Links between Inflammation and Postoperative Cancer Recurrence
Abstract
:1. Introduction
2. Types of Cancer
2.1. Lung Cancer
2.2. Breast Cancer
2.3. Esophageal Cancer
2.4. Gastric Cancer
2.5. Hepatocellular Carcinoma
2.6. Bile Duct Cancer
2.7. Colorectal Cancer
2.8. Uterine Carcinoma
2.9. Prostate, Urothelial and Bladder Cancer
3. Inflammation-Related Conditions
3.1. Necrosis
3.2. Transfusion
3.3. Perioperative Period
4. Clinical Indices
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esmatabadi, M.J.; Bakhshinejad, B.; Motlagh, F.M.; Babashah, S.; Sadeghizadeh, M. Therapeutic resistance and cancer recurrence mechanisms: Unfolding the story of tumour coming back. J. Biosci. 2016, 41, 497–506. [Google Scholar] [CrossRef]
- Simard, S.; Thewes, B.; Humphris, G.; Dixon, M.; Hayden, C.; Mireskandari, S.; Ozakinci, G. Fear of cancer recurrence in adult cancer survivors: A systematic review of quantitative studies. J. Cancer Surviv. 2013, 7, 300–322. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, A.; Freedman, G.; Eisenberg, D.; Anderson, P. Recurrence rates and analysis of close or positive margins in patients treated without re-excision before radiation for breast cancer. Am. J. Clin. Oncol. 2007, 30, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016, 380, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comito, G.; Giannoni, E.; Segura, C.P.; Barcellos-de-Souza, P.; Raspollini, M.R.; Baroni, G.; Lanciotti, M.; Serni, S.; Chiarugi, P. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene 2014, 33, 2423–2431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, M.; Roswall, P.; Cortez, E.; Hanahan, D.; Pietras, K. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 2011, 118, 2906–2917. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.M.; Wilson, W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 2009, 9, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K.; Weinberg, R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer 2009, 9, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Kortylewski, M.; Pardoll, D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 2007, 7, 41–51. [Google Scholar] [CrossRef]
- Kim, S.; Takahashi, H.; Lin, W.W.; Descargues, P.; Grivennikov, S.; Kim, Y.; Luo, J.L.; Karin, M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009, 457, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.X.; Bos, P.D.; Massague, J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer 2009, 9, 274–284. [Google Scholar] [CrossRef]
- Bui, J.D.; Schreiber, R.D. Cancer immunosurveillance, immunoediting and inflammation: Independent or interdependent processes? Curr. Opin. Immunol. 2007, 19, 203–208. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004, 21, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Smyth, M.J.; Dunn, G.P.; Schreiber, R.D. Cancer immunosurveillance and immunoediting: The roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 2006, 90, 1–50. [Google Scholar]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Roselli, E.E.; Murthy, S.C.; Rice, T.W.; Houghtaling, P.L.; Pierce, C.D.; Karchmer, D.P.; Blackstone, E.H. Atrial fibrillation complicating lung cancer resection. J. Thorac. Cardiovasc. Surg. 2005, 130, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee for Scientific Affairs; Masuda, M.; Kuwano, H.; Okumura, M.; Arai, H.; Endo, S.; Doki, Y.; Kobayashi, J.; Motomura, N.; Nishida, H.; et al. Thoracic and cardiovascular surgery in Japan during 2013: Annual report by The Japanese Association for Thoracic Surgery. Gen. Thorac. Cardiovasc. Surg. 2015, 63, 670–701. [Google Scholar]
- Hung, J.J.; Yeh, Y.C.; Jeng, W.J.; Wu, K.J.; Huang, B.S.; Wu, Y.C.; Chou, T.Y.; Hsu, W.H. Predictive value of the international association for the study of lung cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J. Clin. Oncol. 2014, 32, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Kinoshita, T.; Sasaki, N.; Uematsu, M.; Sugita, Y.; Shima, T.; Harada, M.; Hishima, T.; Horio, H. Clinicopathological Factors Related to Recurrence Patterns of Resected Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 2473. [Google Scholar] [CrossRef]
- Suzuki, S.; Goto, T. Role of Surgical Intervention in Unresectable Non-Small Cell Lung Cancer. J. Clin. Med. 2020, 9, 3881. [Google Scholar] [CrossRef]
- Ferri, L.E.; Law, S.; Wong, K.H.; Kwok, K.F.; Wong, J. The influence of technical complications on postoperative outcome and survival after esophagectomy. Ann. Surg. Oncol. 2006, 13, 557–564. [Google Scholar] [CrossRef]
- Andalib, A.; Ramana-Kumar, A.V.; Bartlett, G.; Franco, E.L.; Ferri, L.E. Influence of postoperative infectious complications on long-term survival of lung cancer patients: A population-based cohort study. J. Thorac. Oncol. 2013, 8, 554–561. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.G.; Bell, S.W.; Rickard, M.J.; Mehanna, D.; Dent, O.F.; Chapuis, P.H.; Bokey, E.L. Anastomotic leakage is predictive of diminished survival after potentially curative resection for colorectal cancer. Ann. Surg. 2004, 240, 255–259. [Google Scholar] [CrossRef]
- Goto, T. Measuring Surgery Outcomes of Lung Cancer Patients with Concomitant Pulmonary Fibrosis: A Review of the Literature. Cancers 2018, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.; Maeshima, A.; Oyamada, Y.; Kato, R. Idiopathic pulmonary fibrosis as a prognostic factor in non-small cell lung cancer. Int. J. Clin. Oncol. 2014, 19, 266–273. [Google Scholar] [CrossRef]
- Candido, J.; Hagemann, T. Cancer-related inflammation. J. Clin. Immunol. 2013, 33, S79–S84. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Goto, T. Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review. Int. J. Mol. Sci. 2019, 20, 1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.Y.; Yang, D.D.; Ma, X.K.; Liu, M.M.; Wu, D.H.; Zhang, X.P.; Ruan, D.Y.; Lin, J.X.; Wen, J.Y.; Chen, J.; et al. The Prognostic Value of aspartate aminotransferase to lymphocyte ratio and systemic immune-inflammation index for Overall Survival of Hepatocellular Carcinoma Patients Treated with palliative Treatments. J. Cancer 2019, 10, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, T.; Hamasaki, T.; Inoue, M.; Shintani, Y.; Takeuchi, Y.; Maeda, H.; Okumura, M. Long-Term Impact of Postoperative Complications on Cancer Recurrence Following Lung Cancer Surgery. Ann. Surg. Oncol. 2017, 24, 1135–1142. [Google Scholar] [CrossRef]
- Meaney, C.L.; Zingone, A.; Brown, D.; Yu, Y.; Cao, L.; Ryan, B.M. Identification of serum inflammatory markers as classifiers of lung cancer mortality for stage I adenocarcinoma. Oncotarget 2017, 8, 40946–40957. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, S.; Izumi, N.; Tsukioka, T.; Komatsu, H.; Nishiyama, N. Neutrophil-lymphocyte ratio predicts recurrence in patients with resected stage 1 non-small cell lung cancer. J. Cardiothorac. Surg. 2018, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.H.; Huang, D.H.; Chen, Z.Y. Prognostic role of systemic immune-inflammation index in solid tumors: A systematic review and meta-analysis. Oncotarget 2017, 8, 75381–75388. [Google Scholar] [CrossRef]
- Geng, Y.; Shao, Y.; Zhu, D.; Zheng, X.; Zhou, Q.; Zhou, W.; Ni, X.; Wu, C.; Jiang, J. Systemic Immune-Inflammation Index Predicts Prognosis of Patients with Esophageal Squamous Cell Carcinoma: A Propensity Score-matched Analysis. Sci. Rep. 2016, 6, 39482. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Chen, P.; Xu, W.; Wu, Y.; Che, G. Prognostic value of the pretreatment systemic immune-inflammation index (SII) in patients with non-small cell lung cancer: A meta-analysis. Ann. Transl. Med. 2019, 7, 433. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B. Prognostic Value of the Advanced Lung Cancer Inflammation Index in Patients with Lung Cancer: A Meta-Analysis. Dis. Markers 2019, 2019, 2513026. [Google Scholar] [CrossRef] [Green Version]
- Lindenmann, J.; Fink-Neuboeck, N.; Taucher, V.; Pichler, M.; Posch, F.; Brcic, L.; Smolle, E.; Koter, S.; Smolle, J.; Smolle-Juettner, F.M. Prediction of Postoperative Clinical Outcomes in Resected Stage I Non-Small Cell Lung Cancer Focusing on the Preoperative Glasgow Prognostic Score. Cancers 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.; Shao, Z.Y.; Xiao, Y.Y.; Xie, Z.H.; Chen, W.; Xie, H.; Qin, G.Y.; Zhao, N.Q. Comparison of the Glasgow Prognostic Score (GPS) and the modified Glasgow Prognostic Score (mGPS) in evaluating the prognosis of patients with operable and inoperable non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2016, 142, 1285–1297. [Google Scholar] [CrossRef] [PubMed]
- Tomita, M.; Ayabe, T.; Chosa, E.; Nakamura, K. Prognostic significance of pre- and postoperative glasgow prognostic score for patients with non-small cell lung cancer. Anticancer Res. 2014, 34, 3137–3140. [Google Scholar] [PubMed]
- Ardies, C.M. Inflammation as cause for scar cancers of the lung. Integr. Cancer Ther. 2003, 2, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Porta, C.; Sica, A.; Allavena, P. Inflammation and cancer: Breast cancer as a prototype. Breast 2007, 16, S27–S33. [Google Scholar] [CrossRef]
- Chiang, A.C.; Massague, J. Molecular basis of metastasis. N. Engl. J. Med. 2008, 359, 2814–2823. [Google Scholar] [CrossRef] [Green Version]
- Favaro, E.; Amadori, A.; Indraccolo, S. Cellular interactions in the vascular niche: Implications in the regulation of tumor dormancy. APMIS 2008, 116, 648–659. [Google Scholar] [CrossRef]
- Walshe, J.M.; Swain, S.M. Clinical aspects of inflammatory breast cancer. Breast Dis. 2005, 22, 35–44. [Google Scholar] [CrossRef]
- Anderson, W.F.; Schairer, C.; Chen, B.E.; Hance, K.W.; Levine, P.H. Epidemiology of inflammatory breast cancer (IBC). Breast Dis. 2005, 22, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidler, I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Newman, S.; Tokumaru, Y.; Yan, L.; Matsuyama, R.; Endo, I.; Nagahashi, M.; Takabe, K. Intra-Tumoral Angiogenesis Is Associated with Inflammation, Immune Reaction and Metastatic Recurrence in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 6708. [Google Scholar] [CrossRef] [PubMed]
- Crespi, E.; Bottai, G.; Santarpia, L. Role of inflammation in obesity-related breast cancer. Curr. Opin. Pharmacol. 2016, 31, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Chung, M.S.; Kang, S.S.; Park, Y. Association between the Dietary Inflammatory Index and Risk for Cancer Recurrence and Mortality among Patients with Breast Cancer. Nutrients 2018, 10, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeMichele, A.; Martin, A.M.; Mick, R.; Gor, P.; Wray, L.; Klein-Cabral, M.; Athanasiadis, G.; Colligan, T.; Stadtmauer, E.; Weber, B. Interleukin-6 -174G-->C polymorphism is associated with improved outcome in high-risk breast cancer. Cancer Res. 2003, 63, 8051–8056. [Google Scholar] [PubMed]
- Snoussi, K.; Strosberg, A.D.; Bouaouina, N.; Ben Ahmed, S.; Chouchane, L. Genetic variation in pro-inflammatory cytokines (interleukin-1beta, interleukin-1alpha and interleukin-6) associated with the aggressive forms, survival, and relapse prediction of breast carcinoma. Eur. Cytokine Netw. 2005, 16, 253–260. [Google Scholar]
- Takkouche, B.; Regueira-Mendez, C.; Etminan, M. Breast cancer and use of nonsteroidal anti-inflammatory drugs: A meta-analysis. J. Natl. Cancer Inst. 2008, 100, 1439–1447. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.S.; Zhu, S.; Li, X.W.; Wang, F.; Hu, F.L.; Li, D.D.; Zhang, W.C.; Li, X. Association between NSAIDs use and breast cancer risk: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2009, 117, 141–150. [Google Scholar] [CrossRef]
- Decensi, A.; Gandini, S.; Serrano, D.; Cazzaniga, M.; Pizzamiglio, M.; Maffini, F.; Pelosi, G.; Daldoss, C.; Omodei, U.; Johansson, H.; et al. Randomized dose-ranging trial of tamoxifen at low doses in hormone replacement therapy users. J. Clin. Oncol. 2007, 25, 4201–4209. [Google Scholar] [CrossRef]
- Bonanni, B.; Johansson, H.; Gandini, S.; Guerrieri-Gonzaga, A.; Sandri, M.T.; Mariette, F.; Lien, E.A.; Decensi, A. Effect of tamoxifen at low doses on ultrasensitive C-reactive protein in healthy women. J. Thromb. Haemost. 2003, 1, 2149–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushman, M.; Costantino, J.P.; Tracy, R.P.; Song, K.; Buckley, L.; Roberts, J.D.; Krag, D.N. Tamoxifen and cardiac risk factors in healthy women: Suggestion of an anti-inflammatory effect. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.L.; Neuhouser, M.L.; Wener, M.H.; Bernstein, L.; Baumgartner, R.N.; Ballard-Barbash, R.; Gilliland, F.D.; Baumgartner, K.B.; Sorensen, B.; McTiernan, A.; et al. Correlates of circulating C-reactive protein and serum amyloid A concentrations in breast cancer survivors. Breast Cancer Res. Treat. 2009, 114, 155–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timpson, N.J.; Lawlor, D.A.; Harbord, R.M.; Gaunt, T.R.; Day, I.N.; Palmer, L.J.; Hattersley, A.T.; Ebrahim, S.; Lowe, G.D.; Rumley, A.; et al. C-reactive protein and its role in metabolic syndrome: Mendelian randomisation study. Lancet 2005, 366, 1954–1959. [Google Scholar] [CrossRef]
- Ford, D.E.; Erlinger, T.P. Depression and C-reactive protein in US adults: Data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2004, 164, 1010–1014. [Google Scholar] [CrossRef] [Green Version]
- Banks, J.; Marmot, M.; Oldfield, Z.; Smith, J.P. Disease and disadvantage in the United States and in England. JAMA 2006, 295, 2037–2045. [Google Scholar] [CrossRef]
- Cole, S.W. Chronic inflammation and breast cancer recurrence. J. Clin. Oncol. 2009, 27, 3418–3419. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, J.; Wei, Y.; Feng, J.; Ma, M.; Zhao, H.; Wang, L.; Jiao, W. MiR-139-5p regulates VEGFR and downstream signaling pathways to inhibit the development of esophageal cancer. Dig. Liver. Dis. 2019, 51, 149–156. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Li, M.; Yan, H.; Sun, M.; Fan, T. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: Implications for the clinical target volume design of postoperative radiotherapy. Onco. Targets Ther. 2016, 9, 6021–6027. [Google Scholar] [CrossRef] [Green Version]
- Tomulescu, V.; Stanescu, C.; Blajut, C.; Barbulescu, L.; Droc, G.; Herlea, V.; Popescu, I. Robotic Approach in Benign and Malignant Esophageal Tumors; A Preliminary Seven Case Series. Chirurgia 2018, 113, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Yoshida, N.; Baba, Y.; Nakamura, K.; Kosumi, K.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Sakamoto, Y.; Ajani, J.A.; et al. Pyloroplasty may reduce weight loss 1 year after esophagectomy. Dis. Esophagus 2018, 31, 3. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Geng, H.; Cheng, Y.; Dong, N.; Ning, F.; Yu, Z.; Jian, J.; Chen, S. Effects of MiR-210 on proliferation, apoptosis and invasion abilities of esophageal cancer cells. J. BUON 2018, 23, 814–819. [Google Scholar] [PubMed]
- Zheng, L.; Jiang, J.; Liu, Y.; Zheng, X.; Wu, C. Correlations of recurrence after radical surgery for esophageal cancer with glucose-lipid metabolism, insulin resistance, inflammation, stress and serum p53 expression. J. BUON 2019, 24, 1666–1672. [Google Scholar] [PubMed]
- Lindenmann, J.; Fink-Neuboeck, N.; Koesslbacher, M.; Pichler, M.; Stojakovic, T.; Roller, R.E.; Maier, A.; Anegg, U.; Smolle, J.; Smolle-Juettner, F.M. The influence of elevated levels of C-reactive protein and hypoalbuminemia on survival in patients with advanced inoperable esophageal cancer undergoing palliative treatment. J. Surg. Oncol. 2014, 110, 645–650. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Huang, L.; Liu, S.; Lei, Y.; Wang, K.; Xu, M.; Chen, Y.; Liu, B.; Chen, Y.; Fu, Q.; Zhang, P.; et al. Systemic immune-inflammation index, thymidine phosphorylase and survival of localized gastric cancer patients after curative resection. Oncotarget 2016, 7, 44185–44193. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Noh, S.H.; Park, S.R.; Yang, H.K.; Chung, H.C.; Chung, I.J.; Kim, S.W.; Kim, H.H.; Choi, J.H.; Kim, H.K.; Yu, W.; et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1389–1396. [Google Scholar] [CrossRef]
- Cunningham, D.; Okines, A.F.; Ashley, S. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N. Engl. J. Med. 2010, 362, 858–859. [Google Scholar] [CrossRef]
- Li, T.J.; Jiang, Y.M.; Hu, Y.F.; Huang, L.; Yu, J.; Zhao, L.Y.; Deng, H.J.; Mou, T.Y.; Liu, H.; Yang, Y.; et al. Interleukin-17-Producing Neutrophils Link Inflammatory Stimuli to Disease Progression by Promoting Angiogenesis in Gastric Cancer. Clin. Cancer Res. 2017, 23, 1575–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarz-Misa, I.; Fortuna, P.; Diakowska, D.; Jamrozik, N.; Krzystek-Korpacka, M. Distinct Local and Systemic Molecular Signatures in the Esophageal and Gastric Cancers: Possible Therapy Targets and Biomarkers for Gastric Cancer. Int. J. Mol. Sci. 2020, 21, 4509. [Google Scholar] [CrossRef] [PubMed]
- Cupp, M.A.; Cariolou, M.; Tzoulaki, I.; Aune, D.; Evangelou, E.; Berlanga-Taylor, A.J. Neutrophil to lymphocyte ratio and cancer prognosis: An umbrella review of systematic reviews and meta-analyses of observational studies. BMC Med. 2020, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Song, K.Y. The preoperative and the postoperative neutrophil-to-lymphocyte ratios both predict prognosis in gastric cancer patients. World J. Surg. Oncol. 2020, 18, 293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Wu, Y.; Zhu, Y.; Lin, Z.; Yu, D.; Zhang, T. The Prognostic Value of Neutrophil-to-lymphocyte Ratio and Monocyte-to-lymphocyte Ratio in Metastatic Gastric Cancer Treated with Systemic Chemotherapy. J. Cancer 2020, 11, 4205–4212. [Google Scholar] [CrossRef]
- Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Noreen, S.M.; Robinson, A.M.; Miller, E.; Snyder, J.J.; Israni, A.K.; et al. OPTN/SRTR 2017 Annual Data Report: Liver. Am. J. Transplant 2019, 19, 184–283. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Rosenblatt, R.E.; Tafesh, Z.H.; Halazun, K.J. Role of inflammatory markers as hepatocellular cancer selection tool in the setting of liver transplantation. Transl. Gastroenterol. Hepatol. 2017, 2, 95. [Google Scholar] [CrossRef] [Green Version]
- Meischl, T.; Rasoul-Rockenschaub, S.; Gyori, G.; Sieghart, W.; Reiberger, T.; Trauner, M.; Soliman, T.; Berlakovich, G.; Pinter, M. C-reactive protein is an independent predictor for hepatocellular carcinoma recurrence after liver transplantation. PLoS ONE 2019, 14, e0216677. [Google Scholar] [CrossRef]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 2018, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Qi, Z.; Ding, Y.; Yu, X.; Pang, L.; Zhao, T. Effect of Interventional Therapy on IL-1beta, IL-6, and Neutrophil-Lymphocyte Ratio (NLR) Levels and Outcomes in Patients with Ischemic Cerebrovascular Disease. Med. Sci. Monit. 2019, 25, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.R.; Cook, E.J.; Goulder, F.; Justin, T.A.; Keeling, N.J. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol. 2005, 91, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Limaye, A.R.; Clark, V.; Soldevila-Pico, C.; Morelli, G.; Suman, A.; Firpi, R.; Nelson, D.R.; Cabrera, R. Neutrophil-lymphocyte ratio predicts overall and recurrence-free survival after liver transplantation for hepatocellular carcinoma. Hepatol. Res. 2013, 43, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M.N.; Forde, J.; Milla, E.; Khan, W.; Cabrera, R. Utility of Inflammatory Markers in Predicting Hepatocellular Carcinoma Survival after Liver Transplantation. Biomed. Res. Int. 2019, 2019, 7284040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, Y.; Haruki, K.; Shiba, H.; Hamura, R.; Shirai, Y.; Furukawa, K.; Gocho, T.; Yanaga, K. The Comparison of Inflammation-Based Prognostic Scores in Patients With Extrahepatic Bile Duct Cancer After Pancreaticoduodenectomy. J. Surg. Res. 2019, 238, 102–112. [Google Scholar] [CrossRef]
- Heald, R.J.; Ryall, R.D. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986, 1, 1479–1482. [Google Scholar] [CrossRef]
- den Dulk, M.; Krijnen, P.; Marijnen, C.A.; Rutten, H.J.; van de Poll-Franse, L.V.; Putter, H.; Meershoek-Klein Kranenbarg, E.; Jansen-Landheer, M.L.; Coebergh, J.W.; van de Velde, C.J. Improved overall survival for patients with rectal cancer since 1990: The effects of TME surgery and pre-operative radiotherapy. Eur. J. Cancer. 2008, 44, 1710–1716. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, S.; Akasu, T.; Fujita, S.; Yamamoto, S.; Kusters, M.; Moriya, Y. Pelvic exenteration for clinical T4 rectal cancer: Oncologic outcome in 93 patients at a single institution over a 30-year period. Surgery 2009, 145, 189–195. [Google Scholar] [CrossRef]
- Bhangu, A.; Ali, S.M.; Darzi, A.; Brown, G.; Tekkis, P. Meta-analysis of survival based on resection margin status following surgery for recurrent rectal cancer. Colorectal. Dis. 2012, 14, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S. Total pelvic exenteration with distal sacrectomy for fixed recurrent rectal cancer in the pelvis. Dis. Colon Rectum. 2004, 47, 2047–2053. [Google Scholar] [CrossRef]
- Mirnezami, A.; Mirnezami, R.; Chandrakumaran, K.; Sasapu, K.; Sagar, P.; Finan, P. Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak: Systematic review and meta-analysis. Ann. Surg. 2011, 253, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.D.; Pickhardt, P.J. Diseases of the Colon and Rectum: CT Colonography. In Diseases of the Abdomen and Pelvis 2018–2021: Diagnostic Imaging—IDKD Book; Hodler, J., Kubik-Huch, R.A., von Schulthess, G.K., Eds.; Springer: Cham, Switzerland, 2018; pp. 167–171. [Google Scholar]
- Varkaris, A.; Katsiampoura, A.; Davis, J.S.; Shah, N.; Lam, M.; Frias, R.L.; Ivan, C.; Shimizu, M.; Morris, J.; Menter, D.; et al. Circulating inflammation signature predicts overall survival and relapse-free survival in metastatic colorectal cancer. Br. J. Cancer 2019, 120, 340–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, A.L.; Penney, M.D.; Allison, M.C. The prevalence of iron deficiency among patients presenting with colorectal cancer. Colorectal Dis. 2005, 7, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Vayrynen, J.P.; Tuomisto, A.; Vayrynen, S.A.; Klintrup, K.; Karhu, T.; Makela, J.; Herzig, K.H.; Karttunen, T.J.; Makinen, M.J. Preoperative anemia in colorectal cancer: Relationships with tumor characteristics, systemic inflammation, and survival. Sci. Rep. 2018, 8, 1126. [Google Scholar] [CrossRef] [PubMed]
- Dolan, R.D.; Lim, J.; McSorley, S.T.; Horgan, P.G.; McMillan, D.C. The role of the systemic inflammatory response in predicting outcomes in patients with operable cancer: Systematic review and meta-analysis. Sci. Rep. 2017, 7, 16717. [Google Scholar] [CrossRef]
- McSorley, S.T.; Johnstone, M.; Steele, C.W.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Mansouri, D. Normocytic anaemia is associated with systemic inflammation and poorer survival in patients with colorectal cancer treated with curative intent. Int. J. Colorectal. Dis. 2019, 34, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Elit, L.; Fyles, A.W.; Oliver, T.K.; Devries-Aboud, M.C.; Fung-Kee-Fung, M.; members of the Gynecology Cancer Disease Site Group of Cancer Care Ontario’s Program in Evidence-Based Care. Follow-up for women after treatment for cervical cancer. Curr. Oncol. 2010, 17, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Polterauer, S.; Grimm, C.; Seebacher, V.; Rahhal, J.; Tempfer, C.; Reinthaller, A.; Hefler, L. The inflammation-based Glasgow Prognostic Score predicts survival in patients with cervical cancer. Int. J. Gynecol. Cancer 2010, 20, 1052–1057. [Google Scholar] [CrossRef]
- Xiao, Y.; Ren, Y.K.; Cheng, H.J.; Wang, L.; Luo, S.X. Modified Glasgow prognostic score is an independent prognostic factor in patients with cervical cancer undergoing chemoradiotherapy. Int. J. Clin. Exp. Pathol. 2015, 8, 5273–5281. [Google Scholar]
- Seebacher, V.; Sturdza, A.; Bergmeister, B.; Polterauer, S.; Grimm, C.; Reinthaller, A.; Hilal, Z.; Aust, S. Factors associated with post-relapse survival in patients with recurrent cervical cancer: The value of the inflammation-based Glasgow Prognostic Score. Arch. Gynecol. Obstet. 2019, 299, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Global Burden of Disease Cancer, C.; Fitzmaurice, C.; Akinyemiju, T.F.; Al Lami, F.H.; Alam, T.; Alizadeh-Navaei, R.; Allen, C.; Alsharif, U.; Alvis-Guzman, N.; Amini, E.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef] [PubMed]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Gronberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakai, Y.; Nonomura, N. Inflammation and prostate carcinogenesis. Int. J. Urol. 2013, 20, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Taverna, G.; Pedretti, E.; Di Caro, G.; Borroni, E.M.; Marchesi, F.; Grizzi, F. Inflammation and prostate cancer: Friends or foe? Inflamm. Res. 2015, 64, 275–286. [Google Scholar] [CrossRef]
- Schillaci, O.; Scimeca, M.; Trivigno, D.; Chiaravalloti, A.; Facchetti, S.; Anemona, L.; Bonfiglio, R.; Santeusanio, G.; Tancredi, V.; Bonanno, E.; et al. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl. Med. Biol. 2019, 68–69, 66–79. [Google Scholar] [CrossRef]
- Ruiz-Nunez, B.; Pruimboom, L.; Dijck-Brouwer, D.A.; Muskiet, F.A. Lifestyle and nutritional imbalances associated with Western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem. 2013, 24, 1183–1201. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Fujita, K.; Matsushita, M.; Nonomura, N. Main Inflammatory Cells and Potentials of Anti-Inflammatory Agents in Prostate Cancer. Cancers 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Irani, J.; Goujon, J.M.; Ragni, E.; Peyrat, L.; Hubert, J.; Saint, F.; Mottet, N. High-grade inflammation in prostate cancer as a prognostic factor for biochemical recurrence after radical prostatectomy. Pathologist Multi Center Study Group. Urology 1999, 54, 467–472. [Google Scholar] [CrossRef]
- Soria, F.; Giordano, A.; D’Andrea, D.; Moschini, M.; Roupret, M.; Margulis, V.; Karakiewicz, P.I.; Briganti, A.; Bensalah, K.; Mathieu, R.; et al. Prognostic value of the systemic inflammation modified Glasgow prognostic score in patients with upper tract urothelial carcinoma (UTUC) treated with radical nephroureterectomy: Results from a large multicenter international collaboration. Urol. Oncol. 2020, 38, 602.e11–602.e19. [Google Scholar] [CrossRef]
- Bredholt, G.; Mannelqvist, M.; Stefansson, I.M.; Birkeland, E.; Bo, T.H.; Oyan, A.M.; Trovik, J.; Kalland, K.H.; Jonassen, I.; Salvesen, H.B.; et al. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses. Oncotarget 2015, 6, 39676–39691. [Google Scholar] [CrossRef] [Green Version]
- Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta 2006, 1757, 1371–1387. [Google Scholar] [CrossRef] [PubMed]
- Land, W.G. The Role of Damage-Associated Molecular Patterns (DAMPs) in Human Diseases: Part II: DAMPs as diagnostics, prognostics and therapeutics in clinical medicine. Sultan Qaboos Univ. Med. J. 2015, 15, e157–e170. [Google Scholar] [PubMed]
- Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity 2013, 38, 209–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, C.; Huebener, P.; Schwabe, R.F. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016, 35, 5931–5941. [Google Scholar] [CrossRef]
- Sulciner, M.L.; Serhan, C.N.; Gilligan, M.M.; Mudge, D.K.; Chang, J.; Gartung, A.; Lehner, K.A.; Bielenberg, D.R.; Schmidt, B.; Dalli, J.; et al. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med. 2018, 215, 115–140. [Google Scholar] [CrossRef]
- Janakiram, N.B.; Rao, C.V. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr. Mol. Med. 2009, 9, 565–579. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, B.; Li, Y. Resolution of Cancer-Promoting Inflammation: A New Approach for Anticancer Therapy. Front. Immunol. 2017, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016, 5, e190. [Google Scholar] [CrossRef] [Green Version]
- Caino, M.C.; Chae, Y.C.; Vaira, V.; Ferrero, S.; Nosotti, M.; Martin, N.M.; Weeraratna, A.; O’Connell, M.; Jernigan, D.; Fatatis, A.; et al. Metabolic stress regulates cytoskeletal dynamics and metastasis of cancer cells. J. Clin. Investig. 2013, 123, 2907–2920. [Google Scholar] [CrossRef] [Green Version]
- Eustace, A.; Irlam, J.J.; Taylor, J.; Denley, H.; Agrawal, S.; Choudhury, A.; Ryder, D.; Ord, J.J.; Harris, A.L.; Rojas, A.M.; et al. Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother. Oncol. 2013, 108, 40–47. [Google Scholar] [CrossRef]
- Liu, R.; Li, Z.; Bai, S.; Zhang, H.; Tang, M.; Lei, Y.; Chen, L.; Liang, S.; Zhao, Y.L.; Wei, Y.; et al. Mechanism of cancer cell adaptation to metabolic stress: Proteomics identification of a novel thyroid hormone-mediated gastric carcinogenic signaling pathway. Mol. Cell Proteom. 2009, 8, 70–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.; Hasan, M.R. Cancer Metabolism and Drug Resistance. Metabolites 2015, 5, 571–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundqvist, H.; Johnson, R.S. Tumour oxygenation: Implications for breast cancer prognosis. J. Intern. Med. 2013, 274, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Tomes, L.; Emberley, E.; Niu, Y.; Troup, S.; Pastorek, J.; Strange, K.; Harris, A.; Watson, P.H. Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res. Treat. 2003, 81, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Thompson, C.B. Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol. Cell 2010, 40, 323–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsch-Bluman, A.; Feiglin, A.; Arbib, E.; Stern, T.; Shoval, H.; Schwob, O.; Berger, M.; Benny, O. Tissue necrosis and its role in cancer progression. Oncogene 2019, 38, 1920–1935. [Google Scholar] [CrossRef]
- Asahara, T.; Katayama, K.; Itamoto, T.; Yano, M.; Hino, H.; Okamoto, Y.; Nakahara, H.; Dohi, K.; Moriwaki, K.; Yuge, O. Perioperative blood transfusion as a prognostic indicator in patients with hepatocellular carcinoma. World J. Surg. 1999, 23, 676–680. [Google Scholar] [CrossRef]
- Shiba, H.; Ishida, Y.; Wakiyama, S.; Iida, T.; Matsumoto, M.; Sakamoto, T.; Ito, R.; Gocho, T.; Furukawa, K.; Fujiwara, Y.; et al. Negative impact of blood transfusion on recurrence and prognosis of hepatocellular carcinoma after hepatic resection. J. Gastrointest. Surg. 2009, 13, 1636–1642. [Google Scholar] [CrossRef]
- Tomimaru, Y.; Wada, H.; Marubashi, S.; Kobayashi, S.; Eguchi, H.; Takeda, Y.; Tanemura, M.; Noda, T.; Umeshita, K.; Doki, Y.; et al. Fresh frozen plasma transfusion does not affect outcomes following hepatic resection for hepatocellular carcinoma. World J. Gastroenterol. 2010, 16, 5603–5610. [Google Scholar] [CrossRef]
- Sugita, S.; Sasaki, A.; Iwaki, K.; Uchida, H.; Kai, S.; Shibata, K.; Ohta, M.; Kitano, S. Prognosis and postoperative lymphocyte count in patients with hepatocellular carcinoma who received intraoperative allogenic blood transfusion: A retrospective study. Eur. J. Surg. Oncol. 2008, 34, 339–345. [Google Scholar] [CrossRef]
- Eisenkop, S.M.; Spirtos, N.M.; Montag, T.W.; Moossazadeh, J.; Warren, P.; Hendrickson, M. The clinical significance of blood transfusion at the time of radical hysterectomy. Obstet. Gynecol. 1990, 76, 110–113. [Google Scholar] [CrossRef]
- Moores, D.W.; Piantadosi, S.; McKneally, M.F. Effect of perioperative blood transfusion on outcome in patients with surgically resected lung cancer. Ann. Thorac. Surg. 1989, 47, 346–351. [Google Scholar] [CrossRef]
- Chesi, R.; Cazzola, A.; Bacci, G.; Borghi, B.; Balladelli, A.; Urso, G. Effect of perioperative transfusions on survival in osteosarcoma treated by multimodal therapy. Cancer 1989, 64, 1727–1737. [Google Scholar] [CrossRef]
- Edna, T.H.; Vada, K.; Hesselberg, F.; Mjolnerod, O.K. Blood transfusion and survival following surgery for renal carcinoma. Br. J. Urol. 1992, 70, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Matsumata, T.; Ikeda, Y.; Hayashi, H.; Kamakura, T.; Taketomi, A.; Sugimachi, K. The association between transfusion and cancer-free survival after curative resection for hepatocellular carcinoma. Cancer 1993, 72, 1866–1871. [Google Scholar] [CrossRef]
- Parrott, N.R.; Lennard, T.W.; Taylor, R.M.; Proud, G.; Shenton, B.K.; Johnston, I.D. Effect of perioperative blood transfusion on recurrence of colorectal cancer. Br. J. Surg. 1986, 73, 970–973. [Google Scholar] [CrossRef]
- Jakobsen, E.B.; Eickhoff, J.H.; Andersen, J.; Lundvall, L.; Stenderup, J.K. Perioperative blood transfusion and recurrence and death after resection for cancer of the colon and rectum. Scand. J. Gastroenterol. 1990, 25, 435–442. [Google Scholar] [CrossRef]
- Creasy, T.S.; Veitch, P.S.; Bell, P.R. A relationship between perioperative blood transfusion and recurrence of carcinoma of the sigmoid colon following potentially curative surgery. Ann. R Coll. Surg. Engl. 1987, 69, 100–103. [Google Scholar]
- Mecklin, J.P.; Jarvinen, H.J.; Ovaska, J.T. Blood transfusion and prognosis in colorectal carcinoma. Scand. J. Gastroenterol. 1989, 24, 33–39. [Google Scholar] [CrossRef]
- Jones, K.R.; Weissler, M.C. Blood transfusion and other risk factors for recurrence of cancer of the head and neck. Arch. Otolaryngol. Head Neck Surg. 1990, 116, 304–309. [Google Scholar] [CrossRef]
- Chung, M.; Steinmetz, O.K.; Gordon, P.H. Perioperative blood transfusion and outcome after resection for colorectal carcinoma. Br. J. Surg. 1993, 80, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.S.; Wang, Q.; Wang, W.J.; Hu, Z.Q. Intraoperative allogeneic red blood cell transfusion in ampullary cancer outcome after curative pancreatoduodenectomy: A clinical study and meta-analysis. World J. Surg. 2008, 32, 2038–2046. [Google Scholar] [CrossRef] [PubMed]
- Busch, O.R.; Hop, W.C.; Marquet, R.L.; Jeekel, J. Blood transfusions and local tumor recurrence in colorectal cancer. Evidence of a noncausal relationship. Ann. Surg. 1994, 220, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Heal, J.M.; Chuang, C.; Blumberg, N. Perioperative blood transfusions and prostate cancer recurrence and survival. Am. J. Surg. 1988, 156, 374–380. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; Patel, S.H.; Chu, C.K.; Maithel, S.K.; Sarmiento, J.M.; Delman, K.A.; Staley, C.A., 3rd; Kooby, D.A. Effects of perioperative red blood cell transfusion on disease recurrence and survival after pancreaticoduodenectomy for ductal adenocarcinoma. Ann. Surg. Oncol. 2011, 18, 1327–1334. [Google Scholar] [CrossRef]
- Chau, J.K.; Harris, J.R.; Seikaly, H.R. Transfusion as a predictor of recurrence and survival in head and neck cancer surgery patients. J. Otolaryngol. Head Neck Surg. 2010, 39, 516–522. [Google Scholar]
- Wang, C.C.; Iyer, S.G.; Low, J.K.; Lin, C.Y.; Wang, S.H.; Lu, S.N.; Chen, C.L. Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma. Ann. Surg. Oncol. 2009, 16, 1832–1842. [Google Scholar] [CrossRef]
- Ford, B.S.; Sharma, S.; Rezaishiraz, H.; Huben, R.S.; Mohler, J.L. Effect of perioperative blood transfusion on prostate cancer recurrence. Urol. Oncol. 2008, 26, 364–367. [Google Scholar] [CrossRef]
- Gallina, A.; Briganti, A.; Chun, F.K.; Walz, J.; Hutterer, G.C.; Erbersdobler, A.; Eichelberg, C.; Schlomm, T.; Ahyai, S.A.; Perrotte, P.; et al. Effect of autologous blood transfusion on the rate of biochemical recurrence after radical prostatectomy. BJU Int. 2007, 100, 1249–1253. [Google Scholar] [CrossRef]
- Morris, P.C.; Haugen, J.; Tomjack, J.; Anderson, B.; Buller, R.E. Blood transfusion and the risk of recurrence in stage IB cervical cancer. Gynecol. Oncol. 1995, 57, 401–406. [Google Scholar] [CrossRef]
- Sene, A.; Jeacock, J.; Robinson, C.; Walsh, S.; Kingston, R.D. Blood transfusion does not have an adverse effect on survival after operation for colorectal cancer. Ann. R. Coll. Surg. Engl. 1993, 75, 261–266. [Google Scholar] [PubMed]
- Paul, R.; Schmid, R.; Busch, R.; van Randenborgh, H.; Alschibaja, M.; Scholer, S.; Hartung, R. Influence of blood transfusions during radical retropubic prostatectomy on disease outcome. Urology 2006, 67, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Kwon, A.H.; Matsui, Y.; Kamiyama, Y. Perioperative blood transfusion in hepatocellular carcinomas: Influence of immunologic profile and recurrence free survival. Cancer 2001, 91, 771–778. [Google Scholar] [CrossRef]
- Kaibori, M.; Ishizaki, M.; Matsui, K.; Kitade, H.; Matsui, Y.; Kwon, A.H. Evaluation of metabolic factors on the prognosis of patients undergoing resection of hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2011, 26, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Pescatori, M. Perioperative blood transfusions for the recurrence of colorectal cancer. Cochrane Database Syst. Rev. 2004, 005033. [Google Scholar] [CrossRef]
- Oefelein, M.G.; Colangelo, L.A.; Rademaker, A.W.; McVary, K.T. Intraoperative blood loss and prognosis in prostate cancer patients undergoing radical retropubic prostatectomy. J. Urol. 1995, 154, 442–447. [Google Scholar] [CrossRef]
- Ness, P.M.; Bourke, D.L.; Walsh, P.C. A randomized trial of perioperative hemodilution versus transfusion of preoperatively deposited autologous blood in elective surgery. Transfusion 1992, 32, 226–230. [Google Scholar] [CrossRef]
- Moir, M.S.; Samy, R.N.; Hanasono, M.M.; Terris, D.J. Autologous and heterologous blood transfusion in head and neck cancer surgery. Arch. Otolaryngol. Head Neck Surg. 1999, 125, 864–868. [Google Scholar] [CrossRef] [Green Version]
- Busch, O.R.; Hop, W.C.; Hoynck van Papendrecht, M.A.; Marquet, R.L.; Jeekel, J. Blood transfusions and prognosis in colorectal cancer. N. Engl. J. Med. 1993, 328, 1372–1376. [Google Scholar] [CrossRef]
- Fujimoto, J.; Okamoto, E.; Yamanaka, N.; Oriyama, T.; Furukawa, K.; Kawamura, E.; Tanaka, T.; Tomoda, F. Efficacy of autotransfusion in hepatectomy for hepatocellular carcinoma. Arch. Surg. 1993, 128, 1065–1069. [Google Scholar] [CrossRef]
- Hirano, T.; Yamanaka, J.; Iimuro, Y.; Fujimoto, J. Long-term safety of autotransfusion during hepatectomy for hepatocellular carcinoma. Surg. Today 2005, 35, 1042–1046. [Google Scholar] [CrossRef] [PubMed]
- Ereth, M.H.; Oliver, W.C., Jr.; Santrach, P.J. Perioperative interventions to decrease transfusion of allogeneic blood products. Mayo Clin. Proc. 1994, 69, 575–586. [Google Scholar] [CrossRef]
- Popovsky, M.A.; Devine, P.A.; Taswell, H.F. Intraoperative autologous transfusion. Mayo Clin. Proc. 1985, 60, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.B.; Li, D.L.; Liang, L.; Li, J.J.; Bai, X.L.; Yu, W.; Wang, W.L.; Shen, Y.; Zhang, M.; Zheng, S.S. Intraoperative blood salvage during liver transplantation in patients with hepatocellular carcinoma: Efficiency of leukocyte depletion filters in the removal of tumor cells. Transplantation 2008, 85, 863–869. [Google Scholar] [CrossRef]
- Martin, R.C.; Wellhausen, S.R.; Moehle, D.A.; Martin, A.W.; McMasters, K.M. Evaluation of intraoperative autotransfusion filtration for hepatectomy and pancreatectomy. Ann. Surg. Oncol. 2005, 12, 1017–1024. [Google Scholar] [CrossRef]
- Bower, M.R.; Ellis, S.F.; Scoggins, C.R.; McMasters, K.M.; Martin, R.C. Phase II comparison study of intraoperative autotransfusion for major oncologic procedures. Ann. Surg. Oncol. 2011, 18, 166–173. [Google Scholar] [CrossRef]
- Muscari, F.; Suc, B.; Vigouroux, D.; Duffas, J.P.; Migueres, I.; Mathieu, A.; Lavayssiere, L.; Rostaing, L.; Fourtanier, G. Blood salvage autotransfusion during transplantation for hepatocarcinoma: Does it increase the risk of neoplastic recurrence? Transpl. Int. 2005, 18, 1236–1239. [Google Scholar] [CrossRef]
- Mirhashemi, R.; Averette, H.E.; Deepika, K.; Estape, R.; Angioli, R.; Martin, J.; Rodriguez, M.; Penalver, M.A. The impact of intraoperative autologous blood transfusion during type III radical hysterectomy for early-stage cervical cancer. Am. J. Obstet. Gynecol. 1999, 181, 1310–1315. [Google Scholar] [CrossRef]
- Horowitz, M.; Neeman, E.; Sharon, E.; Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 2015, 12, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Neeman, E.; Ben-Eliyahu, S. Surgery and stress promote cancer metastasis: New outlooks on perioperative mediating mechanisms and immune involvement. Brain Behav. Immun. 2013, 30, S32–S40. [Google Scholar] [CrossRef] [Green Version]
- Haldar, R.; Ben-Eliyahu, S. Reducing the risk of post-surgical cancer recurrence: A perioperative anti-inflammatory anti-stress approach. Future Oncol. 2018, 14, 1017–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawashima, M.; Murakawa, T.; Shinozaki, T.; Ichinose, J.; Hino, H.; Konoeda, C.; Tsuchiya, T.; Murayama, T.; Nagayama, K.; Nitadori, J.; et al. Significance of the Glasgow Prognostic Score as a prognostic indicator for lung cancer surgery. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 637–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melling, N.; Gruning, A.; Tachezy, M.; Nentwich, M.; Reeh, M.; Uzunoglu, F.G.; Vashist, Y.K.; Izbicki, J.R.; Bogoevski, D. Glasgow Prognostic Score may be a prognostic index for overall and perioperative survival in gastric cancer without perioperative treatment. Surgery 2016, 159, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, N.; Matsubara, T.; Kaji, S.; Kawabata, Y.; Hyakudomi, R.; Yamamoto, T.; Uchida, Y.; Ishitobi, K.; Takai, K.; Tajima, Y. Glasgow prognostic score is a better predictor of the long-term survival in patients with gastric cancer, compared to the modified Glasgow prognostic score or high-sensitivity modified Glasgow prognostic score. Oncotarget 2020, 11, 4169–4177. [Google Scholar] [CrossRef]
- Abe, T.; Tashiro, H.; Kobayashi, T.; Hattori, M.; Kuroda, S.; Ohdan, H. Glasgow Prognostic Score and Prognosis After Hepatectomy for Hepatocellular Carcinoma. World J. Surg. 2017, 41, 1860–1870. [Google Scholar] [CrossRef]
- Shiba, H.; Horiuchi, T.; Sakamoto, T.; Furukawa, K.; Shirai, Y.; Iida, T.; Fujiwara, Y.; Haruki, K.; Yanaga, K. Glasgow prognostic score predicts therapeutic outcome after hepatic resection for hepatocellular carcinoma. Oncol. Lett. 2017, 14, 293–298. [Google Scholar] [CrossRef]
- Yamada, S.; Fujii, T.; Yabusaki, N.; Murotani, K.; Iwata, N.; Kanda, M.; Tanaka, C.; Nakayama, G.; Sugimoto, H.; Koike, M.; et al. Clinical Implication of Inflammation-Based Prognostic Score in Pancreatic Cancer: Glasgow Prognostic Score Is the Most Reliable Parameter. Medicine 2016, 95, e3582. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Liu, C.C.; Lu, Y.; Tang, H. The Glasgow Prognostic Score (GPS) is a novel prognostic indicator in advanced epithelial ovarian cancer: A multicenter retrospective study. J. Cancer Res. Clin. Oncol. 2016, 142, 2339–2345. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Cai, J.; Chen, L.; Yao, J.; Zhang, Y.; Xu, W.; Geng, L.; Yang, M.; Chen, P.; et al. Prognostic Value of the Glasgow Prognostic Score or Modified Glasgow Prognostic Score for Patients with Colorectal Cancer Receiving Various Treatments: A Systematic Review and Meta-Analysis. Cell Physiol. Biochem. 2018, 51, 1237–1249. [Google Scholar] [CrossRef]
- Lu, X.; Guo, W.; Xu, W.; Zhang, X.; Shi, Z.; Zheng, L.; Zhao, W. Prognostic value of the Glasgow prognostic score in colorectal cancer: A meta-analysis of 9839 patients. Cancer Manag. Res. 2019, 11, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Yuksel, O.H.; Akan, S.; Urkmez, A.; Yildirim, C.; Sahin, A.; Verit, A. Preoperative Glasgow prognostic score as a predictor of primary bladder cancer recurrence. Mol. Clin. Oncol. 2016, 5, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Chang, Q.; Meng, X.; Gao, N.; Wang, W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J. Cancer 2018, 9, 3295–3302. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, D. The prognostic value of systemic immune-inflammation index (SII) in patients after radical operation for carcinoma of stomach in gastric cancer. J. Gastrointest. Oncol. 2019, 10, 965–978. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Seruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocana, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, R.; Inagawa, S.; Sano, N.; Tadano, S.; Adachi, S.; Yamamoto, M. The neutrophil-to-lymphocyte ratio (NLR) predicts short-term and long-term outcomes in gastric cancer patients. Eur. J. Surg. Oncol. 2018, 44, 607–612. [Google Scholar] [CrossRef]
- Inamoto, S.; Kawada, K.; Okamura, R.; Hida, K.; Sakai, Y. Prognostic impact of the combination of neutrophil-to-lymphocyte ratio and Glasgow prognostic score in colorectal cancer: A retrospective cohort study. Int. J. Colorectal Dis. 2019, 34, 1303–1315. [Google Scholar] [CrossRef]
Clinical Indices | Cancer Types | Clinical Outcomes |
---|---|---|
Glasgow Prognostic Score | NSCLC Gastric cancer HCC Pancreatic cancer Ovarian cancer Cervical cancer Colorectal cancer Bladder cancer | Poor OS [42,183] Poor OS [184,185] Poor OS [186,187] Poor OS [95,188] Poor OS [103,104,105,189] Poor OS and DFS [109] Poor OS [190,191] Poor RFS [192] |
Systemic Immune-Inflammation Index | All NSCLC Small cell lung cancer Esophageal cancer Gastric cancer Pancreatic cancer Urological cancer Melanoma | Poor OS, RFS, DFS [193] Poor OS [39,193], poor DFS [39] Poor OS [193] Poor OS [38,193] Poor OS [193,194], poor DFS [194] Poor OS [193] Poor OS [193] Poor OS [193] |
Neutrophil-to-Lymphocyte Ratio | All NSCLC Gastric cancer HCC Colorecal cancer Renal cancer | Poor DFS [195] Poor RFS [34,36] Poor OS [196], poor DFS [195,196] Poor OS [88], poor DFS [87,195] Poor OS [197], poor DFS [195,197] Poor DFS [195] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinoshita, T.; Goto, T. Links between Inflammation and Postoperative Cancer Recurrence. J. Clin. Med. 2021, 10, 228. https://doi.org/10.3390/jcm10020228
Kinoshita T, Goto T. Links between Inflammation and Postoperative Cancer Recurrence. Journal of Clinical Medicine. 2021; 10(2):228. https://doi.org/10.3390/jcm10020228
Chicago/Turabian StyleKinoshita, Tomonari, and Taichiro Goto. 2021. "Links between Inflammation and Postoperative Cancer Recurrence" Journal of Clinical Medicine 10, no. 2: 228. https://doi.org/10.3390/jcm10020228
APA StyleKinoshita, T., & Goto, T. (2021). Links between Inflammation and Postoperative Cancer Recurrence. Journal of Clinical Medicine, 10(2), 228. https://doi.org/10.3390/jcm10020228