Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Subjects
2.4. Apparatus
2.5. Measurements
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. The Value of the Study
4.2. Limitations of the Study
4.3. Clinical Messages
- Passive stabilization of both the shoulder and the trunk can improve hand and wrist coordination in patients following a stroke.
- Placing patients in the supine position with the upper arm held beside their body during rehabilitation work may help them to access latent movement patterns lost due to stroke.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, C.H.; Sung, W.H.; Chiang, S.L.; Lu, L.H.; Lin, C.H.; Tung, Y.C.; Lin, C.H. Bimanual coordination deficits in hands following stroke and their relationship with motor and functional performance. J. Neuroeng. Rehabil. 2019, 16, 101. [Google Scholar] [CrossRef] [Green Version]
- Kwakkel, G.; Kollen, B.J.; van der Grond, J.; Prevo, A.J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34, 2181–2186. [Google Scholar] [CrossRef] [Green Version]
- Santisteban, L.; Térémetz, M.; Bleton, J.P.; Baron, J.C.; Maier, M.A.; Lindberg, P.G. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS ONE 2016, 11, e0154792. [Google Scholar] [CrossRef] [PubMed]
- Hayward, K.S.; Brauer, S.G. Dose of arm activity training during acute and subacute rehabilitation post stroke: A systematic review of the literature. Clin. Rehabil. 2015, 29, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B. Predicting improvement in the upper paretic limb after stroke: A longitudinal prospective study. Restor. Neurol. Neurosci. 2007, 25, 453–460. [Google Scholar] [PubMed]
- Garrison, B.; Wade, E. Relative accuracy of time and frequency domain features to quantify upper extremity coordination. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4958–4961. [Google Scholar]
- Scano, A.; Dardari, L.; Molteni, F.; Giberti, H.; Tosatti, L.M.; d’Avella, A. A Comprehensive Spatial Mapping of Muscle Synergies in Highly Variable Upper-Limb Movements of Healthy Subjects. Front. Physiol. 2019, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Kwakkel, G.; Meskers, C.G.; van Wegen, E.E.; Lankhorst, G.J.; Geurts, A.C.; van Kuijk, A.A.; Lindeman, E.; Visser-Meily, A.; de Vlugt, E.; Arendzen, J.H. Impact of early applied upper limb stimulation: The EXPLICIT-stroke programme design. BMC Neurol. 2008, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluet, G.; Qiu, Q.; Patel, J.; Mont, A.; Cronce, A.; Yarossi, M.; Merians, A.; Adamovich, S. Virtual Rehabilitation of the Paretic Hand and Arm in Persons With Stroke: Translation From Laboratory to Rehabilitation Centers and the Patient’s Home. Front. Neurol. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Wolf, S.L.; Winstein, C.J.; Miller, J.P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K.E.; Nichols-Larsen, D. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA 2006, 296, 2095–2104. [Google Scholar] [CrossRef]
- Behm, D.G.; Drinkwater, E.J.; Willardson, J.M.; Cowley, P.M. The use of instability to train the core musculature. Appl. Physiol. Nutr. Metab. 2010, 35, 91–108. [Google Scholar] [CrossRef]
- Hibbs, A.E.; Thompson, K.G.; French, D.; Wrigley, A.; Spears, I. Optimizing performance by improving core stability and core strength. Sports Med. 2008, 38, 995–1008. [Google Scholar] [CrossRef]
- Cotoros, D. Biomechanical Analyzes of Human Body Stability and Equilibrium. In Proceedings of the World Congress on Engineering 2010, WCE 2010, London, UK, 30 June–2 July 2010; Volume II. [Google Scholar]
- Knudson, D. Fundamentals of Biomechanics; Kluwer Academics/Plenum Publishers: New York, NY, USA, 2003; pp. 178–188. ISBN 0-306-47474-3. [Google Scholar]
- Lennon, S.; Baxter, D.; Ashburn, A. Physiotherapy based on the Bobath concept in stroke rehabilitation: A survey within the UK. Disabil. Rehabil. 2001, 23, 254–262. [Google Scholar] [CrossRef]
- Graham, J.V.; Eustace, C.; Brock, K.; Swain, E.; Irwin-Carruthers, S. The Bobath concept in contemporary clinical practice. Top. Stroke Rehabil. 2009, 16, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lennon, S.; Ashburn, A. The Bobath concept in stroke rehabilitation: A focus group study of the experienced physiotherapists’ perspective. Disabil. Rehabil. 2000, 22, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Farjoun, N.; Mayston, M.; Florencio, L.L.; Fernández-De-Las-Peñas, C.; Palacios-Ceña, D. Essence of the Bobath concept in the treatment of children with cerebral palsy. A qualitative study of the experience of Spanish therapists. Physiother. Theory Pract. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Luke, C.; Dodd, K.J.; Brock, K. Outcomes of the Bobath concept on upper limb recovery following stroke. Clin. Rehabil. 2004, 18, 888–898. [Google Scholar] [CrossRef]
- Wattananona, P. Core Stabilization Exercise and Movement System Impairment Approaches for Patients with Movement Control Impairment: A Review Article. Asia-Pac. J. Sci. Technol. 2015, 20, 480–492. [Google Scholar]
- Van Criekinge, T.; Saeys, W.; Hallemans, A.; Velghe, S.; Viskens, P.J.; Vereeck, L.; De Hertogh, W.; Truijen, S. Trunk biomechanics during hemiplegic gait after stroke: A systematic review. Gait Posture 2017, 54, 133–143. [Google Scholar] [CrossRef]
- Hodges, P.W.; Richardson, C.A. Contraction of the abdominal muscles associated with movement of the lower limb. Phys. Ther. 1997, 77, 132–142; discussion 134–142. [Google Scholar] [CrossRef]
- Jirsa, V.K.; Fink, P.; Foo, P.; Kelso, J.A. Parametric stabilization of biological coordination: A theoretical model. J. Biol. Phys. 2000, 26, 85–112. [Google Scholar] [CrossRef]
- Okunribido, O.O.; Haslegrave, C.M. Ready steady push—A study of the role of arm posture in manual exertions. Ergonomics 2008, 51, 192–216. [Google Scholar] [CrossRef]
- Lee, S.W.; Qiu, D.; Fischer, H.C.; Conrad, M.O.; Kamper, D.G. Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups. J. Neurophysiol. 2020, 124, 330–341. [Google Scholar] [CrossRef]
- Michaelsen, S.M.; Luta, A.M.; Roby-Brami, A.; Levin, M.F. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke 2001, 32, 1875–1883. [Google Scholar] [CrossRef]
- Hardwick, D.D.; Lang, C.E. Scapular and humeral movement patterns of people with stroke during range-of-motion exercises. J. Neurol. Phys. Ther. 2011, 35, 18–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thigpen, C.A.; Shaffer, M.A.; Gaunt, B.W.; Leggin, B.G.; Williams, G.R.; Wilcox, R.B., III. The American Society of Shoulder and Elbow Therapists’ consensus statement on rehabilitation following arthroscopic rotator cuff repair. J. Shoulder Elb. Surg. 2016, 25, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Brunnstrom, S. Movement Therapy in Hemiplegia: A Neurophysiological Approach; Harper and Row: New York, NY, USA, 1970. [Google Scholar]
- Ellis, M.D.; Sukal-Moulton, T.; Dewald, J.P. Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabilit. Neural Repair 2009, 23, 862–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijland, R.H.; van Wegen, E.E.; Harmeling-van der Wel, B.C.; Kwakkel, G. On behalf of the EPOS Investigators. Presence of Finger Extension and Shoulder Abduction Within 72 Hours After Stroke Predicts Functional Recovery Early Prediction of Functional Outcome After Stroke: The EPOS Cohort Study. Stroke 2010, 41, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanzarella, S.; Muceli, S.; Del Vecchio, A.; Casolo, A.; Farina, D. Non-invasive analysis of motor neurons controlling the intrinsic and extrinsic muscles of the hand. J. Neural Eng. 2020, 17, 046033. [Google Scholar] [CrossRef] [PubMed]
- Weiler, J.; Gribble, P.L.; Pruszynski, J.A. Rapid feedback responses are flexibly coordinated across arm muscles to support goal-directed reaching. J. Neurophysiol. 2018, 119, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Rand, M.K.; Rentsch, S. Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles: Effects of Terminal Visual Feedback. PLoS ONE 2016, 11, e0164602. [Google Scholar] [CrossRef]
- Delph, M.A.; Fischer, S.A.; Gauthier, P.W.; Luna, C.H.M.; Clancy, E.A.; Fischer, G.S. A soft robotic exomusculature glove with integrated sEMG sensing for hand rehabilitation. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013. [Google Scholar]
- Golaszewski, S.; Kremser, C.H.; Wagner, M.; Felber, S.; Aichner, F.; Dimitrijevic, M.M. Functional magnetic resonance imaging of the human motor cortex before and after whole-hand afferent electrical stimulation. Scand. J. Rehabil. Med. 1999, 31, 165–173. [Google Scholar] [CrossRef]
- Oluigbo, C.O.; Salma, A.; Rezai, A.R. Deep brain stimulation for neurological disorders. IEEE Rev. Biomed. Eng. 2012, 5, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y. Deep brain stimulation therapy for involuntary movements. Rinsho Shinkeigaku Clin. Neurol. 2001, 41, 1079–1080. [Google Scholar]
- Collin, C.; Wade, D. Assessing motor impairment after stroke: A pilot reliability study. J. Neurol. Neurosurg. Psychiatry 1990, 53, 576–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanford, J.; Moreland, J.; Swanson, L.R.; Stratford, P.W.; Gowland, C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys. Ther. 1993, 73, 447–454. [Google Scholar] [CrossRef]
- Bohannon, R.; Smith, M. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206. [Google Scholar] [CrossRef]
- Carmeli, E.; Peleg, S.; Bartur, G.; Elbo, E.; Vatine, J.J. HandTutor™ enhanced hand rehabilitation after stroke-a pilot study. Physiother. Res. Int. 2011, 16, 191–200. [Google Scholar] [CrossRef]
- Franchignoni, F.P.; Tesio, L.; Ricupero, C.; Martino, M.T. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 1997, 28, 1382–1385. [Google Scholar] [CrossRef]
- Andersen, L.; Zeeman, P.; Jørgensen, J.R.; Bech-Pedersen, D.T.; Sørensen, J.; Kjær, M.; Andersen, J. Effects of intensive physical rehabilitation on neuromuscular adaptations in adults with poststroke hemiparesis. J. Strength Cond. Res. 2011, 25, 2808–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, C.A.; Oldham, J.A. A Comparison of Dominant and Non-Dominant Hand Strengths. J. Hand Surg. 1999, 24, 421–425. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, T.M.; Abd Elkader, S.M.; Al-Shenqiti, A.M.; Ibrahim, M.I. Assessment of hand-grip and key-pinch strength at three arm positions among healthy college students: Dominant versus non-dominant hand. J. Taibah Univ. Med. Sci. 2019, 14, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.L.; Creath, R.A.; Magder, L.; Rogers, M.W.; McCombe Waller, S. Impaired posture, movement preparation, and execution during both paretic and nonparetic reaching following stroke. J. Neurophysiol. 2019, 121, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.F.; Liaw, L.J.; Wang, R.Y.; Su, F.C.; Hsu, A.T. Relationship between trunk stability during voluntary limb and trunk movements and clinical measurements of patients with chronic stroke. J. Phys. Ther. Sci. 2015, 27, 2201–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kordelaar, J.; Van Wegen, E.E.H.; Kwakkel, G. Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: A cross-sectional study. Exp. Brain Res. 2012, 221, 251–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smania, N.; Gambarin, M.; Tinazzi, M.; Picelli, A.; Fiaschi, A.; Moretto, G.; Bovi, P.; Paolucci, S. Are indexes of arm recovery related to daily life autonomy in patients with stroke? Eur. J. Phys. Rehabil. Med. 2009, 45, 349–354. [Google Scholar]
- Kwakkel, G.; Kollen, B.; Lindeman, E. Understanding the pattern of functional recovery after stroke: Facts and theories. Restor. Neurol. Neurosci. 2004, 22, 281–299. [Google Scholar]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
Group | Age | Height | Body Mass | BMI |
---|---|---|---|---|
Stroke | 64.1 ± 9.2 | 167.7 ± 7.5 | 76.4 ± 9.4 | 27.16 ± 2.8 |
Control | 58.6 ± 11.9 | 170.78 ± 8.8 | 72.50 ± 11.0 | 24.8 ± 2.7 |
Wilcoxon U | 384.50 | 431.50 | 449.00 | 297.00 |
Z | −2.05 | −1.45 | −1.22 | −3.17 |
p | 0.040 | 0.148 | 0.222 | 0.002 |
effect size | 0.25 | 0.18 | 0.15 | 0.39 |
No Stabilization | Stabilization | p * | |||
---|---|---|---|---|---|
M | SD | M | SD | ||
Range of active movement of the wrist, mm | 17.91 | 6.17 | 18.74 | 6.28 | 0.374 |
Range of passive movement of the wrist, mm | 25.35 | 3.76 | 25.38 | 4.48 | 0.922 |
5th finger active movement, mm | 19.47 | 9.06 | 17.56 | 8.12 | 0.069 |
5th finger passive movement, mm | 23.41 | 8.99 | 21.26 | 7.73 | 0.050 |
4th finger active movement, mm | 23.03 | 7.38 | 21.56 | 7.80 | 0.062 |
4th finger passive movement, mm | 27.62 | 6.72 | 25.35 | 6.79 | 0.069 |
3rd finger active movement, mm | 22.94 | 6.05 | 22.47 | 5.85 | 0.253 |
3rd finger passive movement, mm | 27.12 | 5.61 | 26.15 | 5.54 | 0.536 |
2nd finger active movement, mm | 20.65 | 5.88 | 20.29 | 5.75 | 0.528 |
2nd finger passive movement, mm | 27.00 | 5.50 | 25.09 | 4.44 | 0.085 |
1st finger active movement, mm | 9.18 | 5.61 | 8.44 | 4.86 | 0.573 |
1st finger passive movement, mm | 12.68 | 5.81 | 12.97 | 5.73 | 0.893 |
Wrist extension deficit, mm | 4.21 | 3.72 | 3.76 | 3.55 | 0.250 |
Wrist flexion deficit, mm | 3.24 | 2.68 | 2.88 | 3.07 | 0.281 |
5th finger extension deficit, mm | 3.03 | 2.68 | 2.88 | 2.87 | 0.521 |
5th finger flexion deficit, mm | 0.91 | 1.99 | 0.82 | 1.57 | 0.932 |
4thfinger extension deficit, mm | 2.82 | 2.81 | 2.06 | 1.84 | 0.205 |
4th finger flexion deficit, mm | 1.76 | 3.90 | 1.74 | 2.43 | 0.483 |
3rd finger extension deficit, mm | 2.59 | 3.33 | 1.82 | 1.95 | 0.247 |
3rd finger flexion deficit, mm | 1.59 | 3.15 | 1.85 | 2.45 | 0.433 |
2nd finger extension deficit, mm | 3.65 | 4.46 | 1.94 | 1.91 | 0.061 |
2nd finger flexion deficit, mm | 2.71 | 3.47 | 2.85 | 2.89 | 0.844 |
1st finger extension deficit, mm | 1.26 | 1.69 | 1.21 | 1.18 | 0.889 |
1st finger flexion deficit, mm | 2.24 | 3.47 | 3.32 | 4.00 | 0.239 |
Frequency of wrist movement (flexion to extension), cycles #/s | 1.15 | 0.71 | 1.21 | 0.86 | 0.698 |
Wrist maximum ROM, mm | 19.73 | 10.73 | 19.94 | 9.36 | 0.153 |
Frequency of 5th finger movement (flexion to extension), cycles #/s | 1.55 | 0.96 | 1.67 | 0.94 | 0.016 |
5th finger maximum ROM, mm | 18.05 | 8.50 | 17.39 | 10.78 | 0.124 |
Frequency of 4th finger movement (flexion to extension), cycles #/s | 1.55 | 0.96 | 1.69 | 0.96 | 0.011 |
4th finger maximum ROM, mm | 22.70 | 8.04 | 20.56 | 7.74 | 0.018 |
Frequency of 3rd finger movement (from flexion to extension), cycles #/s | 1.53 | 0.98 | 1.68 | 0.96 | 0.007 |
3rd finger maximum ROM, mm | 22.00 | 5.82 | 20.41 | 6.02 | 0.027 |
Frequency of 2nd finger movement (flexion to extension), cycles #/s | 1.54 | 0.98 | 1.69 | 0.96 | 0.008 |
2nd finger maximum ROM, mm | 18.64 | 6.01 | 18.01 | 5.94 | 0.478 |
Frequency of the 1st finger movement (flexion to extension), cycles #/s | 1.17 | 0.95 | 1.19 | 1.04 | 0.453 |
1st finger maximum ROM, mm | 9.30 | 4.78 | 8.52 | 4.24 | 0.745 |
Grip strength, kg | 18.32 | 14.26 | 19.13 | 14.22 | 0.086 |
No Stabilization | Stabilization | p * | |||
---|---|---|---|---|---|
M | SD | M | SD | ||
Range of active movement of the wrist, mm | 21.78 | 4.76 | 22.34 | 4.92 | 0.232 |
Range of passive movement of the wrist, mm | 26.63 | 4.02 | 26.16 | 4.07 | 0.304 |
5th finger active movement, mm | 18.75 | 5.86 | 17.50 | 5.86 | 0.011 |
5th finger passive movement, mm | 20.09 | 6.54 | 18.84 | 6.44 | 0.005 |
4th finger active movement, mm | 21.28 | 6.07 | 20.28 | 4.95 | 0.144 |
4th finger passive movement, mm | 22.50 | 6.40 | 22.16 | 5.74 | 0.430 |
3rd finger active movement, mm | 21.34 | 5.76 | 20.84 | 5.04 | 0.390 |
3rd finger passive movement, mm | 22.72 | 6.22 | 22.84 | 5.58 | 0.654 |
2nd finger active movement, mm | 20.16 | 4.13 | 19.88 | 3.37 | 0.704 |
2nd finger passive movement, mm | 21.69 | 4.69 | 22.22 | 4.43 | 0.218 |
1st finger active movement, mm | 7.06 | 3.54 | 7.09 | 2.88 | 0.339 |
1st finger passive movement, mm | 9.31 | 4.13 | 9.16 | 3.92 | 0.524 |
Wrist extension deficit, mm | 2.69 | 2.33 | 2.19 | 2.24 | 0.012 |
Wrist flexion deficit, mm | 2.16 | 2.25 | 1.63 | 1.83 | 0.064 |
5th finger extension deficit, mm | 1.00 | 2.13 | 0.81 | 1.42 | 0.495 |
5th finger flexion deficit, mm | 0.34 | 0.90 | 0.53 | 1.32 | 0.523 |
4thfinger extension deficit, mm | 0.75 | 1.39 | 1.06 | 1.52 | 0.134 |
4th finger flexion deficit, mm | 0.47 | 0.98 | 0.81 | 1.93 | 0.518 |
3rd finger extension deficit, mm | 0.72 | 1.61 | 0.94 | 1.37 | 0.256 |
3rd finger flexion deficit, mm | 0.66 | 1.15 | 1.06 | 2.03 | 0.296 |
2nd finger extension deficit, mm | 0.97 | 1.58 | 1.50 | 2.49 | 0.145 |
2nd finger flexion deficit, mm | 0.56 | 0.84 | 0.84 | 1.67 | 0.558 |
1st finger extension deficit, mm | 0.72 | 1.46 | 0.59 | 1.01 | 0.726 |
1st finger flexion deficit, mm | 1.53 | 2.42 | 1.47 | 3.25 | 0.099 |
Frequency of wrist movement (flexion to extension), cycles #/s | 2.87 | 0.98 | 2.97 | 0.79 | 0.293 |
Wrist maximum ROM, mm | 23.64 | 7.27 | 26.38 | 8.35 | 0.003 |
Frequency of 5th finger movement (flexion to extension), cycles #/s | 2.86 | 0.88 | 2.83 | 0.91 | 0.146 |
5th finger maximum ROM, mm | 20.41 | 7.88 | 19.44 | 7.81 | 0.362 |
Frequency of 4th finger movement (flexion to extension), cycles #/s | 3.02 | 0.77 | 3.17 | 0.55 | 0.091 |
4th finger maximum ROM, mm | 23.32 | 9.58 | 22.11 | 10.71 | 0.364 |
Frequency of 3rd finger movement (from flexion to extension), cycles #/s | 3.02 | 0.77 | 3.06 | 0.74 | 0.279 |
3rd finger maximum ROM, mm | 21.16 | 5.62 | 22.27 | 7.34 | 0.337 |
Frequency of 2nd finger movement (flexion to extension), cycles #/s | 3.01 | 0.77 | 3.08 | 0.68 | 0.159 |
2nd finger maximum ROM, mm | 19.00 | 4.23 | 19.52 | 5.20 | 0.896 |
Frequency of the 1st finger movement (flexion to extension), cycles #/s | 2.49 | 1.14 | 2.43 | 1.14 | 0.741 |
1st finger maximum ROM, mm | 13.78 | 6.05 | 15.60 | 6.85 | 0.084 |
Grip strength, kg | 35.25 | 11.88 | 34.33 | 11.99 | 0.286 |
Stroke Group (n = 34) | Neurologically Healthy Group (n = 32) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No Stabilization | Stabilization | p * | No Stabilization | Stabilization | p * | |||||
M | SD | M | SD | M | SD | M | SD | |||
Tension measured during wrist movement | ||||||||||
Multifidus muscle tension, µV | 76.84 | 100.28 | 42.36 | 34.15 | 0.028 | 130.73 | 77.72 | 75.80 | 79.77 | <0.001 |
Transverse muscle tension, µV | 69.52 | 80.54 | 58.60 | 73.99 | 0.099 | 141.40 | 165.86 | 65.54 | 70.46 | <0.001 |
Supraspinatus muscle tension, µV | 81.15 | 73.16 | 83.88 | 61.64 | 0.278 | 170.19 | 95.92 | 120.78 | 47.91 | <0.001 |
Tension measured during finger movement | ||||||||||
Multifidus muscle tension, µV | 78.30 | 100.43 | 42.74 | 32.69 | 0.014 | 126.77 | 80.21 | 70.43 | 63.37 | <0.001 |
Transverse muscle tension, µV | 63.15 | 68.06 | 51.57 | 57.63 | 0.126 | 137.38 | 166.16 | 62.54 | 66.74 | <0.001 |
Supraspinatus muscle tension, µV | 82.29 | 72.52 | 80.34 | 61.04 | 0.215 | 165.55 | 95.03 | 115.84 | 52.19 | <0.001 |
Affected/Dominant Hand | Affected/Non-Dominant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
No Stabilization | Stabilization | p * | No Stabilization | Stabilization | p * | |||||
M | SD | M | SD | M | SD | M | SD | |||
Range of active movement of the wrist, mm | 16.94 | 5.74 | 17.17 | 6.14 | 0.755 | 19.00 | 6.62 | 20.50 | 6.14 | 0.342 |
Range of passive movement of the wrist, mm | 24.78 | 3.74 | 24.17 | 4.82 | 0.660 | 26.00 | 3.80 | 26.75 | 3.75 | 0.549 |
5th finger active movement, mm | 16.17 | 7.23 | 15.56 | 8.10 | 0.552 | 23.19 | 9.67 | 19.81 | 7.77 | 0.083 |
5th finger passive movement, mm | 19.17 | 6.71 | 19.56 | 7.60 | 0.856 | 28.19 | 8.98 | 23.19 | 7.64 | 0.017 |
4th finger active movement, mm | 21.89 | 7.32 | 19.67 | 7.90 | 0.021 | 24.31 | 7.46 | 23.69 | 7.36 | 0.931 |
4th finger passive movement, mm | 24.61 | 6.42 | 23.61 | 6.71 | 0.261 | 31.00 | 5.45 | 27.31 | 6.52 | 0.154 |
3rd finger active movement, mm | 22.61 | 5.65 | 21.56 | 5.64 | 0.120 | 23.31 | 6.63 | 23.50 | 6.09 | 0.856 |
3rd finger passive movement, mm | 24.67 | 5.36 | 25.44 | 5.19 | 0.324 | 29.88 | 4.63 | 26.94 | 5.97 | 0.111 |
2nd finger active movement, mm | 19.28 | 5.03 | 18.50 | 5.69 | 0.377 | 22.19 | 6.53 | 22.31 | 5.28 | 0.888 |
2nd finger passive movement, mm | 25.17 | 6.39 | 23.33 | 4.17 | 0.436 | 29.06 | 3.42 | 27.06 | 3.97 | 0.086 |
1st finger active movement, mm | 8.89 | 5.08 | 8.06 | 4.11 | 0.494 | 9.50 | 6.31 | 8.88 | 5.70 | 0.875 |
1st finger passive movement, mm | 12.11 | 5.87 | 12.56 | 5.45 | 0.867 | 13.31 | 5.86 | 13.44 | 6.19 | 0.979 |
Wrist extension deficit, mm | 4.56 | 3.37 | 4.28 | 3.36 | 0.393 | 3.81 | 4.15 | 3.19 | 3.78 | 0.503 |
Wrist flexion deficit, mm | 3.28 | 2.08 | 2.72 | 3.43 | 0.107 | 3.19 | 3.29 | 3.06 | 2.72 | 0.840 |
5th finger extension deficit, mm | 2.56 | 2.28 | 3.17 | 2.94 | 0.728 | 3.56 | 3.05 | 2.56 | 2.85 | 0.275 |
5th finger flexion deficit, mm | 0.44 | 1.20 | 0.83 | 1.62 | 0.394 | 1.44 | 2.56 | 0.81 | 1.56 | 0.438 |
4thfinger extension deficit, mm | 2.33 | 2.54 | 2.11 | 2.08 | 0.887 | 3.38 | 3.07 | 2.00 | 1.59 | 0.091 |
4th finger flexion deficit, mm | 0.39 | 0.70 | 1.83 | 2.66 | 0.028 | 3.31 | 5.30 | 1.63 | 2.22 | 0.349 |
3rd finger extension deficit, mm | 1.78 | 2.05 | 1.78 | 2.24 | 0.681 | 3.50 | 4.24 | 1.88 | 1.63 | 0.180 |
3rd finger flexion deficit, mm | 0.28 | 0.58 | 2.11 | 2.91 | 0.003 | 3.06 | 4.14 | 1.56 | 1.86 | 0.254 |
2nd finger extension deficit, mm | 4.00 | 5.22 | 1.78 | 2.05 | 0.112 | 3.25 | 3.53 | 2.13 | 1.78 | 0.284 |
2nd finger flexion deficit, mm | 1.89 | 1.97 | 3.06 | 2.94 | 0.234 | 3.63 | 4.52 | 2.63 | 2.92 | 0.309 |
1st finger extension deficit, mm | 0.94 | 0.94 | 1.06 | 1.00 | 0.719 | 1.63 | 2.25 | 1.38 | 1.36 | 0.632 |
1st finger flexion deficit, mm | 2.28 | 3.83 | 3.44 | 3.68 | 0.452 | 2.19 | 3.15 | 3.19 | 4.45 | 0.476 |
Frequency of wrist movement (flexion to extension), cycles #/s | 1.04 | 0.69 | 1.08 | 0.74 | 0.959 | 1.28 | 0.74 | 1.35 | 0.98 | 0.581 |
Wrist maximum ROM, mm | 20.44 | 13.82 | 20.69 | 11.73 | 0.039 | 18.92 | 5.97 | 19.10 | 5.96 | 0.897 |
Frequency of 5th finger movement (flexion to extension), cycles #/s | 1.44 | 0.95 | 1.53 | 0.87 | 0.162 | 1.67 | 1.00 | 1.83 | 1.02 | 0.036 |
5th finger maximum ROM, mm | 16.67 | 8.20 | 15.09 | 9.04 | 0.184 | 19.59 | 8.82 | 19.97 | 12.24 | 0.438 |
Frequency of 4th finger movement (flexion to extension), cycles #/s | 1.46 | 0.94 | 1.56 | 0.90 | 0.162 | 1.66 | 0.99 | 1.83 | 1.03 | 0.029 |
4th finger maximum ROM, mm | 21.31 | 6.52 | 19.46 | 8.60 | 0.088 | 24.26 | 9.45 | 21.80 | 6.69 | 0.121 |
Frequency of 3rd finger movement (from flexion to extension), cycles #/s | 1.46 | 0.94 | 1.55 | 0.89 | 0.162 | 1.62 | 1.04 | 1.83 | 1.03 | 0.018 |
3rd finger maximum ROM, mm | 21.83 | 5.30 | 19.87 | 6.25 | 0.149 | 22.18 | 6.53 | 21.03 | 5.89 | 0.173 |
Frequency of 2nd finger movement (flexion to extension), cycles #/s | 1.46 | 0.94 | 1.56 | 0.90 | 0.162 | 1.63 | 1.05 | 1.83 | 1.03 | 0.018 |
2nd finger maximum ROM, mm | 18.04 | 5.74 | 17.36 | 6.58 | 0.632 | 19.31 | 6.41 | 18.74 | 5.24 | 0.552 |
Frequency of the 1st finger movement (flexion to extension), cycles #/s | 1.17 | 0.89 | 1.21 | 1.08 | 0.585 | 1.18 | 1.04 | 1.18 | 1.03 | 0.622 |
1st finger maximum ROM, mm | 8.51 | 4.80 | 8.12 | 3.92 | 0.744 | 10.19 | 4.76 | 8.98 | 4.66 | 0.255 |
Grip strength, kg | 15.54 | 12.28 | 16.27 | 12.74 | 0.372 | 21.44 | 16.03 | 22.34 | 15.50 | 0.088 |
Muscle Tension | Affected/Dominant Hand | Affected/Non-Dominant Hand | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No Stabilization | Stabilization | p * | No Stabilization | Stabilization | p * | |||||
M | SD | M | SD | M | SD | M | SD | |||
Tension measured during wrist movement | ||||||||||
Multifidus muscle tension, µV | 63.47 | 80.52 | 42.85 | 35.12 | 0.199 | 91.88 | 119.66 | 41.82 | 34.17 | 0.063 |
Transverse muscle tension, µV | 57.37 | 54.30 | 70.43 | 94.18 | 0.679 | 83.19 | 102.73 | 45.29 | 40.43 | 0.044 |
Supraspinatus muscle tension, µV | 69.81 | 60.64 | 81.34 | 63.93 | 0.647 | 93.92 | 85.32 | 86.74 | 60.92 | 0.352 |
Tension measured during finger movement | ||||||||||
Multifidus muscle tension, µV | 62.16 | 80.32 | 43.69 | 33.89 | 0.199 | 96.45 | 119.23 | 41.66 | 32.37 | 0.030 |
Transverse muscle tension, µV | 51.47 | 52.89 | 59.84 | 71.18 | 0.983 | 76.30 | 81.69 | 42.27 | 37.28 | 0.026 |
Supraspinatus muscle tension, µV | 71.75 | 61.09 | 75.16 | 64.24 | 0.396 | 94.14 | 84.01 | 86.17 | 58.74 | 0.326 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olczak, A.; Truszczyńska-Baszak, A. Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. J. Clin. Med. 2021, 10, 2402. https://doi.org/10.3390/jcm10112402
Olczak A, Truszczyńska-Baszak A. Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. Journal of Clinical Medicine. 2021; 10(11):2402. https://doi.org/10.3390/jcm10112402
Chicago/Turabian StyleOlczak, Anna, and Aleksandra Truszczyńska-Baszak. 2021. "Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients" Journal of Clinical Medicine 10, no. 11: 2402. https://doi.org/10.3390/jcm10112402
APA StyleOlczak, A., & Truszczyńska-Baszak, A. (2021). Influence of the Passive Stabilization of the Trunk and Upper Limb on Selected Parameters of the Hand Motor Coordination, Grip Strength and Muscle Tension, in Post-Stroke Patients. Journal of Clinical Medicine, 10(11), 2402. https://doi.org/10.3390/jcm10112402