Oncological Frontiers in the Treatment of Malignant Pleural Mesothelioma
Abstract
:1. Introduction
2. Immunotherapy
Name | Trial ID | IO Agent | Phase | No. pts | Treatment Arms | Result/ Status | Endpoint |
---|---|---|---|---|---|---|---|
Relapsed/Recurrent MPM | |||||||
MESOT-TREM-2008 [18] | NCT01649024. | Tremelimumab | II | 25 | Tremelimumab (15 mg/kg every 90 days) | Negative | ORR |
MESOT-TREM-2008 [19] | NCT01655888. | Tremelimumab | II | 29 | Tremelimumab (10 mg/kg every 4 weeks) | Negative | ORR |
DETERMINE [20] | NCT01843374. | Tremelimumab | IIB | 571 | Temelimumab (10 mg/kg) vs. placebo | Negative | OS |
KEYNOTE-028 [21] | NCT02054806 | Pembrolizumab | I | 25 | Pembrolizumab (10 mg/kg q14) | / | ORR |
KEYNOTE-158 [22] | NCT02628067 | Pembrolizumab | II | 118 | Pembrolizumab 200 mg q21 up to 35 cycles | Negative | ORR |
PROMISE-Meso [23] | NCT02991482 | Pembrolizumab | III | 114 | Pembrolizumab vs. CHT | Negative | PFS |
JAVELIN Solid Tumor [24] | NCT01772004 | Avelumab | IB | 53 | Avelumab (10 mg/kg q14) | Negative | ORR |
NivoMes [25] | NCT02497508 | Nivolumab | II | 38 | Nivolumab (3 mg/kg q14) | Positive | DCR |
MERIT [26] | JapicCTI163247 | Nivolumab | II | 34 | Nivolumab (3 mg/kg q14) | Positive | ORR |
CONFIRM [27] | NCT03048474 | Nivolumab | III | 332 | Nivolumab (240 mg q14) | Positive | PFS/OS |
NCT03075527 [28] | NCT03075527 | Tremelimumab + Durvalumab | II | 19 | Trem + Durv (4 Cycles) − Durv | Negative | ORR |
NIBIT-Meso-1 [29] | NCT02588131 | Tremelimumab + Durvalumab | II | 40 | Trem + Durv (4 Cycles) − Durv | Positive | ORR |
MAPS2/IFCT1501 [30] | NCT02716272 | Ipilimumab + Nivolumab | II | 125 | Nivolumab +/− Ipilimumab | Positive | 12W DCR |
INITIATE [31] | NCT03048474 | Ipilimumab + Nivolumab | II | 35 | Nivolumab + Ipilimumab | Positive | 12W DCR |
Upfront treatment | |||||||
Checkmate 743 [32] | NCT02899299 | Ipilimumab + Nivolumab | III | 92 | CDDP + PEM vs. IPI + NIVO | Positive | OS |
IND-227 | NCT02784171 | Pembrolizumab | II-III | 520 | CDDP + PEM +/− PEMBRO | Active, not recruiting | PFS/OS |
PrE505 [33] | NCT02899195 | Durvalumab | II | 55 | CDDP + PEM + DURVA | Positive | OS |
DREAM [34] | ACTRN 12616001170415 | Durvalumab | II | 54 | CDDP + PEM + DURVA | Positive | PFS |
DREAM3R | NCT04334759 | Durvalumab | III | 480 | CDDP + PEM +/− DURVA | Recruiting | OS |
ETOP BEAT-meso trial | NCT03762018 | Atezolizumab | III | 320 | CBDCA + PEM + BEVA +/− ATEZO | Recruiting | PFS, OS |
2.1. Single-Agent Immunotherapy
2.2. Combination Therapy
3. Targeting Functional Loss of Tumor Suppressor Genes (TSGs)
3.1. CDKN2A
3.2. BAP-1
3.3. Molecular Chaperones
4. Targeting Angiogenesis
Trial ID | Target | Phase | No. pts | Result/Status | Endpoint | Biomarker | |
---|---|---|---|---|---|---|---|
Targeting functional loss of tumor suppressor genes (TSGs) | |||||||
CDKN2A | |||||||
Ribociclib | NCT02187783 | CDK4/6 | II | 106 (5 MPM) | Negative | ORR | CDK4/CDK6, CDKN2A CCND1/CCND3 |
Abemaciclib | NCT03654833 | CDK4/6 | II | 120 | Recruiting | DCR | P16INK4A |
BAP-1 | |||||||
Rucaparib [43] | NCT03412097 | PARP 1/2 | IIA | 26 | Positive | DCR | BAP1/BRCA1 |
Niraparib | NCT03207347 | PARP 1/2 | II | 47 | Recruiting | ORR | BAP-1/HRD |
Vorinostat [48] | NCT00128102 | HDAC | III | 661 | Negative | OS | None |
Niraparib/dostarlimab [46] | NA | PARP 1-2/PD-1 | II | 35 | Planned | PFS | HRD/PD-L1 ≥ 1% |
Tazemetostat [50] | NCT02860286 | EZH2 | II | 74 | Positive | DCR | BAP-1 |
Chaperones | |||||||
Ganetespib [54] | NCT01590160 | Hsp90 | I-II | 18 | Positive | Safety, PFS | None |
Targeting angiogenesis | |||||||
Bevacizumab [61] | NCT00651456 | VEGF | III | 448 | Positive | OS | None |
Cediranib [62] | NCT01064648 | VEGFR/PDGFR | II | 92 | Negative | PFS | None |
Nintedanib [63] | NCT01907100 | VEGFR/PDGFR | III | 458 | Negative | PFS | None |
NGR-hTNF [67] | NCT01098266 | Multiple | III | 400 | Negative | OS | None |
Ramucirumab [69] | NCT03560973 | VEGFR | III | 161 | Positive | OS | None |
5. Critical Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Furuya, S.; Chimed-Ochir, O.; Takahashi, K.; David, A.; Takala, J. Global Asbestos Disaster. Int. J. Environ. Res. Public Health 2018, 15, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics. Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- I Numeri del Cancro in Italia 2020. Associazione Italiana Registri Tumori. Available online: https://www.registri-tumori.it/cms/pubblicazioni/i-numeri-del-cancro-italia-2020 (accessed on 14 April 2021).
- Cavazza, A.; Travis, L.B.; Travis, W.D.; Wolfe, J.T.; Foo, M.L.; Gillespie, D.J.; Weidner, N.; Colby, T.V. Post-irradiation malignant mesothelioma. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1996, 77, 1379–1385. [Google Scholar] [CrossRef]
- Ohar, J.A.; Cheung, M.; Talarchek, J.; Howard, S.E.; Howard, T.D.; Hesdorffer, M.; Peng, H.; Rauscher, F.J.; Testa, J.R. Germline BAP1 Mutational Landscape of Asbestos-Exposed Malignant Mesothelioma Patients with Family History of Cancer. Cancer Res. 2016, 76, 206–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betti, M.; Casalone, E.; Ferrante, D.; Romanelli, A.; Grosso, F.; Guarrera, S.; Righi, L.; Vatrano, S.; Pelosi, G.; Libener, R.; et al. Inference on germlineBAP1mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area. Genes Chromosom. Cancer 2015, 54, 51–62. [Google Scholar] [CrossRef]
- Husain, A.N.; Colby, T.V.; Ordóñez, N.G.; Allen, T.C.; Attanoos, R.L.; Beasley, M.B.; Butnor, K.J.; Chirieac, L.R.; Churg, A.M.; Dacic, S.; et al. Guidelines for pathologic diagnosis of Malignant Mesothelioma: 2017 Update of the consensus statement from the International Mesothelioma Interest Group. Arch. Pathol. Lab. Med. 2018, 142, 89–108. [Google Scholar] [CrossRef] [Green Version]
- Kindler, H.L.; Ismaila, N.; Armato, S.G.; Bueno, R.; Hesdorffer, M.; Jahan, T.; Jones, C.M.; Miettinen, M.; Pass, H.; Rimner, A.; et al. Treatment of malignant pleural mesothelioma: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1343. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Fennell, D.; Kerr, K.M.; Van Schil, P.E.; Haas, R.L.; Peters, S. Malignant pleural mesothelioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v31–v39. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III Study of Pemetrexed in Combination with Cisplatin Versus Cisplatin Alone in Patients With Malignant Pleural Mesothelioma. J. Clin. Oncol. 2003, 21, 2636–2644. [Google Scholar] [CrossRef]
- Santoro, A.; O’Brien, M.E.; Stahel, R.A.; Nackaerts, K.; Baas, P.; Karthaus, M.; Eberhardt, W.; Paz-Ares, L.; Sundstrom, S.; Liu, Y.; et al. Pemetrexed plus cisplatin or pemetrexed plus carboplatin for chemonaïve patients with malignant pleural mesothelioma: Results of the international ex-panded access program. J. Thorac. Oncol. 2008, 3, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Ceresoli, G.L.; Zucali, P.A.; De Vincenzo, F.; Gianoncelli, L.; Simonelli, M.; Lorenzi, E.; Ripa, C.; Giordano, L.; Santoro, A. Retreatment with pemetrexed-based chemotherapy in patients with malignant pleural mesothelioma. Lung Cancer 2011, 72, 73–77. [Google Scholar] [CrossRef]
- Zucali, P.; Simonelli, M.; Michetti, G.; Tiseo, M.; Ceresoli, G.; Collova, E.; Follador, A.; Dico, M.L.; Moretti, A.; De Vincenzo, F.; et al. Second-line chemotherapy in malignant pleural mesothelioma: Results of a retrospective multicenter survey. Lung Cancer 2012, 75, 360–367. [Google Scholar] [CrossRef]
- Stebbing, J.; Powles, T.; McPherson, K.; Shamash, J.; Wells, P.; Sheaff, M.T.; Slater, S.; Rudd, R.M.; Fennell, D.; Steele, J.P. The efficacy and safety of weekly vinorelbine in relapsed malignant pleural mesothelioma. Lung Cancer 2009, 63, 94–97. [Google Scholar] [CrossRef]
- Mutlu, H.; Gündüz, Ş.; Karaca, H.; Büyükçelik, A.; Cihan, Y.B.; Erden, A.; Akca, Z.; Coşkun, H.Ş. Second-line gemcitabine-based chemotherapy regimens improve overall 3-year survival rate in patients with malignant pleural mesothelioma: A multicenter retrospective study. Med. Oncol. 2014, 31, 74. [Google Scholar] [CrossRef] [PubMed]
- Zucali, P.A.; Ceresoli, G.L.; Garassino, I.; De Vincenzo, F.; Cavina, R.; Campagnoli, E.; Cappuzzo, F.; Salamina, S.; Parra, H.J.S.; Santoro, A. Gemcitabine and vinorelbine in pemetrexed-pretreated patients with malignant pleural mesothelioma. Cancer 2008, 112, 1555–1561. [Google Scholar] [CrossRef]
- Patil, N.S.; Righi, L.; Koeppen, H.; Zou, W.; Izzo, S.; Grosso, F.; Libener, R.; Loiacono, M.; Monica, V.; Buttigliero, C.; et al. Molecular and Histopathological Characterization of the Tumor Immune Microenvironment in Advanced Stage of Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Amato, G.; Giannarelli, D.; Di Giacomo, A.M.; Danielli, R.; Mutti, L.; Maio, M. Tremelimumab for patients with chemo-therapy-resistant advanced malignant mesothelioma: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2013, 14, 1104–1111. [Google Scholar] [CrossRef]
- Calabrò, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Fazio, C.; Annesi, D.; Lenoci, M.; Amato, G.; Danielli, R.; Altomonte, M.; et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: An open-label, single-arm, phase 2 study. Lancet Respir. Med. 2015, 3, 301–309. [Google Scholar] [CrossRef]
- Maio, M.; Scherpereel, A.; Calabrò, L.; Aerts, J.; Perez, S.C.; Bearz, A.; Nackaerts, K.; Fennell, D.A.; Kowalski, D.; Tsao, A.S.; et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): A multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017, 18, 1261–1273. [Google Scholar] [CrossRef]
- Alley, E.W.; Lopez, J.; Santoro, A.; Morosky, A.; Saraf, S.; Piperdi, B.; van Brummelen, E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 623–630. [Google Scholar] [CrossRef]
- Yap, T.A.; Nakagawa, K.; Fujimoto, N.; Kuribayashi, K.; Guren, T.K.; Calabrò, L.; Shapira-Frommer, R.; Gao, B.; Kao, S.; Matos, I.; et al. Efficacy and safety of pembrolizumab in patients with advanced mesothelioma in the open-label, single-arm, phase 2 KEYNOTE-158 study. Lancet Respir. Med. 2021. [Google Scholar] [CrossRef]
- Popat, S.; Curioni-Fontecedro, A.; Dafni, U.; Shah, R.; O’Brien, M.; Pope, A.; Fisher, P.; Spicer, J.; Roy, A.; Gilligan, D.; et al. A multicentre randomised phase III trial comparing pembrolizumab versus single-agent chemotherapy for advanced pre-treated malignant pleural meso-thelioma: The European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso trial. Ann. Oncol. 2020, 31, 1734–1745. [Google Scholar] [CrossRef]
- Hassan, R.; Thomas, A.; Nemunaitis, J.J.; Patel, M.R.; Bennouna, J.; Chen, F.L.; Delord, J.P.; Dowlati, A.; Kochuparambil, S.T.; Taylor, M.H.; et al. Efficacy and Safety of Avelumab Treatment in Patients with Advanced Unresectable Mesothelioma: Phase 1b Results from the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019, 5, 351–357. [Google Scholar] [CrossRef]
- Quispel-Janssen, J.; van der Noort, V.; de Vries, J.F.; Zimmerman, M.; Lalezari, F.; Thunnissen, E.; Monkhorst, K.; Schouten, R.; Schunselaar, L.; Disselhorst, M.; et al. Programmed Death 1 Blockade with Nivolumab in Patients with Recurrent Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2018, 13, 1569–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, M.; Kijima, T.; Aoe, K.; Kato, T.; Fujimoto, N.; Nakagawa, K.; Takeda, Y.; Hida, T.; Kanai, K.; Imamura, F.; et al. Clinical Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-label, Single-arm, Japanese Phase II study in Malignant Pleural Mesothelioma (MERIT). Clin. Cancer Res. 2019, 25, 5485–5492. [Google Scholar] [CrossRef] [Green Version]
- Fennell, D.; Ottensmeier, C.; Califano, R.; Hanna, G.; Ewings, S.; Hill, K.; Wilding, S.; Danson, S.; Nye, M.; Steele, N.; et al. PS01.11 Nivolumab Versus Placebo in Re-lapsed Malignant Mesothelioma: The CONFIRM Phase 3 Trial. J. Thorac. Oncol. 2021, 16, S62. [Google Scholar] [CrossRef]
- Venkatraman, D.; Anderson, A.; Digumarthy, S.; Lizotte, P.H.; Awad, M.M. Phase 2 study of tremelimumab plus dur-valumab for previously-treated malignant pleural mesothelioma (MPM). J. Clin. Oncol. 2019, 37, 8549. [Google Scholar] [CrossRef]
- Calabrò, L.; Morra, A.; Giannarelli, D.; Amato, G.; D’Incecco, A.; Covre, A.; Lewis, A.; Rebelatto, M.C.; Danielli, R.; Altomonte, M.; et al. Tremelimumab combined with dur-valumab in patients with mesothelioma (NIBIT-MESO-1): An open-label, non-randomised, phase 2 study. Lancet Respir. Med. 2018, 6, 451–460. [Google Scholar] [CrossRef]
- Scherpereel, A.; Mazieres, J.; Greillier, L.; Lantuejoul, S.; Dô, P.; Bylicki, O.; Monnet, I.; Corre, R.; Audigier-Valette, C.; Locatelli-Sanchez, M.; et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019, 20, 239–253. [Google Scholar] [CrossRef]
- Disselhorst, M.J.; Quispel-Janssen, J.; Lalezari, F.; Monkhorst, K.; de Vries, J.F.; van der Noort, V.; Harms, E.; Burgers, S.; Baas, P. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): Results of a prospective, single-arm, phase 2 trial. Lancet Respir. Med. 2019, 7, 260–270. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Forde, P.M.; Sun, Z.; Anagnostou, V.; Kindler, H.L.; Purcell, W.T.; Goulart, B.H.L.; Dudek, A.Z.; Borghaei, H.; Brahmer, J.R.; Ramalingam, S.S. PrE0505: Phase II multicenter study of anti-PD-L1, durvalumab, in combination with cisplatin and pemetrexed for the first-line treatment of unresectable malignant pleural mesothelioma (MPM)—A PrECOG LLC study. J. Clin. Oncol. 2020, 38, 9003. [Google Scholar] [CrossRef]
- Nowak, A.K.; Lesterhuis, W.J.; Kok, P.S.; Brown, C.; Hughes, B.G.; Karikios, D.J.; John, T.; Kao, S.C.; Leslie, C.; Cook, A.M.; et al. Durvalumab with first-line chemo-therapy in previously untreated malignant pleural mesothelioma (DREAM): A multicentre, single-arm, phase 2 trial with a safety run-in. Lancet Oncol. 2020, 21, 1213–1223. [Google Scholar] [CrossRef]
- Pasello, G.; Zago, G.; Lunardi, F.; Urso, L.; Kern, I.; Vlacic, G.; Grosso, F.; Mencoboni, M.; Ceresoli, G.L.; Schiavon, M.; et al. Malignant pleural mesothelioma immune microenvi-ronment and checkpoint expression: Correlation with clinical-pathological features and intratumor heterogeneity over time. Ann. Oncol. 2018, 29, 1258–1265. [Google Scholar] [CrossRef]
- Alay, A.; Cordero, D.; Hijazo-Pechero, S.; Aliagas, E.; Lopez-Doriga, A.; Marín, R.; Palmero, R.; Llatjós, R.; Escobar, I.; Ramos, R.; et al. Integrative transcriptome analysis of malignant pleural mesothelioma reveals a clinically relevant immune-based classification. J. Immunother. Cancer 2021, 9, e001601. [Google Scholar] [CrossRef]
- Bueno, R.; Stawiski, E.W.; Goldstein, L.D.; Durinck, S.; De Rienzo, A.; Modrusan, Z.; Gnad, F.; Nguyen, T.T.; Jaiswal, B.S.; Chirieac, L.R.; et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 2016, 48, 407–416. [Google Scholar] [CrossRef]
- Hmeljak, J.; Sanchez-Vega, F.; Hoadley, K.A.; Shih, J.; Stewart, C.; Heiman, D.I.; Tarpey, P.; Danilova, L.; Drill, E.; Gibb, E.A.; et al. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov. 2018, 8, 1548–1565. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.Q.; Jhanwar, S.C.; Klein, W.M.; Bell, D.W.; Lee, W.C.; Altomare, D.A.; Nobori, T.; Olopade, O.I.; Buckler, A.J.; Testa, J.R. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res. 1994, 54, 5547–5551. [Google Scholar]
- Jongsma, J.; Van Montfort, E.; Vooijs, M.; Zevenhoven, J.; Krimpenfort, P.; Van Der Valk, M.; Van De Vijver, M.; Berns, A. A Conditional Mouse Model for Malignant Mesothelioma. Cancer Cell 2008, 13, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Frizelle, S.P.; Grim, J.; Zhou, J.; Gupta, P.; Curiel, D.T.; Geradts, J.; Kratzke, R.A. Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 1998, 16, 3087–3095. [Google Scholar] [CrossRef] [Green Version]
- Testa, J.R.; Cheung, M.; Pei, J.; Below, J.E.; Tan, Y.; Sementino, E.; Cox, N.J.; Dogan, A.U.; Pass, H.I. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 2011, 43, 1022–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, M.; Ceresoli, L.G.; Zucali, P.A.; Pasello, G.; Garassino, M.; Grosso, F.; Tiseo, M.; Parra, H.S.; Zanelli, F.; Cappuzzo, F.; et al. Mutational profile of malignant pleural mesothelioma (MPM) in the phase II RAMES study. Cancers 2020, 12, 2948. [Google Scholar] [CrossRef]
- Fennell, D.A.; King, A.; Mohammed, S.; Branson, A.; Brookes, C.; Darlison, L.; Dawson, A.G.; Gaba, A.; Hutka, M.; Morgan, B.; et al. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): An open-label, single-arm, phase 2a clinical trial. Lancet Respir. Med. 2021. [Google Scholar] [CrossRef]
- Rathkey, D.; Khanal, M.; Murai, J.; Zhang, J.; Sengupta, M.; Jiang, Q.; Morrow, B.; Evans, C.N.; Chari, R.; Fetsch, P.; et al. Sensitivity of Mesothelioma Cells to PARP In-hibitors Is Not Dependent on BAP1 but Is Enhanced by Temozolomide in Cells With High-Schlafen 11 and Low-O6-methylguanine-DNA Methyltransferase Expression. J. Thorac. Oncol. 2020, 15, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Pak, H.; Hammond-Martel, I.; Ghram, M.; Rodrigue, A.; Daou, S.; Barbour, H.; Corbeil, L.; Hebert, J.; Drobetsky, E.; et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 2014, 111, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Passiglia, F.; Bironzo, P.; Righi, L.; Listì, A.; Arizio, F.; Novello, S.; Volante, M.; Scagliotti, G.V. A Prospective Phase II Single-arm Study of Niraparib Plus Dostarlimab in Patients with Advanced Non–small-cell Lung Cancer and/or Malignant Pleural Mesothelioma, Positive for PD-L1 Expression and Germline or Somatic Mutations in the DNA Repair Genes: Rationale and Study Design. Clin. Lung Cancer 2021, 22, e63–e66. [Google Scholar] [CrossRef]
- LaFave, L.M.; Béguelin, W.; Koche, R.; Teater, M.; Spitzer, B.; Chramiec, A.; Papalexi, E.; Keller, M.D.; Hricik, T.; Konstantinoff, K.; et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat. Med. 2015, 21, 1344–1349. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Belani, C.P.; Ruel, C.; Frankel, P.; Gitlitz, B.; Koczywas, M.; Espinoza-Delgado, I.; Gandara, D. Phase II Study of Belinostat (PXD101), a Histone Deacetylase Inhibitor, for Second Line Therapy of Advanced Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2009, 4, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krug, L.M.; Kindler, H.L.; Calvert, H.; Manegold, C.; Tsao, A.S.; Fennell, D.; Öhman, R.; Plummer, R.; Eberhardt, E.E.E.; Fukuoka, K.; et al. Vorinostat in patients with advanced ma-lignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): A phase 3, dou-ble-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015, 16, 447–448. [Google Scholar] [CrossRef]
- Zauderer, M.G.; Szlosarek, P.W.; Le Moulec, S.; Popat, S.; Taylor, P.; Planchard, D.; Scherpereel, A.; Jahan, T.M.; Koczywas, M.; Forster, M.; et al. Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. J. Clin. Oncol. 2020, 38, 9058. [Google Scholar] [CrossRef]
- Okamoto, J.; Mikami, I.; Tominaga, Y.; Kuchenbecker, K.M.; Lin, Y.-C.; Bravo, D.T.; Clement, G.; Yagui-Beltran, A.; Ray, M.R.; Koizumi, K.; et al. Inhibition of Hsp90 Leads to Cell Cycle Arrest and Apoptosis in Human Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2008, 3, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, J.H.; Jung, Y.; Kim, J.H.; Jong, H.S.; Kim, T.Y.; Bang, Y.J. Histone deacetylase inhibitor enhances 5-fluorouracil cy-totoxicity by down-regulating thymidylate synthase in human cancer cells. Mol. Cancer Ther. 2006, 12, 3085–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roh, J.L.; Kim, E.H.; Park, H.B.; Park, J.Y. The Hsp90 inhibitor 17-(allylamino)-17-demethoxy geldanamycin increases cisplatin antitumor activity by inducing p53-mediated apoptosis in head and neck cancer. Cell Death Dis. 2013, 4, e956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fennell, D.A.; Danson, S.; Woll, P.J.; Forster, M.; Talbot, D.C.; Child, J.; Farrelly, L.; Sharkey, A.J.; Busacca, S.; Ngai, Y.; et al. Ganetespib in Combination with Pemetrexed–Platinum Chemotherapy in Patients with Pleural Mesothelioma (MESO-02): A Phase Ib Trial. Clin. Cancer Res. 2020, 26, 4748–4755. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Bradford, W.D.; Seidel, C.W.; Li, R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nat. Cell Biol. 2012, 482, 246–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebrowski, B.K.; Yano, S.; Liu, W.; Shaheen, R.M.; Hicklin, D.J.; Putnam, J.B.; Ellis, L.M. Vascular endothelial growth factor levels and induction of permeability in malignant pleural effusions. Clin. Cancer Res. 1999, 5, 3364–3368. [Google Scholar] [PubMed]
- Aoe, K.; Hiraki, A.; Tanaka, T.; Gemba, K.-I.; Taguchi, K.; Murakami, T.; Sueoka, N.; Kamei, T.; Ueoka, H.; Sugi, K.; et al. Expression of vascular endothelial growth factor in malignant mesothelioma. Anticancer. Res. 2007, 26, 232–247. [Google Scholar]
- Ohta, Y.; Shridhar, V.; Bright, R.K.; Kalemkerian, G.P.; Du, W.; Carbone, M.; Watanabe, Y.; Pass, H.I. VEGF and VEGF type C play an important role in angiogenesis and lymphangiogenesis in human malignant mesothelioma tumours. Br. J. Cancer 1999, 81, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Strizzi, L.; Catalano, A.; Vianale, G.; Orecchia, S.; Casalini, A.; Tassi, G.; Puntoni, R.; Mutti, L.; Procopio, A. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J. Pathol. 2001, 193, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; Wang, G.; He, S.; Shen, G.; Su, C.; Zhang, Y.; Wei, X.; Ye, T.; Li, L.; Yang, S.; et al. Malignant pleural effusion and ascites induce epitheli-al-mesenchymal transition and cancer stem-like cell properties via the vascular endothelial growth factor (VEGF)/phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway. J. Biol. Chem. 2016, 291, 26750–26761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Tsao, A.S.; Miao, J.; Wistuba, I.I.; Vogelzang, N.J.; Heymach, J.V.; Fossella, F.V.; Lu, C.; Velasco, M.R.; Box-Noriega, B.; Hueftle, J.G.; et al. Phase II trial of cediranib in combination with cisplatin and pemetrexed in chemotherapy-naïve patients with unresectable malignant pleural mesothelioma (SWOG S0905). J. Clin. Oncol. 2019, 37, 2537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scagliotti, G.V.; Gaafar, R.; Nowak, A.K.; Nakano, T.; van Meerbeeck, J.; Popat, S.; Vogelzang, N.J.; Grosso, F.; Aboelhassan, R.; Jakopovic, M.; et al. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2019, 7, 569–580. [Google Scholar] [CrossRef]
- Dubey, S.; Jänne, P.A.; Krug, L.M.; Pang, H.; Wang, X.; Heinze, R.; Watt, C.; Crawford, J.; Kratzke, R.A.; Vokes, E.E.; et al. A Phase II Study of Sorafenib in Malignant Mesothelioma: Results of Cancer and Leukemia Group B 30307. J. Thorac. Oncol. 2010, 5, 1655–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papa, S.; Popat, S.; Shah, R.; Prevost, A.T.; Lal, R.; McLennan, B.; Cane, P.; Lang-Lazdunski, L.; Viney, Z.; Dunn, J.T.; et al. Phase 2 Study of Sorafenib in Malignant Mesothelioma Previously Treated with Platinum-Containing Chemotherapy. J. Thorac. Oncol. 2013, 8, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Nowak, A.K.; Millward, M.J.; Creaney, J.; Francis, R.J.; Dick, I.M.; Hasani, A.; Van Der Schaaf, A.; Segal, A.; Musk, A.W.; Byrne, M.J. A Phase II Study of Intermittent Sunitinib Malate as Second-Line Therapy in Progressive Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2012, 7, 1449–1456. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.; Ceresoli, G.L.; Zucali, P.A.; Pasello, G.; Garassino, M.C.; Grosso, F.; Tiseo, M.; Parra, H.J.S.; Zanelli, F.; Cappuzzo, F.; et al. Randomized phase II study on gem-citabine with or without ramucirumab as second-line treatment for advanced malignant pleural mesothelioma (MPM): Results of Italian Rames Study. J. Clin. Oncol. 2020, 38, 9004. [Google Scholar] [CrossRef]
- Gregorc, V.; Gaafar, R.M.; Favaretto, A.; Grossi, F.; Jassem, J.; Polychronis, A.; Bidoli, P.; Tiseo, M.; Shah, R.; Taylor, P.; et al. NGR-hTNF in combination with best investigator choice in previously treated malignant pleural mesothelioma (NGR015): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2018, 19, 799–811. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vita, E.; Stefani, A.; Di Salvatore, M.; Chiappetta, M.; Lococo, F.; Margaritora, S.; Tortora, G.; Bria, E. Oncological Frontiers in the Treatment of Malignant Pleural Mesothelioma. J. Clin. Med. 2021, 10, 2290. https://doi.org/10.3390/jcm10112290
Vita E, Stefani A, Di Salvatore M, Chiappetta M, Lococo F, Margaritora S, Tortora G, Bria E. Oncological Frontiers in the Treatment of Malignant Pleural Mesothelioma. Journal of Clinical Medicine. 2021; 10(11):2290. https://doi.org/10.3390/jcm10112290
Chicago/Turabian StyleVita, Emanuele, Alessio Stefani, Mariantonietta Di Salvatore, Marco Chiappetta, Filippo Lococo, Stefano Margaritora, Giampaolo Tortora, and Emilio Bria. 2021. "Oncological Frontiers in the Treatment of Malignant Pleural Mesothelioma" Journal of Clinical Medicine 10, no. 11: 2290. https://doi.org/10.3390/jcm10112290
APA StyleVita, E., Stefani, A., Di Salvatore, M., Chiappetta, M., Lococo, F., Margaritora, S., Tortora, G., & Bria, E. (2021). Oncological Frontiers in the Treatment of Malignant Pleural Mesothelioma. Journal of Clinical Medicine, 10(11), 2290. https://doi.org/10.3390/jcm10112290