Human Nonmercaptalbumin Is a New Biomarker of Motor Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Examination of Motor Function
2.3. LS Stage Tests
- Stand-up test, ability to stand on one-leg from a 40-cm-high seat (both legs).
- Two-step test, >1.3.
- 25-question GLFS score, <7.
- Stand-up test, difficulty in one-leg standing from a 40-cm-high seat (either leg).
- Two-step test, <1.3.
- 25-question GLFS score, ≥7.
- Stand-up test, difficulty in standing from a 20-cm-high seat using both legs.
- Two-step test, <1.1.
- 25-question GLFS score, ≥16.
2.4. Measurements of HSA
2.5. Statistical Analysis
3. Results
3.1. Non-Elderly Participants
3.2. Elderly Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preston, S.H.; Stokes, A. Sources of population aging in more and less developed countries. Popul. Dev Rev. 2012, 38, 221–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, K.; Ogata, T. Locomotive Syndrome: Definition and Management. Clin. Rev. Bone Miner. Metab. 2016, 14, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K. The concept and treatment of locomotive syndrome: Its acceptance and spread in Japan. J. Orthop. Sci. 2011, 16, 489–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, H.-S.; Lee, S. Overcoming osteoporosis and beyond: Locomotive syndrome or dysmobility syndrome. Osteoporos. Sarcopenia 2018, 4, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Imagama, S.; Hasegawa, Y.; Ito, Z.; Muramoto, A.; Ishiguro, N. The influence of locomotive syndrome on health-related quality of life in a community-living population. Mod. Rheumatol 2013, 23, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Ishiguro, N.; Hasegawa, Y. Spinal sagittal balance substantially influences locomotive syndrome and physical performance in community-living middle-aged and elderly women. J. Orthop. Sci. 2016, 21, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Saum, K.U.; Dieffenbach, A.K.; Jansen, E.H.; Schottker, B.; Holleczek, B.; Hauer, K.; Brenner, H. Association between oxidative stress and frailty in an elderly german population: Results from the ESTHER cohort study. Gerontology 2015, 61, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, K.; Khurana, S.; Tai, T.C. Oxidative stress in aging-matters of the heart and mind. Int. J. Mol. Sci. 2013, 14, 17897–17925. [Google Scholar] [CrossRef] [Green Version]
- Jenny, N.S. Inflammation in aging: Cause, effect, or both? Discov. Med. 2012, 13, 451–460. [Google Scholar]
- Wang, D.; Yang, Y.; Zou, X.; Zhang, J.; Zheng, Z.; Wang, Z. Antioxidant apigenin relieves age-related muscle atrophy by inhibiting oxidative stress and hyperactive mitophagy and apoptosis in skeletal muscle of mice. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2081–2088. [Google Scholar] [CrossRef]
- Baumann, C.W.; Kwak, D.; Liu, H.M.; Thompson, L.V. Age-induced oxidative stress: How does it influence skeletal muscle quantity and quality? J. Appl Physiol (1985) 2016, 121, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.J.; Martinez, P.F.; Pagan, L.U.; Damatto, R.L.; Cezar, M.D.M.; Lima, A.R.R.; Okoshi, K.; Okoshi, M.P. Skeletal muscle aging: Influence of oxidative stress and physical exercise. Oncotarget 2017, 8, 20428–20440. [Google Scholar] [CrossRef] [Green Version]
- Soysal, P.; Isik, A.T.; Carvalho, A.F.; Fernandes, B.S.; Solmi, M.; Schofield, P.; Veronese, N.; Stubbs, B. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas 2017, 99, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Oettl, K.; Stauber, R.E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol. 2007, 151, 580–590. [Google Scholar] [CrossRef]
- Zoellner, H.; Hofler, M.; Beckmann, R.; Hufnagl, P.; Vanyek, E.; Bielek, E.; Wojta, J.; Fabry, A.; Lockie, S.; Binder, B.R. Serum albumin is a specific inhibitor of apoptosis in human endothelial cells. J. Cell Sci. 1996, 109, 2571–2580. [Google Scholar] [CrossRef]
- Iwao, Y.; Ishima, Y.; Yamada, J.; Noguchi, T.; Kragh-Hansen, U.; Mera, K.; Honda, D.; Suenaga, A.; Maruyama, T.; Otagiri, M. Quantitative evaluation of the role of cysteine and methionine residues in the antioxidant activity of human serum albumin using recombinant mutants. IUBMB Life 2012, 64, 450–454. [Google Scholar] [CrossRef]
- Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology 2005, 41, 1211–1219. [Google Scholar] [CrossRef]
- Setoyama, H.; Tanaka, M.; Nagumo, K.; Naoe, H.; Watanabe, T.; Yoshimaru, Y.; Tateyama, M.; Sasaki, M.; Watanabe, H.; Otagiri, M.; et al. Oral branched-chain amino acid granules improve structure and function of human serum albumin in cirrhotic patients. J. Gastroenterol. 2017, 52, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Soejima, A.; Kaneda, F.; Manno, S.; Matsuzawa, N.; Kouji, H.; Nagasawa, T.; Era, S.; Takakuwa, Y. Useful markers for detecting decreased serum antioxidant activity in hemodialysis patients. Am. J. Kidney Dis. 2002, 39, 1040–1046. [Google Scholar] [CrossRef]
- Fujii, R.; Ueyama, J.; Aoi, A.; Ichino, N.; Osakabe, K.; Sugimoto, K.; Suzuki, K.; Hamajima, N.; Wakai, K.; Kondo, T. Oxidized human serum albumin as a possible correlation factor for atherosclerosis in a rural Japanese population: The results of the Yakumo Study. Environ. Health Prev. Med. 2018, 23, 1. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr. Opin. Nephrol. Hypertens. 2004, 13, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Dohi, Y.; Kojima, M.; Miyagawa, K.; Takase, H.; Katada, E.; Suzuki, S. Effects of ascorbic acid on ambulatory blood pressure in elderly patients with refractory hypertension. Arzneimittelforschung 2006, 56, 535–540. [Google Scholar] [CrossRef]
- Keaney, J.F., Jr.; Larson, M.G.; Vasan, R.S.; Wilson, P.W.; Lipinska, I.; Corey, D.; Massaro, J.M.; Sutherland, P.; Vita, J.A.; Benjamin, E.J. Obesity and systemic oxidative stress: Clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oettl, K.; Birner-Gruenberger, R.; Spindelboeck, W.; Stueger, H.P.; Dorn, L.; Stadlbauer, V.; Putz-Bankuti, C.; Krisper, P.; Graziadei, I.; Vogel, W.; et al. Oxidative albumin damage in chronic liver failure: Relation to albumin binding capacity, liver dysfunction and survival. J. Hepatol. 2013, 59, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Terawaki, H.; Yoshimura, K.; Hasegawa, T.; Matsuyama, Y.; Negawa, T.; Yamada, K.; Matsushima, M.; Nakayama, M.; Hosoya, T.; Era, S. Oxidative stress is enhanced in correlation with renal dysfunction: Examination with the redox state of albumin. Kidney Int. 2004, 66, 1988–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Suda, K.; Matsuyama, Y.; Era, S.; Soejima, A. Close relationship between redox state of human serum albumin and serum cysteine levels in non-diabetic CKD patients with various degrees of renal function. Clin. Nephrol. 2014, 82, 320–325. [Google Scholar] [CrossRef]
- Bissinger, R.; Bhuyan, A.A.M.; Qadri, S.M.; Lang, F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019, 286, 826–854. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.J. Tissue destruction by neutrophils. N. Engl. J. Med. 1989, 320, 365–376. [Google Scholar] [CrossRef]
- Masudo, R.; Yasukawa, K.; Nojiri, T.; Yoshikawa, N.; Shimosaka, H.; Sone, S.; Oike, Y.; Ugawa, A.; Yamazaki, T.; Shimokado, K.; et al. Evaluation of human nonmercaptalbumin as a marker for oxidative stress and its association with various parameters in blood. J. Clin. Biochem. Nutr. 2017. [Google Scholar] [CrossRef] [Green Version]
- Yasunari, K.; Maeda, K.; Nakamura, M.; Yoshikawa, J. Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose and C-reacting protein. Hypertension 2002, 39, 777–780. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Ashikawa, H.; Adachi, T.; Ueyama, J.; Yamada, S. Association between redox state of human serum albumin and exercise capacity in older women: A cross-sectional study. Geriatr. Gerontol. Int. 2020, 20, 256–260. [Google Scholar] [CrossRef]
- Imagama, S.; Hasegawa, Y.; Matsuyama, Y.; Sakai, Y.; Ito, Z.; Hamajima, N.; Ishiguro, N. Influence of sagittal balance and physical ability associated with exercise on quality of life in middle-aged and elderly people. Arch. Osteoporos. 2011, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Hida, T.; Ito, K.; Tsushima, M.; Morozumi, M.; Machino, M.; Ota, K.; Suzuki, K.; et al. Utility of the Serum Cystatin C Level for Diagnosis of Osteoporosis among Middle-Aged and Elderly People. Biomed. Res. Int. 2019, 2019, 5046852. [Google Scholar] [CrossRef] [Green Version]
- Muramoto, A.; Imagama, S.; Ito, Z.; Hirano, K.; Tauchi, R.; Ishiguro, N.; Hasegawa, Y. Threshold values of physical performance tests for locomotive syndrome. J. Orthop. Sci. 2013, 18, 618–626. [Google Scholar] [CrossRef]
- Imagama, S.; Hasegawa, Y.; Ando, K.; Kobayashi, K.; Hida, T.; Ito, K.; Tsushima, M.; Nishida, Y.; Ishiguro, N. Staged decrease of physical ability on the locomotive syndrome risk test is related to neuropathic pain, nociceptive pain, shoulder complaints, and quality of life in middle-aged and elderly people—The utility of the locomotive syndrome risk test. Mod. Rheumatol. 2017, 27, 1051–1056. [Google Scholar] [CrossRef]
- Seichi, A.; Hoshino, Y.; Doi, T.; Akai, M.; Tobimatsu, Y.; Iwaya, T. Development of a screening tool for risk of locomotive syndrome in the elderly: The 25-question Geriatric Locomotive Function Scale. J. Orthop. Sci. 2012, 17, 163–172. [Google Scholar] [CrossRef]
- Sogami, M.; Era, S.; Nagaoka, S.; Kuwata, K.; Kida, K.; Miura, K.; Inouye, H.; Suzuki, E.; Hayano, S.; Sawada, S. HPLC-studies on nonmercapt-mercapt conversion of human serum albumin. Int. J. Pept. Protein Res. 1985, 25, 398–402. [Google Scholar] [CrossRef]
- Ueyama, J.; Ishikawa, Y.; Kondo, T.; Motoyama, M.; Matsumoto, H.; Matsushita, T. A revised method for determination of serum mercaptalbumin and non-mercaptalbumin by high-performance liquid chromatography coupled with postcolumn bromocresol green reaction. Ann. Clin. Biochem. 2015, 52, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Yoshizaki, S.; Iida, T.; Terada, T.; Era, S.; Sakashita, K.; Arikawa, H. Improvement of the fraction of human mercaptalbumin on hemodialysis treatment using hydrogen-dissolved hemodialysis fluid: A prospective observational study. Ren. Replace. Ther. 2016, 2, 42. [Google Scholar] [CrossRef] [Green Version]
- Oettl, K.; Marsche, G. Redox state of human serum albumin in terms of cysteine-34 in health and disease. Methods Enzymol. 2010, 474, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Chuang, V.T.; Maruyama, T.; Otagiri, M. Redox properties of serum albumin. Biochim. Biophys. Acta 2013, 1830, 5465–5472. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H. Locomotive syndrome in Japan. Osteoporos Sarcopenia 2018, 4, 86–94. [Google Scholar] [CrossRef]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef]
- Arena, S.K.; Doherty, D.J.; Bellford, A.; Hayman, G. Effects of Aerobic Exercise on Oxidative Stress in Patients Diagnosed with Cancer: A Narrative Review. Cureus 2019, 11, e5382. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total (n = 306) | Non-Elderly (n = 124) | Elderly (n = 182) |
---|---|---|---|
male/female | 128/178 | 40/84 | 88/94 |
Age (years old) | 64.24 ± 10.4 | 54.19 ± 7.34 | 71.19 ± 5.24 |
Height (cm) | 157.88 ± 8.15 | 159.56 ± 8.16 | 156.71 ± 7.97 |
Weight (kg) | 58.84 ± 11.35 | 60.04 ± 12.61 | 58.02 ± 10.36 |
BMI (kg/cm2) | 23.5 ± 3.48 | 23.44 ± 3.73 | 23.54 ± 3.31 |
grip strength (kg) | 27.06 ± 8.88 | 27.28 ± 9.47 | 26.9 ± 8.46 |
gait speed (m/s) | 1.88 ± 0.29 | 1.94 ± 0.28 | 1.84 ± 0.29 |
Albumin (g/dL) | 4.39 ± 0.25 | 4.42 ± 0.25 | 4.36 ± 0.26 |
f(HMA) (%) | 69.49 ± 7.02 | 72.96 ± 5.86 | 67.09 ± 6.76 |
N/L | 151/155 | 84/40 | 67/115 |
Stage of LS (0/1/2) | 118/116/72 | 52/50/22 | 66/66/50 |
Non-Elderly (n = 124) | N Group (n = 84) | L Group (n = 40) | p |
---|---|---|---|
male/female | 32/52 | 16/24 | 0.304 |
Age (years) | 53.42 ± 7.5 | 56.89 ± 6.15 | <0.001 |
Height (cm) | 160.76 ± 7.87 | 159.47 ± 8.45 | 0.579 |
Weight (kg) | 59.28 ± 11.48 | 61.8 ± 12.28 | 0.283 |
BMI (kg/cm2) | 22.9 ± 3.52 | 24.27 ± 3.84 | 0.69 |
grip strength (kg) | 28.44 ± 9.55 | 27.57 ± 9.63 | 0.639 |
gait speed (m/s) | 1.95 ± 0.27 | 1.92 ± 0.31 | 0.623 |
Stage of LS (0/1/2) | 35/34/15 | 17/16/7 | 0.904 |
Elderly (n = 182) | N Group (n = 67) | L Group (n = 115) | p |
---|---|---|---|
male/female | 40/27 | 47/68 | <0.001 |
Age (years) | 69.95 ± 4.41 | 71.55 ± 5.63 | 0.057 |
Height (cm) | 159.13 ± 7.94 | 155.32 ± 7.81 | <0.001 |
Weight (kg) | 59.11 ± 10.2 | 57.37 ± 10.43 | 0.018 |
BMI (kg/cm2) | 23.25 ± 3 | 23.69 ± 3.42 | 0.930 |
grip strength (kg) | 28.35 ± 8.51 | 25.8 ± 8.39 | <0.001 |
gait speed (m/s) | 1.92 ± 0.24 | 1.78 ± 0.3 | 0.002 |
Stage of LS (0/1/2) | 33/21/13 | 33/45/37 | 0.004 |
Elderly | B | SE | Wald | df | p | OR | 95% CI |
---|---|---|---|---|---|---|---|
male/female | 0.031 | 0.709 | 0.002 | 1 | 0.966 | 1.031 | 0.257–4.136 |
Age (years) | −0.05 | 0.042 | 1.412 | 1 | 0.235 | 0.951 | 0.876–1.033 |
Height (cm) | 0.079 | 0.042 | 3.482 | 1 | 0.062 | 1.082 | 0.996–1.175 |
Weight (kg) | −0.005 | 0.025 | 0.043 | 1 | 0.836 | 0.995 | 0.947–1.045 |
grip strength (kg) | −0.08 | 0.755 | 0.011 | 1 | 0.915 | 0.923 | 0.21–4.054 |
gait speed (m/s) | −0.003 | 0.039 | 0.007 | 1 | 0.932 | 0.997 | 0.924–1.075 |
Stage of LS (0/1/2) | −0.663 | 0.309 | 4.62 | 1 | 0.032 | 0.515 | 0.281–0.943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, S.; Nakashima, H.; Ando, K.; Kobayashi, K.; Machino, M.; Seki, T.; Ishizuka, S.; Kanbara, S.; Inoue, T.; Koshimizu, H.; et al. Human Nonmercaptalbumin Is a New Biomarker of Motor Function. J. Clin. Med. 2021, 10, 2464. https://doi.org/10.3390/jcm10112464
Ito S, Nakashima H, Ando K, Kobayashi K, Machino M, Seki T, Ishizuka S, Kanbara S, Inoue T, Koshimizu H, et al. Human Nonmercaptalbumin Is a New Biomarker of Motor Function. Journal of Clinical Medicine. 2021; 10(11):2464. https://doi.org/10.3390/jcm10112464
Chicago/Turabian StyleIto, Sadayuki, Hiroaki Nakashima, Kei Ando, Kazuyoshi Kobayashi, Masaaki Machino, Taisuke Seki, Shinya Ishizuka, Shunsuke Kanbara, Taro Inoue, Hiroyuki Koshimizu, and et al. 2021. "Human Nonmercaptalbumin Is a New Biomarker of Motor Function" Journal of Clinical Medicine 10, no. 11: 2464. https://doi.org/10.3390/jcm10112464
APA StyleIto, S., Nakashima, H., Ando, K., Kobayashi, K., Machino, M., Seki, T., Ishizuka, S., Kanbara, S., Inoue, T., Koshimizu, H., Fujii, R., Yamada, H., Ando, Y., Ueyama, J., Kondo, T., Suzuki, K., Hasegawa, Y., & Imagama, S. (2021). Human Nonmercaptalbumin Is a New Biomarker of Motor Function. Journal of Clinical Medicine, 10(11), 2464. https://doi.org/10.3390/jcm10112464