Implementation of Robotic Assistance in Pancreatic Surgery: Experiences from the First 101 Consecutive Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Exclusion Criteria
2.2. Perioperative Course
2.3. Implementation Process and Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gagner, M.; Pomp, A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg. Endosc. 1994, 8, 408–410. [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; de Rooij, T.; Bosscha, K.; Brinkman, D.J.; van Dieren, S.; Dijkgraaf, M.G.; Gerhards, M.F.; de Hingh, I.H.; Karsten, T.M.; Lips, D.J.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 199–207. [Google Scholar] [CrossRef]
- Cuschieri, A. Laparoscopic Pancreatic Resections. Semin. Laparosc. Surg. 1996, 3, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Dokmak, S.; Fteriche, F.S.; Aussilhou, B.; Bensafta, Y.; Levy, P.; Ruszniewski, P.; Belghiti, J.; Sauvanet, A. Laparoscopic pancreaticoduodenectomy should not be routine for resection of periampullary tumors. J. Am. Coll. Surg. 2015, 220, 831–838. [Google Scholar] [CrossRef]
- Nickel, F.; Haney, C.M.; Kowalewski, K.F.; Probst, P.; Limen, E.F.; Kalkum, E.; Diener, M.K.; Strobel, O.; Müller-Stich, B.P.; Hackert, T. Laparoscopic Versus Open Pancreaticoduodenectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann. Surg. 2020, 271, 54–66. [Google Scholar] [CrossRef]
- Palanivelu, C.; Senthilnathan, P.; Sabnis, S.C.; Babu, N.S.; Srivatsan Gurumurthy, S.; Anand Vijai, N.; Nalankilli, V.P.; Raj, P.P.; Parthasarathy, R.; Rajapandian, S. Randomised clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br. J. Surg. 2017, 104, 1443–1450. [Google Scholar] [CrossRef]
- Poves, I.; Burdio, F.; Morato, O.; Iglesias, M.; Radosevic, A.; Ilzarbe, L.; Visa, L.; Grande, L. Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy: The PADULAP Randomized Controlled Trial. Ann. Surg. 2018, 268, 731–739. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Z.; Cao, Z.; Wu, W.; Xiao, W.; Cao, J. Long-Term Oncological Outcomes in Laparoscopic Versus Open Pancreaticoduodenectomy for Pancreatic Cancer: A Systematic Review and Meta-Analysis. J. Laparoendosc. Adv. Surg. Tech. A 2019, 29, 759–769. [Google Scholar] [CrossRef]
- Lefor, A.K. Robotic and laparoscopic surgery of the pancreas: An historical review. BMC Biomed Eng. 2019, 1, 2. [Google Scholar] [CrossRef]
- Leal Ghezzi, T.; Campos Corleta, O. 30 Years of Robotic Surgery. World J. Surg. 2016, 40, 2550–2557. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Z.M.; Gao, Y.X.; Lau, W.Y.; Liu, R. The learning curve for a surgeon in robot-assisted laparoscopic pancreaticoduodenectomy: A retrospective study in a high-volume pancreatic center. Surg. Endosc. 2019, 33, 2927–2933. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Jin, W.; Mou, Y.P.; Zhou, J.; Xu, X.; Xia, T.; Zhang, R.; Zhou, Y.; Yan, J.; Huang, C.; et al. Analysis of learning curve for laparoscopic pancreaticoduodenectomy. J. Vis. Surg. 2016, 2, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, A.A.; Kent, T.S.; Gooding, W.E.; Boggi, U.; Chalikonda, S.; Kendrick, M.L.; Walsh, R.M.; Zeh, H.J., 3rd; Moser, A.J. Multicenter outcomes of robotic reconstruction during the early learning curve for minimally-invasive pancreaticoduodenectomy. HPB 2018, 20, 155–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, N.; Kauffmann, E.F.; Perrone, V.G.; Miccoli, M.; Brozzetti, S.; Boggi, U. The learning curve in robotic distal pancreatectomy. Updates Surg. 2015, 67, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Nota, C.L.; Zwart, M.J.; Fong, Y.; Hagendoorn, J.; Hogg, M.E.; Koerkamp, B.G.; Besselink, M.G.; Molenaar, I.Q.; The Dutch Pancreatic Cancer Group. Developing a robotic pancreas program: The Dutch experience. J. Vis. Surg. 2017, 3, 106. [Google Scholar] [CrossRef] [Green Version]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. [Google Scholar] [CrossRef] [Green Version]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH): An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. [Google Scholar] [CrossRef]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Takahashi, C.; Shridhar, R.; Huston, J.; Meredith, K. Outcomes associated with robotic approach to pancreatic resections. J. Gastrointest. Oncol. 2018, 9, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Beane, J.D.; Zenati, M.; Hamad, A.; Hogg, M.E.; Zeh, H.J., 3rd; Zureikat, A.H. Robotic pancreatoduodenectomy with vascular resection: Outcomes and learning curve. Surgery 2019, 166, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Shyr, B.U.; Chen, S.C.; Shyr, Y.M.; Wang, S.E. Surgical, survival, and oncological outcomes after vascular resection in robotic and open pancreaticoduodenectomy. Surg. Endosc. 2020, 34, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.G.; Shukla, P.J. Different types of pancreatico-enteric anastomosis. Transl. Gastroenterol. Hepatol. 2017, 2, 89. [Google Scholar] [CrossRef] [Green Version]
- Giulianotti, P.C.; Gonzalez-Heredia, R.; Esposito, S.; Masrur, M.; Gangemi, A.; Bianco, F.M. Trans-gastric pancreaticogastrostomy reconstruction after pylorus-preserving robotic Whipple: A proposal for a standardised technique. Surg. Endosc. 2018, 32, 2169–2174. [Google Scholar] [CrossRef] [PubMed]
- Zureikat, A.H.; Moser, A.J.; Boone, B.A.; Bartlett, D.L.; Zenati, M.; Zeh, H.J. 250 Robotic Pancreatic Resections Safety and Feasibility. Ann. Surg. 2013, 258, 554–562. [Google Scholar] [CrossRef]
- McMillan, M.T.; Zureikat, A.H.; Hogg, M.E.; Kowalsky, S.J.; Zeh, H.J.; Sprys, M.H.; Vollmer, C.M., Jr. A Propensity Score-Matched Analysis of Robotic vs Open Pancreatoduodenectomy on Incidence of Pancreatic Fistula. JAMA Surg. 2017, 152, 327–335. [Google Scholar] [CrossRef]
- Magge, D.; Zenati, M.; Lutfi, W.; Hamad, A.; Zureikat, A.H.; Zeh, H.J.; Hogg, M.E. Robotic pancreatoduodenectomy at an experienced institution is not associated with an increased risk of post-pancreatic hemorrhage. HPB 2018, 20, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.E.; Shyr, B.U.; Chen, S.C.; Shyr, Y.M. Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: A propensity score-matched study. Surgery 2018, 164, 1162–1167. [Google Scholar] [CrossRef]
- Marino, M.V.; Podda, M.; Gomez Ruiz, M.; Fernandez, C.C.; Guarrasi, D.; Gomez Fleitas, M. Robotic-assisted versus open pancreaticoduodenectomy: The results of a case-matched comparison. J. Robot. Surg. 2020, 14, 493–502. [Google Scholar] [CrossRef]
- Yan, Q.; Xu, L.B.; Ren, Z.F.; Liu, C. Robotic versus open pancreaticoduodenectomy: A meta-analysis of short-term outcomes. Surg. Endosc. 2020, 34, 501–509. [Google Scholar] [CrossRef]
- Peng, L.; Lin, S.; Li, Y.; Xiao, W. Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg. Endosc. 2017, 31, 3085–3097. [Google Scholar] [CrossRef] [PubMed]
- Moekotte, A.L.; Rawashdeh, A.; Asbun, H.J.; Coimbra, F.J.; Edil, B.H.; Jarufe, N.; Jeyarajah, D.R.; Kendrick, M.L.; Pessaux, P.; Zeh, H.J.; et al. Safe implementation of minimally invasive pancreas resection: A systematic review. HPB 2020, 22, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Zwart, M.J.W.; Molenaar, I.Q.; Koerkamp, B.G.; Hogg, M.E.; Hilal, M.A.; Besselink, M.G. Robotic Pancreatoduodenectomy: Patient Selection, Volume Criteria, and Training Programs. Scand. J. Surg. 2020, 109, 29–33. [Google Scholar] [CrossRef] [PubMed]
Characteristics N (%) | Pancreaticoduodenectomy (N = 54) | Total Pancreatectomy (N = 3) | Distal Pancreatectomy (N = 44) |
---|---|---|---|
Sex N (%) | |||
Male | 32 (59.3) | 1 (33.3) | 22 (50) |
Female | 22 (40.7) | 2 (66.7) | 22 (50) |
Age (year) | |||
Minimum | 27 | 41 | 22 |
Maximum | 82 | 54 | 87 |
Mean | 60.9 | 47.7 | 59.5 |
BMI (kg/m2) | |||
Minimum | 19.7 | 23 | 18 |
Maximum | 39.8 | 26.6 | 41.9 |
Mean | 25.3 | 24.6 | 26.8 |
ASA-Score N (%) | |||
1 | 3 (5.9) | 0 | 2 (4.8) |
2 | 27 (52.9) | 2 (66.7) | 30 (71.4) |
3 | 20 (39.2) | 1 (33.3) | 10 (23.8) |
4 | 1 (2) | 0 | 0 (0) |
Malignancy N (%) | 33 (61.1) | 2 (66.7) | 20 (45.5) |
Characteristics N (%) | Pancreaticoduodenectomy (N = 54) | Total Pancreatectomy (N = 3) | Distal Pancreatectomy (N = 44) |
---|---|---|---|
Procedure Time (min) | |||
Minimum | 215 | 258 | 62 |
Maximum | 535 | 302 | 353 |
Mean | 325.3 | 278 | 172.8 |
In-hospital stay (day) | |||
Minimum | 3 | 10 | 5 |
Maximum | 68 | 32 | 52 |
Median | 15 | 11 | 11 |
ICU stay (day) | |||
Minimum | 1 | 1 | 0 |
Maximum | 55 | 6 | 12 |
Mean | 6.6 | 2.6 | 1.9 |
Pancreatico-enteric anastomosis N (%) | None | None | |
Pancreaticojejunostomy | 3 (5.6) | ||
Pancreatogastrostomy | 51 (94.4) | ||
Overall complications N (%) | 34 (63) | 1 (33.3) | 29 (65.9) |
Clavien/ Dindo ≥3a N (%) | 26 (48.1) | 1 (33.3) | 23 (52.3) |
POPF N (%) | |||
Biochemical leakage | 0 (0) | 0 (0) | 8 (18.1) |
B | 9 (16.7) | 0 (0) | 14 (31.8) |
C | 1 (1.9) | 0 (0) | 0 (0) |
PPH N (%) | |||
A | 3 (5.6) | 0 (0) | 2 (4.5) |
B | 4 (7.4) | 0 (0) | 3 (6.8) |
C | 4 (7.4) | 0 (0) | 0 (0) |
SSI N (%) | 5 (9.3) | 0 (0) | 1 (2.3) |
DGE N (%) | 10 (18.5) | 0 (0) | 1 (2.3) |
Insufficiency pancreatico-enteric anastomosis N (%) | 6 (11.1) | None | None |
HJ-insufficiency N (%) | 2 (3.7) | 0 (0) | None |
Pulmonary complications N (%) | |||
Pneumonia | 5 (9.3) | 0 (0) | 3 (6.8) |
Pulmonary embolism | 0 (0) | 0 (0) | 2 (4.5) |
Pleural effusion | 4 (7.4) | 0 (0) | 3 (6.8) |
Unplanned Re-Intubation | 5 (9.3) | 0 (0) | 0 (0) |
Intervention N (%) | 22 (40.7) | 1 (33.3) | 22 (50) |
Re-operation N (%) | 9 (16.7) | 0 (0) | 5 (11.4) |
30-day mortality N (%) | 3 (5.6) | 0 (0) | 0 (0) |
Characteristics N (%) | Pancreaticoduodenectomy (N = 54) | Total Pancreatectomy (N = 3) | Distal Pancreatectomy (N = 44) |
---|---|---|---|
Histology N (%) | |||
PDAC | 12 (22.2) | 2 (66.7) | 15 (34.1) |
NET | 1 (1.9) | 4 (9.1) | |
Periampullary carcinoma | 10 (18.5) | ||
Distal cholangiocarcinoma | 7 (13.0) | ||
IPMN | 10 (18.5) | 8 (18.2) | |
Chronic pancreatitis | 7 (13.0) | 9 (20.5) | |
Other | 8 (14.8) | 1 (33.3) | 8 (18.2) |
T. N (%) | |||
T1 | 7 (23.3) | 0 (0) | 6 (31.6) |
T2 | 13 (43.3) | 1 (50) | 10 (52.6) |
T3 | 10 (33.3) | 1 (50) | 3 (15.8) |
T4 | 0 (0) | 0 (0) | 0 (0) |
N. N (%) | |||
N0 | 15 (48.4) | 1 (50) | 8 (47.1) |
N1 | 5 (16.1) | 0 (0) | 9 (52.9) |
N2 | 11 (35.5) | 1 (50) | 0 (0) |
Lymph node harvest (N) | |||
Minimum | 4 | 17 | 2 |
Maximum | 28 | 29 | 44 |
Mean | 16.5 | 23 | 12.8 |
V. N (%) | |||
V0 | 28 (93.3) | 1 (50) | 16 (84.2) |
V1 | 2 (6.7) | 1 (50) | 3 (15.8) |
L. N (%) | |||
L0 | 19 (63.3) | 1 (50) | 12 (63.2) |
L1 | 11 (36.7) | 1 (50) | 7 (36.8) |
G. N (%) | |||
G1 | 1 (3.3) | 0 (0) | 5 (29.4) |
G2 | 19 (63.3) | 1 (50) | 4 (23.5) |
G3 | 10 (33.3) | 1 (50) | 8 (47.1) |
Pn N (%) | |||
Pn0 | 7 (24.1) | 0 (0) | 5 (33.3) |
Pn1 | 22 (75.9) | 1 (100) | 10 (66.7) |
R. N (%) | |||
R0 | 26 (83.9) | 1 (50) | 15 (75) |
R1 | 5 (16.1) | 1 (50) | 5 (25) |
Tumour diameter (mm) | |||
Minimum | 8 | 40 | 1 |
Maximum | 47 | 50 | 95 |
Mean | 23.6 | 45 | 33.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timmermann, L.; Biebl, M.; Schmelzle, M.; Bahra, M.; Malinka, T.; Pratschke, J. Implementation of Robotic Assistance in Pancreatic Surgery: Experiences from the First 101 Consecutive Cases. J. Clin. Med. 2021, 10, 229. https://doi.org/10.3390/jcm10020229
Timmermann L, Biebl M, Schmelzle M, Bahra M, Malinka T, Pratschke J. Implementation of Robotic Assistance in Pancreatic Surgery: Experiences from the First 101 Consecutive Cases. Journal of Clinical Medicine. 2021; 10(2):229. https://doi.org/10.3390/jcm10020229
Chicago/Turabian StyleTimmermann, Lea, Matthias Biebl, Moritz Schmelzle, Marcus Bahra, Thomas Malinka, and Johann Pratschke. 2021. "Implementation of Robotic Assistance in Pancreatic Surgery: Experiences from the First 101 Consecutive Cases" Journal of Clinical Medicine 10, no. 2: 229. https://doi.org/10.3390/jcm10020229
APA StyleTimmermann, L., Biebl, M., Schmelzle, M., Bahra, M., Malinka, T., & Pratschke, J. (2021). Implementation of Robotic Assistance in Pancreatic Surgery: Experiences from the First 101 Consecutive Cases. Journal of Clinical Medicine, 10(2), 229. https://doi.org/10.3390/jcm10020229