Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Biopsies
2.3. Immunosuppression
2.4. Therapeutic Drug Monitoring (TDM)
2.5. Clinical Variables
2.6. Statistics
3. Results
3.1. Patients
3.2. Biopsies
3.3. Interstitial Inflammation and TDM
3.4. IF/TA Progression and TDM
3.5. Arteriolar Hyalinosis Progression and TDM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.; Held, P.J.; Port, F.K. Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: A summary. Kidney Int. 2010, 77, 299–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatault, P.; Kamar, N.; Büchler, M.; Colosio, C.; Bertrand, D.; Durrbach, A.; Albano, L.; Rivalan, J.; Le Meur, Y.; Essig, M.; et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. Arab. Archaeol. Epigr. 2017, 17, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- CTS Newsletter 1:2014. Tacrolimus trough Levels and Kidney Graft Survival. Available online: https://ctstransplant.org/public/newsletters/2014/png/2014-1.html?ts=5926753298362413 (accessed on 7 October 2020).
- Cosio, F.G.; Grande, J.P.; Wadei, H.; Larson, T.S.; Griffin, M.D.; Stegall, M.D. Predicting Subsequent Decline in Kidney Allograft Function from Early Surveillance Biopsies. Arab. Archaeol. Epigr. 2005, 5, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Dantal, J.; Pohanka, E. Malignancies in renal transplantation: An unmet medical need. Nephrol. Dial. Transplant. 2007, 22, i4–i10. [Google Scholar] [CrossRef]
- Rojas, L.; Neumann, I.; Herrero, M.J.; Boso, V.; Reig, J.; Poveda, J.L.; Megías-Vericat, J.E.; Bea, S.; Aliño, S.F. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies. Pharm. J. 2014, 15, 38–48. [Google Scholar] [CrossRef]
- Rodrigo, E.; Segundo, D.S.; Fernández-Fresnedo, G.; López-Hoyos, M.; Benito, A.; Ruiz, J.C.; De Cos, M.-A.; Arias, M. Within-Patient Variability in Tacrolimus Blood Levels Predicts Kidney Graft Loss and Donor-Specific Antibody Development. Transplantation 2016, 100, 2479–2485. [Google Scholar] [CrossRef]
- Shuker, N.; Van Gelder, T.; Hesselink, D.A. Intra-patient variability in tacrolimus exposure: Causes, consequences for clinical management. Transplant. Rev. 2015, 29, 78–84. [Google Scholar] [CrossRef]
- Davis, S.; Gralla, J.; Klem, P.; Stites, E.; Wiseman, A.; Cooper, J.E. Tacrolimus Intrapatient Variability, Time in Therapeutic Range, and Risk of De Novo Donor–Specific Antibodies. Transplantation 2020, 104, 881–887. [Google Scholar] [CrossRef]
- Song, T.; Yin, S.; Jiang, Y.; Huang, Z.; Liu, J.; Wang, Z.; Li, L.; Zeng, J.; Fan, Y.; Wang, X.; et al. Increasing Time in Therapeutic Range of Tacrolimus in the First Year Predicts Better Outcomes in Living-Donor Kidney Transplantation. Front. Immunol. 2019, 10, 2912. [Google Scholar] [CrossRef]
- Wiebe, C.; Rush, D.N.; Nevins, T.E.; Birk, P.E.; Blydt-Hansen, T.; Gibson, I.W.; Goldberg, A.; Ho, J.; Karpinski, M.; Pochinco, D.; et al. Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. J. Am. Soc. Nephrol. 2017, 28, 3353–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, L.M.; Hesselink, D.A.; Van Schaik, R.H.N.; Van Gelder, T.; De Fijter, J.W.; Lloberas, N.; Elens, L.; Moes, D.J.; De Winter, B.C.M. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients. Br. J. Clin. Pharmacol. 2019, 85, 601–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, D.R.; Bammens, B.; Claes, K.; Evenepoel, P.; Vanrenterghem, Y. Maintenance Immunosuppressive Agents as Risk Factors for BK Virus Nephropathy: The Need for True Drug Exposure Measurements. Transplantation 2010, 89, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Thölking, G.; Schmidt, C.; Koch, R.; Schuette-Nuetgen, K.; Pabst, D.; Wolters, H.; Kabar, I.; Hüsing, A.; Pavenstädt, H.; Reuter, S.; et al. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation. Sci. Rep. 2016, 6, 32273. [Google Scholar] [CrossRef] [Green Version]
- Serón, D.; Moreso, F. Protocol biopsies in renal transplantation: Prognostic value of structural monitoring. Kidney Int. 2007, 72, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Torres, I.B.; Reisaeter, A.V.; Moreso, F.; Åsberg, A.; Vidal, M.; Garcia-Carro, C.; Midtvedt, K.; Reinholt, F.P.; Scott, H.; Castellà, E.; et al. Tacrolimus and mycophenolate regimen and subclinical tubulo-interstitial inflammation in low immunological risk renal transplants. Transpl. Int. 2017, 30, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Naesens, M.; Lerut, E.; Damme, B.V.; Vanrenterghem, Y.; Kuypers, D.R. Tacrolimus Exposure and Evolution of Renal Allograft Histology in the First Year after Transplantation. Arab. Archaeol. Epigr. 2007, 7, 2114–2123. [Google Scholar] [CrossRef]
- Vanhove, T.; Vermeulen, T.; Annaert, P.; Lerut, E.; Kuypers, D.R. High Intrapatient Variability of Tacrolimus Concentrations Predicts Accelerated Progression of Chronic Histologic Lesions in Renal Recipients. Arab. Archaeol. Epigr. 2016, 16, 2954–2963. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.; Kim, S.-Y.; Min, S.; Han, A.; Ahn, S.; Min, S.-K.; Lee, H.; Ahn, C.; Kim, Y.; Ha, J. Association of Intrapatient Variability of Tacrolimus Concentration With Early Deterioration of Chronic Histologic Lesions in Kidney Transplantation. Transplant. Direct 2019, 5, e455. [Google Scholar] [CrossRef]
- Egeland, E.J.; Reisaeter, A.V.; Robertsen, I.; Midtvedt, K.; Strøm, E.H.; Holdaas, H.; Hartmann, A.; Åsberg, A. High tacrolimus clearance—A risk factor for development of interstitial fibrosis and tubular atrophy in the transplanted kidney: A retrospective single-center cohort study. Transpl. Int. 2019, 32, 257–269. [Google Scholar] [CrossRef]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and antibody-mediated rejection. Arab. Archaeol. Epigr. 2020, 20, 2318–2331. [Google Scholar] [CrossRef] [PubMed]
- Rosendaal, F.R.; Cannegieter, S.C.; Van Der Meer, F.J.M.; Briët, E. A Method to Determine the Optimal Intensity of Oral Anticoagulant Therapy. Thromb. Haemost. 1993, 69, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Huprikar, S.; Chou, S.; Danziger-Isakov, L.; Humar, A. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2018, 102, 900–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekberg, H.; Tedesco-Silva, H.; Demirbas, A.; Vítko, Š.; Nashan, B.; Guerkan, A.; Margreiter, R.; Hugo, C.; Grinyó, J.M.; Frei, U.; et al. Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. N. Engl. J. Med. 2007, 357, 2562–2575. [Google Scholar] [CrossRef] [Green Version]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.S.; O’Connell, P.J.; Chapman, J.R.; Allen, R.D.M. Delta Analysis of Posttransplantation Tubulointerstitial Damage. Transplantation 2004, 78, 434–441. [Google Scholar] [CrossRef]
- García-Carro, C.; Dörje, C.; Åsberg, A.; Midtvedt, K.; Scott, H.; Reinholt, F.P.; Holdaas, H.; Serón, D.; Reisæter, A.V. Inflammation in Early Kidney Allograft Surveillance Biopsies With and Without Associated Tubulointerstitial Chronic Damage as a Predictor of Fibrosis Progression and Development of De Novo Donor Specific Antibodies. Transplantation 2017, 101, 1410–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yi, Z.; Keung, K.L.; Shang, H.; Wei, C.; Cravedi, P.; Sun, Z.; Xi, C.; Woytovich, C.; Farouk, S.; et al. A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection. J. Am. Soc. Nephrol. 2019, 30, 1481–1494. [Google Scholar] [CrossRef]
- Wiebe, C.R.; Gibson, I.W.; Blydt-Hansen, T.D.; Pochinco, D.; Birk, P.E.; Ho, J.; Karpinski, M.; Goldberg, A.; Storsley, L.; Rush, D.N.; et al. Rates and Determinants of Progression to Graft Failure in Kidney Allograft Recipients WithDe NovoDonor-Specific Antibody. Arab. Archaeol. Epigr. 2015, 15, 2921–2930. [Google Scholar] [CrossRef]
- Moreso, F.; Carrera, M.; Goma, M.; Hueso, M.; Sellares, J.; Martorell, J.; Grinyó, J.; Serón, D. Early Subclinical Rejection as a Risk Factor for Late Chronic Humoral Rejection. Transplantation 2012, 93, 41–46. [Google Scholar] [CrossRef]
- Choi, B.S.; Shin, M.J.; Shin, S.J.; Kim, Y.S.; Choi, Y.J.; Moon, I.S.; Kim, S.Y.; Koh, Y.B.; Bang, B.K.; Yang, C.W. Clinical Significance of an Early Protocol Biopsy in Living-Donor Renal Transplantation: Ten-Year Experience at a Single Center. Arab. Archaeol. Epigr. 2005, 5, 1354–1360. [Google Scholar] [CrossRef]
- Reeve, J.; Sellarés, J.; Mengel, M.; Sis, B.; Skene, A.; Hidalgo, L.; De Freitas, D.G.; Famulski, K.S.; Halloran, P.F. Molecular Diagnosis of T Cell-Mediated Rejection in Human Kidney Transplant Biopsies. Arab. Archaeol. Epigr. 2013, 13, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Rabant, M.; Boullenger, F.; Gnemmi, V.; Pellé, G.; Glowacki, F.; Hertig, A.; Brocheriou, I.; Suberbielle, C.; Taupin, J.-L.; Anglicheau, D.; et al. Isolated v-lesion in kidney transplant recipients: Characteristics, association with DSA, and histological follow-up. Arab. Archaeol. Epigr. 2018, 18, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-Y.; Cho, S.-Y.; Choi, J.-Y.; Cho, J.-H.; Park, S.; Kim, Y.; Kim, H.-K.; Huh, S.; Won, D.I.; Kim, C.-D. Comparison of Transplant Outcomes for Low-level and Standard-level Tacrolimus at Different Time Points after Kidney Transplantation. J. Korean Med. Sci. 2019, 34, e103. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, F.; Gelpi, R.; Helanterä, I.; Melilli, E.; Honkanen, E.; Bestard, O.; Grinyo, J.M.; Cruzado, J.M. Decreased Kidney Graft Survival in Low Immunological Risk Patients Showing Inflammation in Normal Protocol Biopsies. PLoS ONE 2016, 11, e0159717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nankivell, B.J.; P’Ng, C.H.; Chapman, J.R. Does tubulitis without interstitial inflammation represent borderline acute T cell mediated rejection? Arab. Archaeol. Epigr. 2019, 19, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Tandukar, S.; Jorgensen, D.; Randhawa, P.; Sood, P.; Puttarajappa, C.; Zeevi, A.; Tevar, A.D.; Hariharan, S. Early subclinical tubulitis and interstitial inflammation in kidney transplantation have adverse clinical implications. Kidney Int. 2020, 98, 436–447. [Google Scholar] [CrossRef]
- Lefaucheur, C.; Gosset, C.; Rabant, M.; Viglietti, D.; Verine, J.; Aubert, O.; Louis, K.; Glotz, D.; Legendre, C.; Van Huyen, J.D.; et al. T cell–mediated rejection is a major determinant of inflammation in scarred areas in kidney allografts. Arab. Archaeol. Epigr. 2018, 18, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Nankivell, B.J.; Agrawal, N.; Sharma, A.; Taverniti, A.; P’Ng, C.H.; Shingde, M.; Wong, G.; Chapman, J.R. The clinical and pathological significance of borderline T cell–mediated rejection. Arab. Archaeol. Epigr. 2019, 19, 1452–1463. [Google Scholar] [CrossRef]
- Wick, G.; Grundtman, C.; Mayerl, C.; Wimpissinger, T.-F.; Feichtinger, J.; Zelger, B.; Sgonc, R.; Wolfram, D. The Immunology of Fibrosis. Annu. Rev. Immunol. 2013, 31, 107–135. [Google Scholar] [CrossRef] [Green Version]
- Boor, P.; Floege, J. Renal Allograft Fibrosis: Biology and Therapeutic Targets. Arab. Archaeol. Epigr. 2015, 15, 863–886. [Google Scholar] [CrossRef]
- Mannon, R.B.; Matas, A.J.; Grande, J.; LeDuc, R.; Connett, J.; Kasiske, B.; Cecka, J.M.; Gaston, R.S.; Cosio, F.; Gourishankar, S.; et al. Inflammation in Areas of Tubular Atrophy in Kidney Allograft Biopsies: A Potent Predictor of Allograft Failure. Am. J. Transplant. 2010, 10, 2066–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, M.; Reeve, J.; Bunnag, S.; Einecke, G.; Sis, B.; Mueller, T.; Kaplan, B.; Halloran, P.F. Molecular Correlates of Scarring in Kidney Transplants: The Emergence of Mast Cell Transcripts. Arab. Archaeol. Epigr. 2008, 9, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F.; Matas, A.; Kasiske, B.L.; Madill-Thomsen, K.S.; Macková, M.; Famulski, K. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Arab. Archaeol. Epigr. 2019, 19, 1356–1370. [Google Scholar] [CrossRef]
- Van Rossum, H.H.; Romijn, F.; Sellar, K.J.; Smit, N.P.M.; Van Der Boog, P.J.; De Fijter, J.W.; Van Pelt, J. Variation in Leukocyte Subset Concentrations Affects Calcineurin Activity Measurement: Implications for Pharmacodynamic Monitoring Strategies. Clin. Chem. 2008, 54, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, K.; Lu, Y.; Wang, J.; Chen, X.; Zhang, Z.; Wang, X.; Yang, H.; Liu, G. Different Effects of Tacrolimus on Innate and Adaptive Immune Cells in the Allograft Transplantation. Scand. J. Immunol. 2016, 83, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thölking, G.; Schütte-Nütgen, K.; Schmitz, J.; Rovas, A.; Dahmen, M.; Bautz, J.; Jehn, U.; Pavenstädt, H.; Heitplatz, B.; Van Marck, V.; et al. A Low Tacrolimus Concentration/Dose Ratio Increases the Risk for the Development of Acute Calcineurin Inhibitor-Induced Nephrotoxicity. J. Clin. Med. 2019, 8, 1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuypers, D.R.; Naesens, M.; De Jonge, H.; Lerut, E.; Verbeke, K.; Vanrenterghem, Y. Tacrolimus Dose Requirements and CYP3A5 Genotype and the Development of Calcineurin Inhibitor-Associated Nephrotoxicity in Renal Allograft Recipients. Ther. Drug Monit. 2010, 32, 394–404. [Google Scholar] [CrossRef]
- Schütte-Nütgen, K.; Thölking, G.; Steinke, J.; Pavenstädt, H.; Schmidt, R.; Suwelack, B.; Reuter, S. Fast Tac Metabolizers at Risk—It is Time for a C/D Ratio Calculation. J. Clin. Med. 2019, 8, 587. [Google Scholar] [CrossRef] [Green Version]
- Birdwell, K.A.; Decker, B.; Barbarino, J.M.; Peterson, J.F.; Stein, C.M.; Sadee, W.; Wang, D.; Vinks, A.A.; He, Y.; Swen, J.J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines forCYP3A5Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Trofe-Clark, J.; Brennan, D.C.; West-Thielke, P.; Milone, M.C.; Lim, M.A.; Neubauer, R.; Nigro, V.; Bloom, R.D. Results of ASERTAA, a Randomized Prospective Crossover Pharmacogenetic Study of Immediate-Release Versus Extended-Release Tacrolimus in African American Kidney Transplant Recipients. Am. J. Kidney Dis. 2018, 71, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Serón, D.; Moreso, F.; Fulladosa, X.; Hueso, M.; Carrera, M.; Grinyó, J.M. Reliability of chronic allograft nephropathy diagnosis in sequential protocol biopsies. Kidney Int. 2002, 61, 727–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | n = 85 |
---|---|
Donor type (SCD/ECD/LD) | 42 (49.4%)/30 (35.3%)/13 (15.3%) |
Donor age (years) | 52 ± 15 |
Donor gender (m/f) | 50 (58.8%)/35 (41.2%) |
Recipient age (years) | 53 ± 13 |
Recipient gender (m/f) | 66 (77.6%)/19 (22.4%) |
First transplant/re-transplant | 76 (89.4%)/9 (10.6%) |
Primary renal disease (GN/ADPKD/diabetes/others/unknown) | 21 (24.7%)/22 (25.9%)/8 (9.4%)/12 (14.1%)/22 (25.9%) |
Class I HLA mismatch (A + B) | 2.6 ± 0.9 |
Class II HLA mismatch (DR) | 0.9 ± 0.7 |
Induction (Basiliximab/ATG) | 52 (61.2%)/33 (38.8%) |
DGF (no/yes) | 80 (94%)/5 (6.0%) |
T cell-mediated rejection (no/yes) | 81 (95.3%)/4 (4.7%) |
CMV infection (no/viremia/disease) | 71 (83.5%)/10 (11.8%)/4 (4.7%) |
Polyoma BK virus infection (no/viremia/nephropathy) | 79 (92.9%)/6 (7.1%)/0 (0%) |
Post-transplant diabetes mellitus (no/yes) | 61 (79.2%)/16 (20.8%) |
Variable | First Biopsy | Second Biopsy | p-Value |
---|---|---|---|
Time of biopsy (months) | 4.2 ± 1.9 | 17.3 ± 3.6 | n.a. |
Serum creatinine (mg/dL) | 1.31 ± 0.32 | 1.27 ± 0.28 | 0.106 |
eGFR (mL/min/1.73 sqm) | 61.8 ± 17.7 | 63.4 ± 17.1 | 0.220 |
Urine P/C ratio (mg/g) | 260 ± 170 | 320 ± 370 | 0.057 |
Tacrolimus dose (mg/day) | 6.6 ± 3.9 | 4.9 ± 3.1 | 0.001 |
MMF dose (mg/kg/day) | 13.4 ± 3.4 | 12.9 ± 3.3 | 0.096 |
TAC-C0 (ng/mL) | 9.6 ± 2.4 | 8.5 ± 2.3 | 0.002 |
CV of TAC-C0 (%) | 31 ± 13 | 20 ± 14 | 0.001 |
Time in TR(%) | 55 ± 24 | 70 ± 25 | 0.001 |
Time above TR (%) | 35 ± 25 | 26 ± 29 | 0.066 |
Time below TR (%) | 10 ± 13 | 4 ± 11 | 0.004 |
C/D (ng/mL/mg) | 2.00 ± 1.42 | 2.19 ± 1.02 | 0.119 |
De novo DSA (%) | 0 | 0 | n.a. |
Variable | First Biopsy | Second Biopsy | p-Value |
---|---|---|---|
Glomerular sections (n) | 13 ± 8 | 13 ± 8 | 0.881 |
Global glomerulosclerosis (%) | 7 ± 10 | 8 ± 11 | 0.541 |
Glomerulitis (g) | 0.12 ± 0.36 | 0.15 ± 0.45 | 0.580 |
Interstitial infiltrate (i) | 0.27 ± 0.54 | 0.17 ± 0.37 | 0.118 |
Tubulitis (t) | 0.18 ± 0.42 | 0.31 ± 0.58 | 0.086 |
Endothelialitis (v) | 0.01 ± 0.11 | 0 | 0.320 |
Peritubular capillaritis (ptc) | 0.13 ± 0.37 | 0.18 ± 0.47 | 0.413 |
Arteriolar hyalinosis (ah) | 0.38 ± 0.64 | 0.65 ± 0.79 | 0.008 |
Transplant glomerulopathy (cg) | 0 | 0.04 ± 0.24 | 0.183 |
Interstitial fibrosis (ci) | 0.73 ± 0.77 | 1.00 ± 0.84 | 0.002 |
Tubular atrophy (ct) | 0.76 ± 0.59 | 1.08 ± 0.73 | 0.001 |
Vascular intimal thickening (cv) | 0.62 ± 0.91 | 0.67 ± 0.85 | 0.636 |
Mesangial matrix increase (mm) | 0.02 ± 0.15 | 0.01 ± 0.11 | 0.567 |
i-IFTA | 1.28 ± 1.17 | 1.39 ± 1.21 | 0.494 |
t-IFTA | 0.36 ± 0.55 | 0.51 ± 0.67 | 0.128 |
Variable | No Inflammation | Inflammation | p-Value |
---|---|---|---|
(n = 66) | (n = 19) | ||
Time of biopsy (months) | 4.3 ± 1.5 | 3.7 ± 2.9 | 0.167 |
Serum creatinine (mg/dL) | 1.34 ± 0.33 | 1.20 ± 0.26 | 0.106 |
eGFR (mL/min/1.73 sqm) | 61 ± 17 | 65 ± 19 | 0.369 |
Urine P/C ratio (mg/g) | 270 ± 180 | 220 ± 130 | 0.252 |
Tacrolimus dose (mg/day) | 6.7 ± 3.9 | 5.4 ± 3.5 | 0.184 |
MMF dose (mg/kg/day) | 13.2 ± 3.3 | 13.5 ± 3.8 | 0.795 |
TAC-C0 (ng/mL) | 10.0 ± 2.4 | 8.3 ± 2.2 | 0.007 |
CV of TAC-C0 (%) | 29 ± 12 | 37 ± 15 | 0.030 |
Time in TR (%) | 56 ± 26 | 55 ± 21 | 0.889 |
Time above TR (%) | 36 ± 26 | 33 ± 21 | 0.642 |
Time below TR (%) | 8± 13 | 12 ± 14 | 0.246 |
C/D (ng/mL/mg) | 1.88 ± 1.18 | 2.45 ± 2.03 | 0.124 |
Variable | No Inflammation | Inflammation | p-Value |
---|---|---|---|
(n = 71) | (n = 14) | ||
Time of biopsy (months) | 17.4 ± 3.8 | 16.4 ± 2.5 | 0.380 |
Serum creatinine (mg/dL) | 1.26 ± 0.26 | 1.33 ± 0.37 | 0.405 |
eGFR (mL/min/1.73 sqm) | 64.4 ± 17.4 | 58.2 ± 15.2 | 0.217 |
Urine P/C ratio (mg/g) | 301 ± 348 | 423 ± 494 | 0.270 |
Tacrolimus dose (mg/day) | 5.0 ± 3.3 | 4.3 ± 2.1 | 0.426 |
MMF dose (mg/kg/day) | 12.7 ± 3.5 | 13.1 ± 1.7 | 0.691 |
TAC-C0 (ng/mL) | 8.7 ± 2.3 | 7.4 ± 1.7 | 0.059 |
CV of TAC-C0 (%) | 20 ± 15 | 19 ± 7 | 0.826 |
Time in TR (%) | 70 ± 27 | 74 ± 19 | 0.534 |
Time above TR (%) | 27 ± 27 | 14 ± 21 | 0.076 |
Time below TR (%) | 3 ± 10 | 12 ± 15 | 0.005 |
C/D (ng/mL/mg) | 2.22 ± 1.04 | 2.04 ± 0.82 | 0.557 |
Variable | No Progression | IFTA Progression | p-Value |
---|---|---|---|
(n = 50) | (n = 35) | ||
Donor age (years) | 54 ± 16 | 50 ± 13 | 0.285 |
Donor type (DD/LD) | 43 (86%)/7 (14%) | 29 (82.8%)/6 (17.2%) | 0.382 |
Recipient age (years) | 54 ± 13 | 50 ± 14 | 0.184 |
1st transplant/re-transplant | 45 (90%)/5 (10%) | 31 (88.6%)/4 (11.4%) | 0.551 |
HLA-DR mismatch | 1.0 ± 0.7 | 0.9 ± 0.7 | 0.856 |
Cold ischemia time (hours) | 15 ± 7 | 14 ± 8 | 0.850 |
Induction (IL2-RA/ATG) | 29 (58%)/21 (42%) | 22 (62.9%)/13 (37.1%) | 0.558 |
DGF (no/yes) | 48 (96%)/2 (4%) | 32 (91.4%)/3 (8.6%) | 0.399 |
T-cell mediated rejection (no/yes) | 47 (94%)/3 (6%) | 34 (97%)/1 (3%) | 0.640 |
Time of biopsy (months) | 17.7 ± 4.1 | 16.6 ± 2.7 | 0.156 |
Serum creatinine (mg/dL) | 1.25 ± 0.29 | 1.29 ± 0.27 | 0.582 |
eGFR (mL/min/1.73 sqm) | 64 ± 18 | 63 ± 16 | 0.881 |
Urine P/C ratio (mg/g) | 310 ± 340 | 350 ± 425 | 0.622 |
Tacrolimus dose 1st bx (mg/day) | 5.8 ± 3.8 | 7.4 ± 3.8 | 0.058 |
Tacrolimus dose 2nd bx (mg/day) | 4.3 ± 2.9 | 5.8 ± 3.2 | 0.023 |
MMF dose (mg/kg/day) | 12.9 ± 3.2 | 12.7 ± 3.4 | 0.836 |
TAC-C0 1st biopsy (ng/mL) | 9.8 ± 2.7 | 9.4 ± 1.9 | 0.515 |
TAC-C0 2nd biopsy (ng/mL) | 8.1 ± 1.7 | 9.1 ± 2.8 | 0.053 |
CV of TAC-C0 until first biopsy (%) | 32 ± 13 | 30 ± 13 | 0.503 |
CV of TAC-C0 between biopsies (%) | 21 ± 18 | 18 ± 7 | 0.305 |
Time in TR between biopsies (%) | 73 ± 25 | 67 ± 27 | 0.353 |
Time above TR between biopsies (%) | 22 ± 25 | 29 ± 29 | 0.318 |
Time below TR between biopsies (%) | 5 ± 12 | 4 ± 9 | 0.798 |
Mean C/D (ng/mL/mg) | 2.3 ± 1.3 | 1.7 ± 0.7 | 0.019 |
Variable | No Progression | IFTA Progression | p-Value |
---|---|---|---|
(n = 50) | (n = 35) | ||
g+ptc score 1st biopsy | 0.32 ± 0.74 | 0.14 ± 0.43 | 0.207 |
i+t score 1st biopsy | 0.56 ± 0.91 | 0.29 ± 0.62 | 0.125 |
i-IFTA score 1st biopsy | 1.43 ± 1.19 | 1.03 ± 1.12 | 0.124 |
ci+ct score 1st biopsy | 1.90 ± 1.27 | 0.89 ± 0.93 | 0.001 |
ah-score 1st biopsy | 0.40 ± 0.61 | 0.34 ± 0.69 | 0.686 |
g+ptc score 2nd biopsy | 0.24± 0.56 | 0.46 ± 0.95 | 0.188 |
i+t score 2nd biopsy | 0.48 ± 0.89 | 0.46 ± 0.70 | 0.899 |
ci+ct score 2nd biopsy | 1.60 ± 1.28 | 2.71 ± 1.64 | 0.001 |
i-IFTA score 2nd biopsy | 1.20 ± 1.27 | 1.69 ± 1.08 | 0.073 |
ah-score 2nd biopsy | 0.69 ± 0.77 | 0.60 ± 0.85 | 0.598 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamoun, B.; Torres, I.B.; Gabaldón, A.; Sellarés, J.; Perelló, M.; Castellá, E.; Guri, X.; Salcedo, M.; Toapanta, N.G.; Cidraque, I.; et al. Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism. J. Clin. Med. 2021, 10, 141. https://doi.org/10.3390/jcm10010141
Chamoun B, Torres IB, Gabaldón A, Sellarés J, Perelló M, Castellá E, Guri X, Salcedo M, Toapanta NG, Cidraque I, et al. Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism. Journal of Clinical Medicine. 2021; 10(1):141. https://doi.org/10.3390/jcm10010141
Chicago/Turabian StyleChamoun, Betty, Irina B. Torres, Alejandra Gabaldón, Joana Sellarés, Manel Perelló, Eva Castellá, Xavier Guri, Maite Salcedo, Nestor G. Toapanta, Ignacio Cidraque, and et al. 2021. "Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism" Journal of Clinical Medicine 10, no. 1: 141. https://doi.org/10.3390/jcm10010141
APA StyleChamoun, B., Torres, I. B., Gabaldón, A., Sellarés, J., Perelló, M., Castellá, E., Guri, X., Salcedo, M., Toapanta, N. G., Cidraque, I., Moreso, F., & Seron, D. (2021). Progression of Interstitial Fibrosis and Tubular Atrophy in Low Immunological Risk Renal Transplants Monitored by Sequential Surveillance Biopsies: The Influence of TAC Exposure and Metabolism. Journal of Clinical Medicine, 10(1), 141. https://doi.org/10.3390/jcm10010141