Association of General Cognitive Functions with Gaming Use in Young Adults: A Comparison among Excessive Gamers, Regular Gamers and Non-Gamers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. DSM-5 Diagnostic Criteria for IGD
2.2.2. Korean-Wechsler Adult Intelligence Scale-IV (K-WAIS-IV)
2.2.3. Young’s Internet Addiction test (Y-IAT)
2.3. Measures Statistical Analyses
3. Results
3.1. Demographic Information
3.2. Comparisons of General Cognitive Function Levels among Groups
3.3. Correlation Coefficients
3.4. Cognitive Function Indices Predicting the Extent of Gaming Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, D.L.; Delfabbro, P.H.; Billieux, J.; Potenza, M.N. Problematic online gaming and the COVID-19 pandemic. J. Behav. Addict. 2020, 9, 184–186. [Google Scholar] [CrossRef]
- Liu, G.C.; Yen, J.Y.; Chen, C.Y.; Yen, C.F.; Chen, C.S.; Lin, W.C.; Ko, C.-H. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J. Med. Sci. 2014, 30, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Bauman, P.S.; Levine, S.A. The development of children of drug addicts. Int. J. Addict. 1986, 21, 849–863. [Google Scholar] [CrossRef]
- Forbush, K.T.; Shaw, M.; Graeber, M.A.; Hovick, L.; Meyer, V.J.; Moser, D.J.; Bayless, J.; Watson, D.; Black, D.W. Neuropsychological characteristics and personality traits in pathological gambling. CNS Spectr. 2008, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Park, E.J.; Choi, J.; Chai, S.; Lee, J.-H.; Lee, C.; Kim, D.J. Preliminary study of Internet addiction and cognitive function in adolescents based on IQ tests. Psychiatry Res. 2011, 190, 275–281. [Google Scholar] [CrossRef]
- Nader-Grosbois, N. Self-perception, self-regulation and metacognition in adolescents with intellectual disability. Res. Dev. Disabil. 2014, 35, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Shamosh, N.A.; Gray, J.R. Delay discounting and intelligence: A meta-analysis. Intelligence 2008, 36, 289–305. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Della Sala, S. Working memory and executive control. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1397–1404. [Google Scholar] [CrossRef]
- Baldo, J.V.; Shimamura, A.P.; Delis, D.C.; Kramer, J.; Kaplan, E. Verbal and design fluency in patients with frontal lobe lesions. J. Int. Neuropsychol. 2001, 7, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Ayduk, O.; Rodriguez, M.L.; Mischel, W.; Shoda, Y.; Wright, J. Verbal intelligence and self-regulatory competencies: Joint predictors of boys’ aggression. J. Res. Pers. 2007, 41, 374–388. [Google Scholar] [CrossRef]
- Petersen, I.T.; Bates, J.E.; Staples, A.D. The role of language ability and self-regulation in the development of inattentive-hyperactive behavior problems. Dev. Psychopathol. 2015, 27, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dučić, B. Relation between working memory and self-control capacity in participants with mild intellectual disability. Specijalna Edukacija I Rehabilitacija 2017, 16, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Kaljača, S.; Dučić, B. The relationship between self-regulation skills and academic success in students with mild and moderate intellectual disabilities. Specijalna Edukacija I Rehabilitacija 2016, 15, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Schuchardt, K.; Gebhardt, M.; Mäehler, C. Working memory functions in children with different degrees of intellectual disability. J. Intellect. Disabil. 2010, 54, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Hinson, J.M.; Jameson, T.L.; Whitney, P. Impulsive decision making and working memory. J. Exp. Psychol. Learn. Mem. Cogn. 2003, 29, 298. [Google Scholar] [CrossRef]
- Finn, P.R. Motivation, working memory, and decision making: A cognitive-motivational theory of personality vulnerability to alcoholism. Behav. Cogn. Neurosci. Rev. 2002, 1, 183–205. [Google Scholar] [CrossRef]
- Finn, P.R.; Hall, J. Cognitive ability and risk for alcoholism: Short-term memory capacity and intelligence moderate personality risk for alcohol problems. J. Abnorm. Psychol. 2004, 113, 569. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.J.; Gerst, K.; Finn, P.R. Intelligence moderates the relationship between delay discounting rate and problematic alcohol use. Psychol. Addict. Behav. 2020, 34, 175. [Google Scholar] [CrossRef] [PubMed]
- Newsome, S.; Day, A.L.; Catano, V.M. Assessing the predictive validity of emotional intelligence. Pers. Individ. Differ. 2000, 29, 1005–1016. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, J.; Park, K.; Choi, J.; Hong, S. Korean Wechsler Adult Intelligence Scale-IV (K-WAIS-IV); Korea Psychology Co.: Daegu, Korea, 2012. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV); NCS Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Park, M.; Choi, J.S.; Park, S.; Lee, J.Y.; Jung, H.; Sohn, B.; Kim, S.; Kim, D.; Kwon, J.S. Dysfunctional information processing during an auditory event-related potential task in individuals with Internet gaming disorder. Transl. Psychiatry 2016, 6, e721. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Jung, M.H.; Lee, J.; Choi, A.R.; Chung, S.J.; Kim, B.; Kim, D.J.; Choi, J.-S. Neurophysiological and Cognitive Correlates of Error Processing Deficits in Internet Gaming Disorder. Cereb. Cortex 2020, 30, 4914–4921. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, H.K.; Gyeong, H.; Yu, B.; Song, Y.M.; Kim, D. Reliability and validity of the Korean version of the Internet Addiction Test among college students. J. Korean Med. Sci. 2013, 28, 763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.A.; Lee, J.Y.; Jung, H.Y.; Sohn, B.K.; Choi, S.W.; Kim, Y.J.; Kim, D.J.; Choi, J.S. Changes of quality of life and cognitive function in individuals with Internet gaming disorder: A 6-month follow-up. Medicine 2016, 95. [Google Scholar] [CrossRef]
- Park, S.; Ryu, H.; Lee, J.Y.; Choi, A.; Kim, D.J.; Kim, S.N.; Choi, J.S. Longitudinal changes in neural connectivity in patients with internet gaming disorder: A resting-state EEG coherence study. Front. Psychiatry 2018, 9, 252. [Google Scholar] [CrossRef]
- Theiling, J.; Petermann, F. Neuropsychological profiles on the WAIS-IV of adults with ADHD. J. Atten. Disord. 2016, 20, 913–924. [Google Scholar] [CrossRef]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke-Stewart, K.A.; Malloy, L.C.; Allhusen, V.D. Verbal ability, self-control, and close relationships with parents protect children against misleading suggestions. Appl. Cogn. Psychol. 2004, 18, 1037–1058. [Google Scholar] [CrossRef]
- Wolfe, C.D.; Bell, M.A. Working memory and inhibitory control in early childhood: Contributions from physiology, temperament, and language. Dev. Psychobiol. 2004, 44, 68–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrouzmanesh, P.; Arshadi, F.K.; Moeeni, Z.S. The Relationship between Working Memory Related Behaviors and Self-Regulation and the Symptoms of Attention Deficit Hyperactivity. J. Appl. Environ. Biol. Sci. 2015, 4, 111–117. [Google Scholar]
- Barrett, L.F.; Tugade, M.M.; Engle, R.W. Individual differences in working memory capacity and dual-process theories of the mind. Psychol. Bull. 2004, 130, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Zhou, H.; Zhu, H. Working memory, executive function and impulsivity in Internet-addictive disorders: A comparison with pathological gambling. Acta Neuropsychiatr. 2016, 28, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Zhang, W.; Chen, J.; Li, W. Impaired inhibition and working memory in response to internet-related words among adolescents with internet addiction: A comparison with attention-deficit/hyperactivity disorder. Psychiatry Res. 2016, 236, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.P.; Griffiths, M.D.; Dsouza, D.D. Online gaming during the COVID-19 pandemic in India: Strategies for work-life balance. Int. J. Ment. Health Addict. 2020, 1–7. [Google Scholar] [CrossRef]
Variables | IGD 1 (n = 64) | High-Risk 2 (n = 33) | Healthy Controls 3 (n = 63) | H/x2 | p Value | Bonferroni 4 |
---|---|---|---|---|---|---|
Gender (M/F) | 58/6 | 26/7 | 47/16 | 5.759 | 0.056 | |
Age | 24.45 (5.44) | 25.52 (5.50) | 24.27 (3.16) | 1.452 | 0.484 | |
Education | 13.23 (1.48) | 13.55 (1.49) | 14.35 (1.81) | 17.332 | <0.001 | 1 < 3 |
Gaming hours | 5.12 (3.80) | 2.08 (2.07) | 0.33 (0.74) | 92.735 | <0.001 | 1 > 2 > 3 |
Y-IAT | 61.17 (16.95) | 38.73 (12.38) | 30.25 (8.69) | 86.542 | <0.001 | 1 > 2 > 3 |
Variables | IGD 1 (n = 64) | High-Risk 2 (n = 33) | Regular Gamer 3 (n = 14) | Non-Gamer 4 (n = 49) | H/x2 | p Value | Bonferroni 5 |
---|---|---|---|---|---|---|---|
Gender (M/F) | 58/6 | 26/7 | 12/2 | 35/14 | 7.256 | 0.065 | |
Age | 24.45 (5.44) | 25.52 (5.50) | 23.43 (2.88) | 24.51 (3.22) | 1.795 | 0.616 | |
Education | 13.23 (1.48) | 13.55 (1.49) | 14.29 (1.86) | 14.37 (1.81) | 17.352 | <0.001 | |
Gaming hours | 5.12 (3.80) | 2.08 (2.07) | 1.50 (0.85) | 0.00 (0.00) | 104.728 | <0.001 | 1 > 2, 3 > 4 |
Y-IAT | 61.17 (16.95) | 38.73 (12.38) | 28.50 (5.11) | 30.76 (9.45) | 86.731 | <0.001 | 1 > 2, 3, 4 |
Variables | IGD 1 (n = 64) | High-Risk 2 (n = 33) | Healthy Controls 3 (n = 63) | H/x2 | p Value | Bonferroni 4 |
---|---|---|---|---|---|---|
FSIQ | 102.33 (16.47) | 107.12 (14.73) | 115.35 (10.87) | 21.576 | <0.001 | 1,2 < 3 |
VCI | 104.19 (14.52) | 107.58 (15.47) | 115.70 (11.71) | 19.179 | <0.001 | 1, 2 < 3 |
PRI | 106.27 (15.73) | 107.33 (14.84) | 109.52 (15.34) | 1.724 | 0.422 | |
WMI | 104.92 (16.92) | 108.70 (13.62) | 114.40 (13.07) | 10.331 | 0.006 | 1 < 3 |
PSI | 93.14 (16.08) | 99.79 (14.00) | 109.67 (13.95) | 35.174 | <0.001 | 1, 2 < 3 |
Variables | IGD 1 (n = 64) | High-Risk 2 (n = 33) | Regular Gamer 3 (n = 14) | Non-Gamer 4 (n = 49) | H/x2 | p Value | Bonferroni 5 |
---|---|---|---|---|---|---|---|
FSIQ | 102.33 (16.47) | 107.12 (14.73) | 115.07 (9.49) | 115.43 (11.32) | 21.577 | <0.001 | 1 < 3, 4 |
VCI | 104.19 (14.52) | 107.58 (15.47) | 118.50 (8.46) | 114.90 (12.45) | 20.246 | <0.001 | 1 < 3, 4 |
PRI | 106.27 (15.73) | 107.33 (14.84) | 108.79 (15.67) | 109.73 (15.41) | 1.728 | 0.631 | |
WMI | 104.92 (16.92) | 108.70 (13.62) | 113.57 (16.08) | 114.63 (12.26) | 10.417 | 0.015 | 1 < 4 |
PSI | 93.14 (16.08) | 99.79 (14.00) | 107.07 (9.92) | 110.41 (14.90) | 35.345 | <0.001 | 1 < 3, 4 2 < 4 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1. VCI | 1 | ||||||
2. PRI | 0.375 *** | 1 | |||||
3. WMI | 0.513 *** | 0.365 *** | 1 | ||||
4. PSI | 0.452 *** | 0.378 *** | 0.448 *** | 1 | |||
5. FSIQ | 0.083 *** | 0.721 *** | 0.700 *** | 0.737 *** | 1 | ||
6. Gaming hours | −0.411 *** | −0.173 * | −0.315 *** | −0.408 *** | −0.437 *** | 1 | |
7. Y-IAT | −0.098 | −0.010 | −0.076 | −0.242 ** | −0.154 | 0.561 *** | 1 |
M | 109.42 | 107.77 | 108.76 | 101.02 | 108.44 | 2.64 1 | 44.13 |
SD | 14.58 | 15.37 | 17.14 | 16.51 | 15.22 | 3.40 1 | 19.56 |
Group | Independent Variables | Gaming Hours | p Value | |||||
---|---|---|---|---|---|---|---|---|
B | SE | β | t | R2 | F | |||
Total participants (n = 160) | FSIQ | −0.075 | 0.013 | −0.337 | −5.562 | 0.458 | 43.974 *** | <0.001 |
VCI | −0.078 | 0.014 | −0.336 | −5.522 | 0.457 | 43.747 *** | <0.001 | |
PRI | −0.035 | 0.014 | −0.158 | −2.491 | 0.376 | 31.275 *** | <0.001 | |
WMI | −0.058 | 0.014 | −0.264 | −4.268 | 0.419 | 37.441 *** | <0.001 | |
PSI | −0.055 | 0.013 | −0.270 | −4.245 | 0.418 | 37.342 *** | <0.001 | |
IGD (n = 64) | FSIQ | −0.080 | 0.027 | −0.346 | −2.934 | 0.183 | 4.492 ** | 0.007 |
VCI | −0.101 | 0.030 | −0.386 | −3.315 | 0.211 | 5.340 ** | 0.003 | |
PRI | −0.048 | 0.030 | −0.199 | −1.617 | 0.105 | 2.352 | 0.081 | |
WMI | −0.060 | 0.027 | −0.265 | −2.200 | 0.136 | 3.146 * | 0.032 | |
PSI | −0.062 | 0.029 | −0.263 | −2.141 | 0.132 | 3.055 * | 0.035 | |
High risk group (n = 33) | FSIQ | −0.068 | 0.026 | −0.481 | −2.633 | 0.238 | 3.014 * | 0.046 |
VCI | −0.061 | 0.024 | −0.459 | −2.557 | 0.229 | 2.875 | 0.053 | |
PRI | −0.048 | 0.028 | −0.341 | −1.685 | 0.140 | 1.569 | 0.218 | |
WMI | −0.074 | 0.027 | −0.489 | −2.729 | 0.248 | 3.196 * | 0.038 | |
PSI | −0.043 | 0.026 | −0.289 | −1.656 | 0.137 | 1.535 | 0.226 | |
Regular gamer (n = 14) | FSIQ | −0.043 | 0.025 | −0.475 | −1.703 | 0.297 | 1.407 | 0.297 |
VCI | −0.078 | 0.045 | −0.769 | −1.719 | 0.300 | 1.427 | 0.292 | |
PRI | −0.015 | 0.016 | −0.278 | −0.954 | 0.169 | 0.676 | 0.586 | |
WMI | −0.011 | 0.016 | −0.210 | −0.683 | 0.133 | 0.513 | 0.682 | |
PSI | −0.019 | 0.026 | −0.218 | −0.737 | 0.140 | 0.541 | 0.665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.H.; Chung, S.J.; Choi, A.; Lee, J.Y.; Kim, B.; Park, M.; Park, S.; Choi, J.-S. Association of General Cognitive Functions with Gaming Use in Young Adults: A Comparison among Excessive Gamers, Regular Gamers and Non-Gamers. J. Clin. Med. 2021, 10, 2293. https://doi.org/10.3390/jcm10112293
Jang JH, Chung SJ, Choi A, Lee JY, Kim B, Park M, Park S, Choi J-S. Association of General Cognitive Functions with Gaming Use in Young Adults: A Comparison among Excessive Gamers, Regular Gamers and Non-Gamers. Journal of Clinical Medicine. 2021; 10(11):2293. https://doi.org/10.3390/jcm10112293
Chicago/Turabian StyleJang, Joon Hwan, Sun Ju Chung, Aruem Choi, Ji Yoon Lee, Bomi Kim, Minkyung Park, Susan Park, and Jung-Seok Choi. 2021. "Association of General Cognitive Functions with Gaming Use in Young Adults: A Comparison among Excessive Gamers, Regular Gamers and Non-Gamers" Journal of Clinical Medicine 10, no. 11: 2293. https://doi.org/10.3390/jcm10112293
APA StyleJang, J. H., Chung, S. J., Choi, A., Lee, J. Y., Kim, B., Park, M., Park, S., & Choi, J. -S. (2021). Association of General Cognitive Functions with Gaming Use in Young Adults: A Comparison among Excessive Gamers, Regular Gamers and Non-Gamers. Journal of Clinical Medicine, 10(11), 2293. https://doi.org/10.3390/jcm10112293