A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results
Abstract
:1. Introduction
1.1. Breast Cancer, Tumor Microenvironment and Inflammation
1.2. Novel Multidisciplinary Approaches for BC Treatment and Follow-Up
1.3. Mind-Body Therapeutic Approach
2. Results and Discussion
2.1. Decrease of Cytokine Concentrations in Breast Cancer Patients after MBT-Treatment
2.2. Changes in Well-Being, Anxiety and Depression (Measured through Psychological Scales)
3. Conclusions
4. Materials and Methods
4.1. Study Designand Patient Eligibility Criteria
- -
- Arm A: Standard follow-up (control arm): 7 patients undergoing the standard follow-up procedures as scheduled by reference oncologist
- -
- Arm B: Standard follow-up + MBT-T intervention (experimental arm): 16 patients undergoing the standard follow-up procedures as scheduled by reference oncologist, with the addition of a biweekly psychological treatment (MBT-T) lasting 4 months (8 sessions). Each therapy is organized in a 90–120 min’ group sessions (16 patients).
- -
- In both groups, blood samples (6–8 mL) have been collected before the treatment (T0), after 1 h of the first treatment (T1), after 2 months (T2), and at the end of treatment (Tf). Then, an additional blood sample has been collected after 2 months from Tf. Sera were collected by centrifugation (2250× g for 10 min at 4 °C), aliquoted, and stored at −80 °C until analysed, as previously described.
4.2. Psychological Measures
4.3. Primary and Secondary Endpoints
- -
- To translate the most recent findings in the field of neuroscience, genomic research and mind-body medicine into cancer clinical practice through the conduct of a randomized clinical trial that aims to demonstrate the effectiveness and sustainability of a particular mind- body approach (mind-body transformations therapy—MBT-T) compared to traditional approaches.
- -
- To understand the determinants of the therapeutic outcome through the study of the genome that can clarify the molecular mechanisms underlying the clinical efficacy of our MBT-T approach on cancer patients.
- -
- To identify and validate genomic-based classifiers that act as potential predictors of the clinical benefit in order to promote the personalization and optimization of treatment.
4.4. Procedures
4.4.1. Mind-Body Transformation Therapy (MBT-T)
4.4.2. Bioplex Assay
4.5. Statistical Considerations
4.6. Protection of Trial Participants
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRAC | Activity-Rest physiologic cycle |
BC | Breast Cancer |
CTCs | Circulating Tumor cells |
CSCs | Cancer Stem Cells |
eBC | Early Breast Cancer |
ECM | Extracellular matrix |
EMT | Epithelial Mesenchimal Transition |
ER | Estrogen Receptor |
EOT | End of Treatment |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HIF-1 | Hipoxia-inducible factor 1 |
HPA | Hypothalamic- pituitary-adrenal axis |
LIF | Leukemia inhibitory factor |
MCP-3 | Monocyte Chemotactic protein-3 |
MBT | Mind Body Therapy |
MBT-T | Mind-Body Transformations Therapy |
MSL | Mesenchymal Stem-Like |
NFKB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
PDL1 | Programmed Cell Death Ligand-1 |
RFS | Relapse free survival |
PgR | Progesteron Receptor |
RR | Relaxation response (RR) |
SNS | sympathetic nervous system (SNS) |
TNBC | Triple Negative Breast Cancer |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Y.; Liu, X.; Liao, X.; He, J.; Niu, L. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer 2019, 19, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbeck, N.; Gnant, M. Breast cancer. Lancet 2017, 389, 1134–1150. [Google Scholar] [CrossRef]
- Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 3786–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Network, C.G.A. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Piezzo, M.; Cocco, S.; Caputo, R.; Cianniello, D.; Gioia, G.D.; Lauro, V.D.; Fusco, G.; Martinelli, C.; Nuzzo, F.; Pensabene, M.; et al. Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. Int. J. Mol. Sci. 2020, 21, 6479. [Google Scholar] [CrossRef]
- Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Lauro, V.D.; Fusco, G.; Gioia, G.D.; Licenziato, M.; Laurentiis, M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 4579. [Google Scholar] [CrossRef]
- Arpino, G.; De Angelis, C.; Giuliano, M.; Giordano, A.; Falato, C.; De Laurentiis, M.; De Placido, S. Molecular Mechanism and Clinical Implications of Endocrine Therapy Resistance in Breast Cancer. Oncology 2009, 77 (Suppl. 1), 23–37. [Google Scholar] [CrossRef]
- Piezzo, M.; Chiodini, P.; Riemma, M.; Cocco, S.; Caputo, R.; Cianniello, D.; Di Gioia, G.; Di Lauro, V.; Rella, F.D.; Fusco, G.; et al. Progression-Free Survival and Overall Survival of CDK 4/6 Inhibitors Plus Endocrine Therapy in Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 6400. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, H. Prognostic prediction of systemic immune-inflammation index for patients with gynecological and breast cancers: A meta-analysis. World J. Surg. Oncol. 2020, 18, 197. [Google Scholar] [CrossRef]
- Soysal, S.D.; Tzankov, A.; Muenst, S.E. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015, 82, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Coleman, R.E.; Gregory, W.; Marshall, H.; Wilson, C.; Holen, I. The metastatic microenvironment of breast cancer: Clinical implications. Breast 2013, 22 (Suppl. 2), S50–S56. [Google Scholar] [CrossRef]
- Guarneri, V.; Conte, P. Metastatic breast cancer: Therapeutic options according to molecular subtypes and prior adjuvant therapy. Oncologist 2009, 14, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Caputo, R.; Cianniello, D.; Giordano, A.; Piezzo, M.; Riemma, M.; Trovò, M.; Berretta, M.; De Laurentiis, M. Gene Expression Assay in the Management of Early Breast Cancer. Curr. Med. Chem. 2020, 27, 2826–2839. [Google Scholar] [CrossRef] [PubMed]
- Andreopoulou, E.; Hortobagyi, G.N. Prognostic factors in metastatic breast cancer: Successes and challenges toward individualized therapy. J. Clin. Oncol. 2008, 26, 3660–3662. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Romero, P.; Palucka, A.K.; Marincola, F.M. Tumour immunity: Effector response to tumour and role of the microenvironment. Lancet 2008, 371, 771–783. [Google Scholar] [CrossRef]
- An, G.; Wu, F.; Huang, S.; Feng, L.; Bai, J.; Gu, S.; Zhao, X. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor-associated macrophages. Oncol. Rep. 2019, 42, 2499–2511. [Google Scholar] [CrossRef]
- Castaño, Z.; San Juan, B.P.; Spiegel, A.; Pant, A.; DeCristo, M.J.; Laszewski, T.; Ubellacker, J.M.; Janssen, S.R.; Dongre, A.; Reinhardt, F.; et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat. Cell. Biol. 2018, 20, 1084–1097. [Google Scholar] [CrossRef]
- Capone, F.; Guerriero, E.; Colonna, G.; Maio, P.; Mangia, A.; Castello, G.; Costantini, S. Cytokinome profile evaluation in patients with hepatitis C virus infection. World J. Gastroenterol. 2014, 20, 9261–9269. [Google Scholar]
- Allavena, P.; Garlanda, C.; Borrello, M.G.; Sica, A.; Mantovani, A. Pathways connecting inflammation and cancer. Curr. Opin. Genet. Dev. 2008, 18, 3–10. [Google Scholar] [CrossRef]
- Lu, H.; Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol. Cancer Res. 2006, 4, 221–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondar, T.; Medzhitov, R. The origins of tumor-promoting inflammation. Cancer Cell. 2013, 24, 143–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abajo, A.; Boni, V.; Lopez, I.; Gonzalez-Huarriz, M.; Bitarte, N.; Rodriguez, J.; Zarate, R.; Bandres, E.; Garcia-Foncillas, J. Identification of predictive circulating biomarkers of bevacizumab-containing regimen efficacy in pre-treated metastatic colorectal cancer patients. Br. J. Cancer 2012, 107, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Szlosarek, P.; Charles, K.A.; Balkwill, F.R. Tumour necrosis factor-alpha as a tumour promoter. Eur. J. Cancer 2006, 42, 745–750. [Google Scholar] [CrossRef]
- Mancino, A.; Schioppa, T.; Larghi, P.; Pasqualini, F.; Nebuloni, M.; Chen, I.H.; Sozzani, S.; Austyn, J.M.; Mantovani, A.; Sica, A. Divergent effects of hypoxia on dendritic cell functions. Blood 2008, 112, 3723–3734. [Google Scholar] [CrossRef] [Green Version]
- Germano, G.; Allavena, P.; Mantovani, A. Cytokines as a key component of cancer-related inflammation. Cytokine 2008, 43, 374–379. [Google Scholar] [CrossRef]
- Costantini, S.; Castello, G.; Colonna, G. Human Cytokinome: A new challenge for systems biology. Bioinformation 2010, 5, 166–167. [Google Scholar] [CrossRef] [Green Version]
- Costantini, S.; Capone, F.; Guerriero, E.; Castello, G. An approach for understanding the inflammation and cancer relationship. Immunol. Lett. 2009, 126, 91–92. [Google Scholar] [CrossRef]
- Hsieh, J.; Eisch, A.J. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: Unraveling the genome to understand the mind. Neurobiol. Dis. 2010, 39, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.G.; McEwen, B.S. Stress and anxiety across the lifespan: Structural plasticity and epigenetic regulation. Epigenomics 2013, 5, 177–194. [Google Scholar] [CrossRef]
- Lloyd, D.; Rossi, E.L. Ultradian Rhythms from Molecules to Mind: A New Vision of Life; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Rossi, E.L. A conceptual review of the psychosocial genomics of expectancy and surprise: Neuroscience perspectives about the deep psychobiology of therapeutic hypnosis. Am. J. Clin. Hypn. 2002, 45, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.L. Gene expression and brain plasticity in stroke rehabilitation: A personal memoir of mind-body healing dreams. Am. J. Clin. Hypn. 2004, 46, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.L.; Rossi, K.L. What is a suggestion? The neuroscience of implicit processing heuristics in therapeutic hypnosis and psychotherapy. Am. J. Clin. Hypn. 2007, 49, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Iannotti, S.; Cozzolino, M.; Castiglione, S.; Cicatelli, A.; Rossi, K. A Pilot Study of Positive Expectations and Focused Attention Via a New Protocol for Optimizing Therapeutic Hypnosis and Psychotherapy Assessed with DNA Microarrays: The Creative Psychosocial Genomic Healing Experience. Sleep Hypn. 2008, 10, 39–44. [Google Scholar]
- Morita, K.; Saito, T.; Ohta, M.; Ohmori, T.; Kawai, K.; Teshima-Kondo, S.; Rokutan, K. Expression analysis of psychological stress-associated genes in peripheral blood leukocytes. Neurosci. Lett. 2005, 381, 57–62. [Google Scholar] [CrossRef]
- Antoni, M.H.; Lutgendorf, S.K.; Blomberg, B.; Carver, C.S.; Lechner, S.; Diaz, A.; Stagl, J.; Arevalo, J.M.; Cole, S.W. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics. Biol. Psychiatry 2012, 71, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, D.; Iannotti, S.; Cozzolino, M.; Castiglione, S.; Cicatelli, A.; Vyas, B.; Mortimer, J.; Hill, R.; Chovanec, E.; Chiamberlando, A.; et al. A new bioinformatics paradigm for the theory, research, and practice of therapeutic hypnosis. Am. J. Clin. Hypn. 2010, 53, 27–46. [Google Scholar] [CrossRef]
- Bhasin, M.K.; Dusek, J.A.; Chang, B.H.; Joseph, M.G.; Denninger, J.W.; Fricchione, G.L.; Benson, H.; Libermann, T.A. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways. PLoS ONE 2013, 8, e62817. [Google Scholar] [CrossRef]
- Cozzolino, M. New Look in Psychology: The Psychosocial and Cultural Genomics. Int. J. Psychosoc. Genomic. Cult. Conscious. Health Res. 2016, 2, 4–8. [Google Scholar]
- Dusek, J.A.; Otu, H.H.; Wohlhueter, A.L.; Bhasin, M.; Zerbini, L.F.; Joseph, M.G.; Benson, H.; Libermann, T.A. Genomic counter-stress changes induced by the relaxation response. PLoS ONE 2008, 3, e2576. [Google Scholar] [CrossRef] [Green Version]
- Shrout, M.R.; Renna, M.E.; Madison, A.A.; Alfano, C.M.; Povoski, S.P.; Lipari, A.M.; Agnese, D.M.; Yee, L.D.; Carson, W.E.; Kiecolt-Glaser, J.K. Relationship satisfaction predicts lower stress and inflammation in breast cancer survivors: A longitudinal study of within-person and between-person effects. Psychoneuroendocrinology 2020, 118. [Google Scholar] [CrossRef] [PubMed]
- Powell, N.D.; Tarr, A.J.; Sheridan, J.F. Psychosocial stress and inflammation in cancer. Brain Behav. Immun. 2013, 30, S41–S47. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.M.; Solomon, D.H. Locating Relationship and Communication Issues Among Stressors Associated with Breast Cancer. Health Commun. 2008, 23, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Mundy-Bosse, B.L.; Thornton, L.M.; Yang, H.-C.; Andersen, B.L.; Carson, W.E. Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell. Immunol. 2011, 270, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Vuksanovic, D.; Sanmugarajah, J.; Lunn, D.; Sawhney, R.; Eu, K.; Liang, R. Unmet needs in breast cancer survivors are common, and multidisciplinary care is underutilised: The Survivorship Needs Assessment Project. Breast Cancer 2020. [Google Scholar] [CrossRef]
- Muñoz, F.V.; Larkey, L. The creative psychosocial genomic healing experience (cpghe) and gene expression in breast cancer patients: A feasibility study. Adv. Integr. Med. 2018, 5, 9–14. [Google Scholar] [CrossRef]
- Antoni, M.H. Psychosocial intervention effects on adaptation, disease course and biobehavioral processes in cancer. Brain Behav. Immun. 2013, 30, S88–S98. [Google Scholar] [CrossRef]
- Cozzolino, M.; Guarino, F.; Castiglione, S.; Cicatelli, A.; Celia, G. Pilot Study on Epigenetic Response to A Mind-Body Treatment. Transl. Med. 2017, 17, 40–44. [Google Scholar]
- Rossi, E.; Rossi, K.; Yount, G.; Cozzolino, M.; Iannotti, S. The Bioinformatics of Integrative Medical Insights: Proposals for an International Psycho-Social and Cultural Bioinformatics Project. Integr. Med. Insights 2006, 1. [Google Scholar] [CrossRef]
- Rossi, E.L.; Cozzolino, M.; Mortimer, J.; Atkinson, D.; Rossi, K.L. A brief protocol for the Creative Psychosocial Genomic Healing Experience: The 4-Stage Creative Process in therapeutic hypnosis and brief psychotherapy. Am. J. Clin. Hypn. 2011, 54, 133–152. [Google Scholar] [CrossRef]
- Venuleo, C.; Mangeli, G.; Mossi, P.; Amico, A.F.; Cozzolino, M.; Distante, A.; Ignone, G.; Savarese, G.; Salvatore, S. The Cardiac Rehabilitation Psychodynamic Group Intervention (CR-PGI): An Explorative Study. Front. Psychol. 2018, 9, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, B.L.; Yang, H.C.; Farrar, W.B.; Golden-Kreutz, D.M.; Emery, C.F.; Thornton, L.M.; Young, D.C.; Carson, W.E. Psychologic intervention improves survival for breast cancer patients: A randomized clinical trial. Cancer 2008, 113, 3450–3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niles, H.; Mehta, D.H.; Corrigan, A.A.; Bhasin, M.K.; Denninger, J.W. Functional genomics in the study of mind-body therapies. Ochsner J. 2014, 14, 681–695. [Google Scholar] [PubMed]
- Cozzolino, M. A Psychosocial Genomics Research Program in Oncology (PSGPO) for Verifying Clinical, Genomic and Epigenetic Effects of Mind-Body Transformations Therapy (MBT-T) in Breast Cancer Patients. Int. J. Psychosoc. Cult. Genom. Health Conscious. Res. 2016, 2, 34–41. [Google Scholar]
- Rossi, E.L.; Rossi, K.L. The neuroscience of observing consciousness & mirror neurons in therapeutic hypnosis. Am. J. Clin. Hypn. 2006, 48, 263–278. [Google Scholar]
- Cozzolino, M.; Iannotti, S.; Castiglione, S. The new quantum mind-body therapy with the creative psychosocial genomic healing experience. Int. J. Psychosoc. Cult. Genom. 2014, 1, 1–12. [Google Scholar]
- Celia, G. Group narrative styles as indicators of change | Les styles narratifs du groupe comme indicateurs de changement. Revue de Psychotherapie Psychanalytique de Groupe 2020, 74, 157–168. [Google Scholar] [CrossRef]
- Cozzolino, M.; Cicatelli, A.; Fortino, V.; Guarino, F.; Tagliaferri, R.; Castiglione, S.; De Luca, P.; Napolitano, F.; Celia, G.; Iannotti, S.; et al. The Mind-Body Healing. Experience (MHE) Is associated with Gene Expression in Human Leukocytes. Int. J. Phys. Soc. Sci. 2015, 5, 361–374. [Google Scholar]
- Forsdyke, D.R. Evolutionary Bioinformatics, 3rd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Buric, I.; Farias, M.; Jong, J.; Mee, C.; Brazil, I.A. What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices. Front. Immunol. 2017, 8, 670. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.; White, R.; Eames, C.; Crane, R. The Utility of Home-Practice in Mindfulness-Based Group Interventions: A Systematic Review. Mindfulness 2018, 9, 673–692. [Google Scholar] [CrossRef] [Green Version]
- Kanherkar, R.R.; Stair, S.E.; Bhatia-Dey, N.; Mills, P.J.; Chopra, D.; Csoka, A.B. Epigenetic Mechanisms of Integrative Medicine. Evid. Based Complement Altern. Med. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Ross, K.M.; Cole, S.W.; Carroll, J.E.; Dunkel Schetter, C. Elevated pro-inflammatory gene expression in the third trimester of pregnancy in mothers who experienced stressful life events. Brain Behav. Immun. 2019, 76, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, M.; Tagliaferri, R.; Castiglione, S. The Creative Psychosocial and Cultural Genomic Healing Experience: A new top-down epigenomic psychotherapeutic protocol. Int. J. Psychosoc. Cult. Genomics Conscious. Health Res 2014, 1, 18–26. [Google Scholar]
- Rossi, E.; Atkinson, D.; Blake-Mortimer, J.; Iannotti, S.; Cozzolino, M.; Castiglione, S.; Cicatelli, A.; Chovanec, E.; Hill, R.; Virot, C.; et al. The Creative Psychosocial Genomic Healing Experience: An Open Invitation to Mind-Body Psychotherapy, Clinical & Experimental Research. 2010. Available online: https://www.semanticscholar.org/paper/THE-CREATIVE-PSYCHOSOCIAL-GENOMIC-HEALING-%C2%A9%3A-%26-An-%26-Ernest-David/dee7a650a42c3d0e61718cca6dee7865ab5093ac#citing-papers (accessed on 16 October 2020).
- Rossi, K.; Mortimer, J.; Rossi, E. Mind-Body Transformations Therapy (MBT-T). A single case study of trauma and rehabilitation. Int. J. Psychosoc. Genomics Conscious. Health Res. 2013, 1, 32–40. [Google Scholar]
- Cozzolino, M.; Vivo, D.R.; Girelli, L.; Limone, P.; Celia, G. The Evaluation of a Mind-Body Intervention (MBT-T) for Stress Reduction in Academic Settings: A Pilot Study. Behav. Sci. 2020, 10, 124. [Google Scholar] [CrossRef]
- Cozzolino, M.; Girelli, L.; Vivo, D.R.; Limone, P.; Celia, G. A mind-body intervention for stress reduction as an adjunct to an information session on stress management in university students. Brain Behav. 2020, 10, e01651. [Google Scholar] [CrossRef]
- Cozzolino, M.; Celia, G.; Rossi, K.L.; Rossi, E.L. Hypnosis as Sole Anesthesia for Dental Removal in a Patient with Multiple Chemical Sensitivity. Int. J. Clin. Exp. Hypn. 2020, 68, 371–383. [Google Scholar] [CrossRef]
- Rossi, E.L. The psychosocial genomics of therapeutic hypnosis, psychotherapy, and rehabilitation. Am. J. Clin. Hypn. 2009, 51, 281–298. [Google Scholar] [CrossRef]
- Cole, S.W. Social regulation of human gene expression: Mechanisms and implications for public health. Am. J. Public Health 2013, 103 (Suppl. 1), S84–S92. [Google Scholar] [CrossRef]
- Commins, S.P.; Borish, L.; Steinke, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010, 125 (Suppl. 2), S53–S72. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galon, J.; Pagès, F.; Marincola, F.M.; Thurin, M.; Trinchieri, G.; Fox, B.A.; Gajewski, T.F.; Ascierto, P.A. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 2012, 10. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; et al. Towards the introduction of the ’Immunoscore’ in the classification of malignant tumours. J. Pathol. 2014, 232, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mego, M.; Cholujova, D.; Minarik, G.; Sedlackova, T.; Gronesova, P.; Karaba, M.; Benca, J.; Cingelova, S.; Cierna, Z.; Manasova, D.; et al. CXCR4-SDF-1 interaction potentially mediates trafficking of circulating tumor cells in primary breast cancer. BMC Cancer 2016, 16, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, K.Y.; Nguyen, P.M.; Putoczki, T.L. Emerging Roles for Interleukin-18 in the Gastrointestinal Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1240, 59–72. [Google Scholar]
- Metwally, F.M.; El-mezayen, H.A.; Ahmed, H.H. Significance of vascular endothelial growth factor, interleukin-18 and nitric oxide in patients with breast cancer: Correlation with carbohydrate antigen 15.3. Med. Oncol. 2011, 28 (Suppl. 1), S15–S21. [Google Scholar] [CrossRef]
- Günel, N.; Coşkun, U.; Sancak, B.; Günel, U.; Hasdemir, O.; Bozkurt, S. Clinical importance of serum interleukin-18 and nitric oxide activities in breast carcinoma patients. Cancer 2002, 95, 663–667. [Google Scholar] [CrossRef]
- Inoue, N.; Li, W.; Fujimoto, Y.; Matsushita, Y.; Katagiri, T.; Okamura, H.; Miyoshi, Y. High Serum Levels of Interleukin-18 Are Associated with Worse Outcomes in Patients with Breast Cancer. Anticancer Res. 2019, 39, 5009–5018. [Google Scholar] [CrossRef]
- Divella, R.; Daniele, A.; DE Luca, R.; Simone, M.; Naglieri, E.; Savino, E.; Abbate, I.; Gadaleta, C.D.; Ranieri, G. Circulating Levels of VEGF and CXCL1 Are Predictive of Metastatic Organotropismin in Patients with Colorectal Cancer. Anticancer Res. 2017, 37, 4867–4871. [Google Scholar] [PubMed] [Green Version]
- Zou, A.; Lambert, D.; Yeh, H.; Yasukawa, K.; Behbod, F.; Fan, F.; Cheng, N. Elevated CXCL1 expression in breast cancer stroma predicts poor prognosis and is inversely associated with expression of TGF-β signaling proteins. BMC Cancer 2014, 14, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Liu, W.; Zheng, Y.; Wang, S.; Yang, B.; Li, M.; Song, J.; Zhang, F.; Zhang, X.; Wang, Q.; et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 2018, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yu, H.; Chen, R.; Tao, K.; Jian, L.; Peng, M.; Li, X.; Liu, M.; Liu, S. CXCL1 stimulates migration and invasion in ER-negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int. J. Oncol. 2019, 55, 684–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.; Watkins, G.; Parr, C.; Douglas-Jones, A.; Mansel, R.E.; Jiang, W.G. Stromal cell derived factor-1: Its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res. 2005, 7, R402–R410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.D.; Kong, B.; Liu, X.P.; Dong, Q.; Niu, H.T.; Wang, Y.H.; Li, F.N.; Wang, H.B. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo. Int. J. Clin. Exp. Pathol. 2014, 7, 6671–6678. [Google Scholar]
- Dayer, R.; Babashah, S.; Jamshidi, S.; Sadeghizadeh, M. Upregulation of CXC chemokine receptor 4-CXC chemokine ligand 12 axis ininvasive breast carcinoma: A potent biomarker predicting lymph node metastasis. J. Cancer Res. Ther. 2018, 14, 345–350. [Google Scholar]
- Narita, D.; Seclaman, E.; Anghel, A.; Ilina, R.; Cireap, N.; Negru, S.; Sirbu, I.O.; Ursoniu, S.; Marian, C. Altered levels of plasma chemokines in breast cancer and their association with clinical and pathological characteristics. Neoplasma 2016, 63, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.K.; Mir, H.; Kapur, N.; Bae, S.; Singh, S. CC chemokines are differentially expressed in Breast Cancer and are associated with disparity in overall survival. Sci. Rep. 2019, 9, 4014. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Tsang, N.M.; Chiang, W.C.; Chang, K.P.; Hsueh, C.; Liang, Y.; Juang, J.L.; Chow, K.P.; Chang, Y.S. Leukemia inhibitory factor promotes nasopharyngeal carcinoma progression and radioresistance. J. Clin. Investig. 2013, 123, 5269–5283. [Google Scholar] [CrossRef]
- Yue, X.; Wu, L.; Hu, W. The regulation of leukemia inhibitory factor. Cancer Cell Microenviron. 2015, 2. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Yu, H.; Wu, L.; Zhao, Y.; Zhang, C.; Yue, X.; Liu, Z.; Wu, H.; Haffty, B.G.; et al. LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget 2014, 5, 788–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.; Connell, J.; Barkham, M.; Margison, F.; McGrath, G.; Mellor-Clark, J.; Audin, K. Towards a standardised brief outcome measure: Psychometric properties and utility of the CORE-OM. Br. J. Psychiatry 2002, 180, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Barkham, M.; Mellor-Clark, J.; Connell, J.; Cahill, J. A CORE approach to practice-based evidence: A brief history of the origins and applications of the CORE-OM and CORE System. Couns. Psychother. Res. 2006, 6, 3–15. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Snaith, R.P. The Hospital Anxiety and Depression Scale. Health Qual. Life Outcomes 2003, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- Battuello, M.; Roma, P.; Celia, G. Group psychotherapy for HIV patients. A different approach. Retrovirology 2012, 9. [Google Scholar] [CrossRef] [Green Version]
Constructs | Experimental Arm | Control Arm | ||
---|---|---|---|---|
Baseline | End of treatment | Baseline | End of treatment | |
Well-being | 5.00 (1.54) | 6.50 (1.87) | 5.50 (3.08) | 4.0 (3.75) |
Depression | 11.75 (0.78) | 11.85 (0.68) | 12.83 (0.90) | 14.50 (0.78) |
Anxiety | 11.00 (0.76) | 9.75 (0.99) | 10.00 (0.88) | 10.66 (1.14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, M.; Cocco, S.; Piezzo, M.; Celia, G.; Costantini, S.; Abate, V.; Capone, F.; Barberio, D.; Girelli, L.; Cavicchiolo, E.; et al. A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results. J. Clin. Med. 2021, 10, 136. https://doi.org/10.3390/jcm10010136
Cozzolino M, Cocco S, Piezzo M, Celia G, Costantini S, Abate V, Capone F, Barberio D, Girelli L, Cavicchiolo E, et al. A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results. Journal of Clinical Medicine. 2021; 10(1):136. https://doi.org/10.3390/jcm10010136
Chicago/Turabian StyleCozzolino, Mauro, Stefania Cocco, Michela Piezzo, Giovanna Celia, Susan Costantini, Valentina Abate, Francesca Capone, Daniela Barberio, Laura Girelli, Elisa Cavicchiolo, and et al. 2021. "A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results" Journal of Clinical Medicine 10, no. 1: 136. https://doi.org/10.3390/jcm10010136
APA StyleCozzolino, M., Cocco, S., Piezzo, M., Celia, G., Costantini, S., Abate, V., Capone, F., Barberio, D., Girelli, L., Cavicchiolo, E., Ascierto, P. A., Madonna, G., Budillon, A., & De Laurentiis, M. (2021). A Psychosocial Genomics Pilot Study in Oncology for Verifying Clinical, Inflammatory and Psychological Effects of Mind-Body Transformations-Therapy (MBT-T) in Breast Cancer Patients: Preliminary Results. Journal of Clinical Medicine, 10(1), 136. https://doi.org/10.3390/jcm10010136