Effect of Carbonic Anhydrase on CO2 Separation Performance of Thin Poly(amidoamine) Dendrimer/Poly(ethylene glycol) Hybrid Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Preparation
2.3. Gas Separation Experimental
3. Results and Discussion
3.1. Effect of Membrane Thickness on CO2 Permeance and CO2/H2 Selectivity
3.2. Effect of CA Addition on the CO2 Separation Properties
3.3. Effect of Position of CA on CO2 Separation Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.; Liang, X. Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS. Energy Policy 2011, 39, 3106–3116. [Google Scholar] [CrossRef]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.D.; Azzi, M. A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies. Fuel 2014, 121, 178–188. [Google Scholar] [CrossRef]
- Swaidan, R.; Ghanem, B.S.; Litwiller, E.; Pinnau, I. Pure- and mixed- gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM1. J. Membr. Sci. 2014, 457, 95–102. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z.; et al. Advances in high permeability polymer based membrane materials for CO2 separations. Energy Env. Sci. 2016, 9, 1863–1890. [Google Scholar] [CrossRef]
- Huang, A.; Liu, Q.; Wang, N.; Caro, J. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous Mesoporous 2014, 192, 18–22. [Google Scholar] [CrossRef]
- Nafisi, V.; Hägg, M. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J. Membr. Sci. 2012, 415–416, 168–175. [Google Scholar] [CrossRef]
- Deng, L.; Kim, T.; Hägg, M. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J. Membr. Sci. 2009, 340, 154–163. [Google Scholar] [CrossRef]
- Kim, T.; Vralstad, H.; Sandru, M.; Hägg, M. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J. Membr. Sci. 2013, 428, 218–224. [Google Scholar] [CrossRef]
- Taniguchi, I.; Duan, S.; Kazama, S.; Fujioka, Y. Facile fabrication of a novel high performance CO2 separation membrane: Immobilization of poly(amidoamine) dendrimers in poly(ethyleneglycol) networks. J. Membr. Sci. 2008, 322, 277–280. [Google Scholar] [CrossRef]
- Taniguchi, I.; Urai, H.; Kai, T.; Duan, S.; Kazama, S. A CO2-selective molecular gate of poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J. Membr. Sci. 2013, 444, 96–100. [Google Scholar] [CrossRef]
- Taniguchi, I.; Kai, T.; Duan, S.; Kazama, S.; Jinnai, H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. J. Membr. Sci. 2015, 475, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Kovvali, A.S.; Chen, H.; Sirkar, K.K. Dendrimer membranes: A CO2-selective molecular gate. J. Am. Chem. Soc. 2000, 122, 7594–7595. [Google Scholar] [CrossRef]
- Watari, T.; Huang, Q.; Teramoto, M. Effects of Support Membrane Properties on Facilitated Transport of CO2 through Supported Liquid Membrane of Aqueous Amine Solution. J. Chem. Eng. Jpn. 1998, 24, 155–157. [Google Scholar]
- Bao, L.; Trachtenberg, M.C. Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline. J. Membr. Sci. 2006, 280, 330–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Chen, H.; Zhang, H. Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chem. Eng. Sci. 2010, 65, 3199–3207. [Google Scholar] [CrossRef]
- Duan, S.; Kai, T.; Saito, T.; Yamazaki, K.; Ikeda, K. Effect of cross-linking on mechanical and thermal properties of poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 separation. Membranes 2014, 4, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Kai, T.; Nakao, S.-i. Effect of Carbonic Anhydrase on CO2 Separation Performance of Thin Poly(amidoamine) Dendrimer/Poly(ethylene glycol) Hybrid Membranes. Membranes 2019, 9, 167. https://doi.org/10.3390/membranes9120167
Duan S, Kai T, Nakao S-i. Effect of Carbonic Anhydrase on CO2 Separation Performance of Thin Poly(amidoamine) Dendrimer/Poly(ethylene glycol) Hybrid Membranes. Membranes. 2019; 9(12):167. https://doi.org/10.3390/membranes9120167
Chicago/Turabian StyleDuan, Shuhong, Teruhiko Kai, and Shin-ichi Nakao. 2019. "Effect of Carbonic Anhydrase on CO2 Separation Performance of Thin Poly(amidoamine) Dendrimer/Poly(ethylene glycol) Hybrid Membranes" Membranes 9, no. 12: 167. https://doi.org/10.3390/membranes9120167
APA StyleDuan, S., Kai, T., & Nakao, S. -i. (2019). Effect of Carbonic Anhydrase on CO2 Separation Performance of Thin Poly(amidoamine) Dendrimer/Poly(ethylene glycol) Hybrid Membranes. Membranes, 9(12), 167. https://doi.org/10.3390/membranes9120167