrane technology in microalgae cultivation and harvesting: A review. Biotechnol. Adv. 2014, 32, 1283–1300. [Google Scholar] [CrossRef]
- Fasaei, F.; Bitter, J.H.; Slegers, P.M.; van Boxtel, A.J.B. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Wibisono, Y.; Bilad, M.R. Design of forward osmosis system. In Current Trends and Future Developments on (Bio-) Membranes: Reverse and Forward Osmosis: Principles, Applications, Advances; Basile, A., Cassano, A., Rastogi, N.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 57–83. [Google Scholar]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- Zou, S.; Gu, Y.; Xiao, D.; Tang, C.Y. The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J. Membr. Sci. 2011, 366, 356–362. [Google Scholar] [CrossRef]
- Buckwalter, P.; Embaye, T.; Gormly, S.; Trent, J.D. Dewatering microalgae by forward osmosis. Desalination 2013, 312, 19–22. [Google Scholar] [CrossRef]
- Mazzuca Sobczuk, T.; Ibáñez González, M.J.; Molina Grima, E.; Chisti, Y. Forward osmosis with waste glycerol for concentrating microalgae slurries. Algal Res. 2015, 8, 168–173. [Google Scholar] [CrossRef]
- Kim, S.-B.; Paudel, S.; Seo, G.T. Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent. Environ. Eng. Res. 2015, 20, 99–104. [Google Scholar] [CrossRef]
- Larronde-Larretche, M.; Jin, X. Microalgae (Scenedesmus obliquus) dewatering using forward osmosis membrane: Influence of draw solution chemistry. Algal Res. 2016, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Larronde-Larretche, M.; Jin, X. Microalgal biomass dewatering using forward osmosis membrane: Influence of microalgae species and carbohydrates composition. Algal Res. 2017, 23, 12–19. [Google Scholar] [CrossRef]
- Son, J.; Sung, M.; Ryu, H.; Oh, Y.-K.; Han, J.-I. Microalgae dewatering based on forward osmosis employing proton exchange membrane. Bioresour. Technol. 2017, 244, 57–62. [Google Scholar] [CrossRef]
- Munshi, F.M.; Church, J.; McLean, R.; Maier, N.; Sadmani, A.H.M.A.; Duranceau, S.J.; Lee, W.H. Dewatering algae using an aquaporin-based polyethersulfone forward osmosis membrane. Sep. Purif. Technol. 2018, 204, 154–161. [Google Scholar] [CrossRef]
- Li, J.-Y.; Ni, Z.-Y.; Zhou, Z.-Y.; Hu, Y.-X.; Xu, X.-H.; Cheng, L.-H. Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. J. Membr. Sci. 2018, 552, 213–221. [Google Scholar] [CrossRef]
- Ye, J.; Zhou, Q.; Zhang, X.; Hu, Q. Microalgal dewatering using a polyamide thin film composite forward osmosis membrane and fouling mitigation. Algal Res. 2018, 31, 421–429. [Google Scholar] [CrossRef]
- Volpin, F.; Yu, H.; Cho, J.; Lee, C.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Human urine as a forward osmosis draw solution for the application of microalgae dewatering. J. Hazard. Mater. 2019, 378, 120724. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, L.; Gedara, S.M.H.; Schaub, T.M.; Jarvis, J.M.; Wang, X.; Xu, X.; Nirmalakhandan, N.; Xu, P. Potable-quality water recovery from primary effluent through a coupled algal-osmosis membrane system. Chemosphere 2020, 240, 124883. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Udert, K.M.; Larsen, T.A.; Gujer, W. Fate of major compounds in source-separated urine. Water Sci. Technol. 2006, 54, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Eyvaz, M.; Arslan, S.; İmer, D.; Yüksel, E.; Koyuncu, İ. Forward Osmosis Membranes–A Review: Part I. Osmotically Driven Membr. Process. Approach Dev. Curr. Status 2018, 11–40. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Dam, T.H.T.; Amjath-Babu, T.; Zander, P.; Müller, K. Paddy in saline water: Analysing variety-specific effects of saline water intrusion on the technical efficiency of rice production in Vietnam. Outlook Agric. 2019, 48, 237–245. [Google Scholar] [CrossRef]
- Alam, M.Z.; Carpenter-Boggs, L.; Mitra, S.; Haque, M.M.; Halsey, J.; Rokonuzzaman, M.; Saha, B.; Moniruzzaman, M. Effect of Salinity Intrusion on Food Crops, Livestock, and Fish Species at Kalapara Coastal Belt in Bangladesh. J. Food Qual. 2017, 2017, 23. [Google Scholar] [CrossRef]
- Kotera, A.; Sakamoto, T.; Nguyen, D.K.; Yokozawa, M. Regional Consequences of Seawater Intrusion on Rice Productivity and Land Use in Coastal Area of the Mekong River Delta. Jpn. Agric. Res. Q. JARQ 2008, 42, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Thi Nhung, T.; Le Vo, P.; Van Nghi, V.; Quoc Bang, H. Salt intrusion adaptation measures for sustainable agricultural development under climate change effects: A case of Ca Mau Peninsula, Vietnam. Clim. Risk Manag. 2019, 23, 88–100. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Sherwood, J.; De bruyn, M.; Constantinou, A.; Moity, L.; McElroy, C.R.; Farmer, T.J.; Duncan, T.; Raverty, W.; Hunt, A.J.; Clark, J.H. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chem. Commun. 2014, 50, 9650–9652. [Google Scholar] [CrossRef]
- Zhang, J.; White, G.B.; Ryan, M.D.; Hunt, A.J.; Katz, M.J. Dihydrolevoglucosenone (Cyrene) As a Green Alternative to N,N-Dimethylformamide (DMF) in MOF Synthesis. ACS Sustain. Chem. Eng. 2016, 4, 7186–7192. [Google Scholar] [CrossRef]
- Marino, T.; Galiano, F.; Molino, A.; Figoli, A. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J. Membr. Sci. 2019, 580, 224–234. [Google Scholar] [CrossRef]
- Medina-Gonzalez, Y.; Aimar, P.; Lahitte, J.-F.; Remigy, J.-C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int. J. Sustain. Eng. 2011, 4, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Rasool, M.A.; Van Goethem, C.; Vankelecom, I.F.J. Green preparation process using methyl lactate for cellulose-acetate-based nanofiltration membranes. Sep. Purif. Technol. 2020, 232, 115903. [Google Scholar] [CrossRef]
- Vos, W.M.D. Aqueous Phase Separation Method. U.S. Patent 20180318775, 8 November 2018. [Google Scholar]
- de Grooth, J.; Oborný, R.; Potreck, J.; Nijmeijer, K.; de Vos, W.M. The role of ionic strength and odd–even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. J. Membr. Sci. 2015, 475, 311–319. [Google Scholar] [CrossRef]
- Wang, H.H.; Jung, J.T.; Kim, J.F.; Kim, S.; Drioli, E.; Lee, Y.M. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J. Membr. Sci. 2019, 574, 44–54. [Google Scholar] [CrossRef]
- Chang, J.; Zuo, J.; Zhang, L.; O’Brien, G.S.; Chung, T.-S. Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. J. Membr. Sci. 2017, 539, 295–304. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034–4059. [Google Scholar] [CrossRef]
Food Source | Protein | Carbohydrates | Lipids |
---|---|---|---|
Microalgae | |||
Chlorella vulgaris | 51–58 | 12–17 | 14–22 |
Chlorella pyrenoidosa | 57 | 26 | 2 |
Chlamydomonas reinhardtii | 48 | 17 | 21 |
Dunaliella salina | 39–61 | 14–18 | 14–20 |
Spirulina maxima | 46–63 | 8–14 | 4–9 |
Spirulina platensis | 52 | 15 | 3 |
Conventional Food Source | |||
Egg | 47 | 4 | 41 |
Meat | 43 | 1 | 34 |
Soybeans | 37 | 30 | 20 |
Milk | 26 | 38 | 28 |
Oil palm kernel | 16–27 | 6–11 | 50–70 |
Rapeseed | 14–18 | 12–15 | 40–45 |
No. | Feed Solution | Draw Solute and Concentration | Membrane Type | Dewatering Rate | Ref. | |
---|---|---|---|---|---|---|
Water Flux (Jw) (L/m2·h) | Solute Flux (Js) (L/m2·h) | |||||
1 | Microalgae: Chlorella sorokiniana cultivated in synthetic BG 11, harvested when the concentration reached 2–3 g/L. FS: Stock solution diluted with ultrapure water containing 100 mg/L algal biomass. | NaCl (0.5, 1, 2, 4 M) MgCl2 (0.5, 2 M) | Flat Sheet CTA FO Membrane embedded with polyester mesh | 16.9; 26.8; 36.3; 48.1 22.3; 55.4 | 0.52; 0.83; 1.17; 1.52 0.13; 0.37 | [66] |
2 | Microalgae: Chlorella vulgaris cultivated in BG 11 medium and municipal wastewater (as FS) | NaCl 35 g/L and natural seawater (35.5 g/L) | Flat Sheet CTA FO Membrane | 1.3–2.4 | n.a. | [67] |
3 | Microalgae: Choricystis minor, Scenedesmus sp., Porphyridium cruentum (from Instituto de Ciencias Marinas, Puerto Real, Spain), Nannochloropsis salina (CCAP 849/3) cultivated in different BG 11 mediums added with freshwater or seawater (as FS). Piccochlorum sp. (BEA0400; Banco Español de Algas, Spain), Dunaliella salina (BEA0303B; Banco Español de Algas, Spain) cultivated using ASP 12 Medium (as FS). | Pure glycerol Synthetic crude glycerol NaCl (2 M) | Dialysis tubing (Spectrum Labs, USA) | 0.63–4.79 | n.a. | [68] |
4 | Microalgae: Chlorella sp.ADE4 was cultivated in BG-11 medium FS: Super pure water (FW: 18; JT Baker, USA); Secondary sewage effluent | SWRO concentrate and natural seawater | Flat Sheet CTA FO membrane embedded with polyester screen | 2.9 (seawater) 4.8 (SWRO concentrate) | n.a. | [69] |
5 | Microalgae: 0.2 g/L of Scenedesmus obliquus biomass in BG-11 medium (as FS) | NaCl, MgCl2 and CaCl2 Commercial sea salt (70 g/L) | CTA and TFC with active layer of polyamide FO membrane, embedded with polyester screen mesh (HTI, USA) | TFC 8.42–8.97 CTA 6.71–9.98 | n.a. | [70] |
6 | Microalgae: Freshwater microalgae Scenedesmus obliquus, Chlamydomonas reinhardtii, and Chlorella vulgaris Each culture was cultivated in modified BG-11 medium (as FS) to reach concentrations of 2–3 g dry weight/L. | Commercial sea salts (70 g/L), MgCl2 (86.5 g/L), and CaCl2 (114.3 g/L) | Flat Sheet CTA FO membrane supported by an embedded woven mesh (HTI, USA) | Initial flux: 7 Utilizing CaCl2 Flux loss: 70.9% (S. obliquus), 13.1% (C. reinhardtii), 5.3% (C. vulgaris) Utilizing Seawater Flux loss: 16.3% (S. obliquus), 10.8% (C. reinhardtii), 8.1% (C. vulgaris) | n.a. | [71] |
7 | Microalgae: Chlorella sp. (KR-1), cultivated in nutrient medium FS: DI water with initial algal concentration 50 g/L | NaCl (0.5, 1, 2, 5 M) | TFC from Aquaporin InsideTM and Nafion N117 and N211 (DuPont Co. Ltd.) | 5–17 | n.a. | [72] |
8 | Microalgae: Chlorella vulgaris (UTEX 2714, Austin, TX), cultivated in modified bold basal media (BBM) until reach 1 g/L. FS: BBM medium with biomass concentration of 1 g/L | NaCl (0.6,1 M) KCl (0.5, 1 M) NH4Cl (0.5, 1 M) Natural Seawater (from Florida’s east coast beach) | Flat sheet PES membrane (Aquaporin–Sterlitech, Kent, WA) | 5.2 (avg) 7.7 (avg) 6.5 (avg) 7.8 (avg) 4.9 (avg) | 0.63 (avg) 0.5 (avg) 1.5 (avg) 0.5 (avg) 0.52(avg) 0.515 (avg) | [73] |
9 | Microalgae: Chlorella vulgaris (FACHB-36) cultivated using selenite enrichment (SE) medium until reaching stationary phase (after 25 days) FS: Solution from biomass stock filtered from glass fiber membrane (pore size 0.45 µm) | NaCl MgCl2 CaCl2 | TFC membrane (Yantai, China) with active layer of polyamide andsupport layer of polysulfone and CTA membrane with polyester fabric for support layer (HTI, USA) | Water permeability TFC = 1.94 CTA = 0.45 | n.a. | [74] |
10 | Microalgae: Scenedesmus acuminatus cultured in photobioreactors on modified BG-11 medium FS: Deionized water (DI); Re-suspended with microalgal cell in algogenic organic matter (AOM); Algogenic organic matter (AOM); Resuspended microalgal cell in DI water; Original microalgae suspension | MgCl2.7H2O at 0.5; 1; 2; 3; 4 M | Polyamide TFC-FO membrane (FOMEM-0513, Porifera, USA) | FS-DI Water MgCl2 4 mol: approx 40 MgCl2 4 mol: approx 32 MgCl2 2 mol: approx 26 MgCl2 1 mol: approx 19 MgCl2 0.5 mol: approx 14 FS-1 g/L algae: MgCl2 4 mol: approx 30 MgCl2 4 mol: approx 26 MgCl2 2 mol: approx 24 MgCl2 1 mol: approx 15 FS-23 g/L algae: MgCl2 2–4 mol: approx 13 MgCl2 1 mol: approx 9 | n.a. | [75] |
11 | Microalgae: Chlorella vulgaris, the Korean Collection for Type Cultures (KCTC) 10002, cultivated in modified Bristol Medium FS: DI Water | Fresh urine (Osmotic Pressure: 1340 kPa ) Hydrolyzed urine (Osmotic Pressure: 3010 kPa) | Polyamide TFC (Toray Chemical Korea) | • Real fresh urine: 9.5 (avg) • Synthetic fresh urine: 11 (avg) Real hydrolyzed urine: 16.7 (avg) • Synthetic hydrolyzed urine: 22 (avg) | • Real fresh urine: approx 1.2 TN g/L (Avg) • Synthetic fresh urine: 1.45 TN g/L (avg) • Real hydrolyzed urine: 0.4 TN g/L (avg) Synthetic hydrolyzed urine: 0.15 TN g/L (avg) | [76] |
12 | Microalgae: Galdieria sulphuraria cultivated on bioreactor fed with primary effluent wastewater FS: Effluent of algae photobioreactor | 30 g/L NaCl solution Process: Re-concentration of DS were conducted by using RO unit (SWRO and BWRO) | Hybrid FO—RO Hydrophilic FO membranes (Porifera Inc. California) Aromatic polyamide TFC-RO membranes, brackish water RO (BW30), seawater RO membrane (SW30) (Dow Filmtec, Midland) | 0.5–1.5 | n.a. | [77] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wibisono, Y.; Agung Nugroho, W.; Akbar Devianto, L.; Adi Sulianto, A.; Roil Bilad, M. Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes 2019, 9, 166. https://doi.org/10.3390/membranes9120166
Wibisono Y, Agung Nugroho W, Akbar Devianto L, Adi Sulianto A, Roil Bilad M. Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes. 2019; 9(12):166. https://doi.org/10.3390/membranes9120166
Chicago/Turabian StyleWibisono, Yusuf, Wahyunanto Agung Nugroho, Luhur Akbar Devianto, Akhmad Adi Sulianto, and Muhammad Roil Bilad. 2019. "Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications" Membranes 9, no. 12: 166. https://doi.org/10.3390/membranes9120166
APA StyleWibisono, Y., Agung Nugroho, W., Akbar Devianto, L., Adi Sulianto, A., & Roil Bilad, M. (2019). Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes, 9(12), 166. https://doi.org/10.3390/membranes9120166