Prevalence and Characteristics of Spinal Sagittal Malalignment in Patients with Osteoporosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Measurements
2.2.1. Radiographical Evaluation
2.2.2. Clinical Outcome Evaluation
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohtori, S.; Akazawa, T.; Murata, Y.; Kinoshita, T.; Yamashita, M.; Nakagawa, K.; Inoue, G.; Nakamura, J.; Orita, S.; Ochiai, N.; et al. Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures. J. Clin. Neurosci. 2010, 17, 209–213. [Google Scholar] [CrossRef]
- Hori, Y.; Hoshino, M.; Inage, K.; Miyagi, M.; Takahashi, S.; Ohyama, S.; Suzuki, A.; Tsujio, T.; Terai, H.; Dohzono, S.; et al. ISSLS PRIZE IN CLINICAL SCIENCE 2019: Clinical importance of trunk muscle mass for low back pain, spinal balance, and quality of life-a multicenter cross-sectional study. Eur. Spine J. 2019, 28, 914–921. [Google Scholar] [CrossRef]
- Ahmadi, S.A.; Takahashi, S.; Hoshino, M.; Takayama, K.; Sasaoka, R.; Tsujio, T.; Yasuda, H.; Kanematsu, F.; Kono, H.; Toyoda, H.; et al. Association between MRI findings and back pain after osteoporotic vertebral fractures: A multicenter prospective cohort study. Spine J. 2019, 19, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Yu, X.; Huang, S.; Fan, L.; Zhu, G.; Sun, H.; Tang, X. Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: A multicenter longitudinal follow-up study. Eur. Spine J. 2015, 24, 737–743. [Google Scholar] [CrossRef]
- Matsuyama, Y. Surgical treatment for adult spinal deformity: Conceptual approach and surgical strategy. Spine Surg. Relat. Res. 2017, 1, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Man, G.C.W.; Kwok, A.K.L.; Law, S.W.; Chu, W.W.C.; Cheung, W.H.; Qiu, Y.; Cheng, J.C.Y. Global sagittal alignment in elderly patients with osteoporosis and its relationship with severity of vertebral fracture and quality of life. Arch. Osteoporos. 2018, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Duval-Beaupère, G.; Schmidt, C.; Cosson, P. A Barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position. Ann. Biomed. Eng. 1992, 20, 451–462. [Google Scholar] [CrossRef]
- Van Royen, B.J.; Toussaint, H.M.; Kingma, I.; Bot, S.D.; Caspers, M.; Harlaar, J.; Wuisman, P.I. Accuracy of the sagittal vertical axis in a standing lateral radiograph as a measurement of balance in spinal deformities. Eur. Spine J. 1998, 7, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis research society-schwab adult spinal deformity classification: A validation study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef]
- Mochizuki, T.; Yano, K.; Shirahata, T.; Ikari, K.; Hiroshima, R.; Nasu, Y.; Okazaki, K. Spinal sagittal balance associated with age, vertebral fracture, and functional disability in patients with rheumatoid arthritis: A cross-sectional study. Mod. Rheumatol. 2020, 30, 1002–1008. [Google Scholar] [CrossRef]
- Scaturro, D.; Lauricella, L.; Tumminelli, L.G.; Tomasello, S.; Mauro, G.L. Is there a relationship between mild-moderate back pain and fragility fractures? Original investigation. Acta Med. Mediterr. 2020, 36, 2149–2153. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Shi, L.T.; Tang, P.F.; Sun, Z.J.; Wang, Y.H. Correlation analysis of osteoporotic vertebral compression fractures and spinal sagittal imbalance. Orthopade 2017, 46, 249–255. [Google Scholar] [CrossRef]
- Kobayashi, T.; Takeda, N.; Atsuta, Y.; Matsuno, T. Flattening of sagittal spinal curvature as a predictor of vertebral fracture. Osteoporos. Int. 2008, 19, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, T.; Iwata, A.; Kanayama, M.; Oha, F.; Hashimoto, T.; Iwasaki, N. Impact of spino-pelvic and global spinal alignment on the risk of osteoporotic vertebral collapse. Spine Surg. Relat. Res. 2018, 2, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Takeda, N.; Kobayashi, T.; Atsuta, Y.; Matsuno, T.; Shirado, O.; Minami, A. Changes in the sagittal spinal alignment of the elderly without vertebral fractures: A minimum 10-year longitudinal study. J. Orthop. Sci. 2009, 14, 748–753. [Google Scholar] [CrossRef]
- Eguchi, Y.; Suzuki, M.; Yamanaka, H.; Tamai, H.; Kobayashi, T.; Orita, S.; Yamauchi, K.; Suzuki, M.; Inage, K.; Fujimoto, K.; et al. Influence of skeletal muscle mass and spinal alignment on surgical outcomes for lumbar spinal stenosis. Asian Spine J. 2018, 12, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Nukaga, T.; Watanabe, M. Correlation analysis of sagittal alignment and skeletal muscle mass in patients with spinal degenerative disease. Sci. Rep. 2018, 8, 15492. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, D.; Rizzo, S.; Sanfilippo, V.; Giustino, V.; Messina, G.; Martines, F.; Falco, V.; Cuntrera, D.; Moretti, A.; Iolascon, G.; et al. Effectiveness of rehabilitative intervention on pain, postural balance, and quality of life in women with multiple vertebral fragility fractures: A prospective cohort study. J. Funct. Morphol. Kinesiol. 2021, 6, 24. [Google Scholar] [CrossRef]
- Kondo, R.; Yamato, Y.; Nagafusa, T.; Mizushima, T.; Hasegawa, T.; Kobayashi, S.; Togawa, D.; Oe, S.; Kurosu, K.; Matsuyama, Y. Effect of corrective long spinal fusion to the ilium on physical function in patients with adult spinal deformity. Eur. Spine J. 2017, 26, 2138–2145. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Boissière, L.; Guevara-Villazón, F.; Larrieu, D.; Núñez-Pereira, S.; Bourghli, A.; Gille, O.; Vital, J.M.; Pellisé, F.; Sánchez Pérez-Grueso, F.J.; et al. Factors influencing patient satisfaction after adult scoliosis and spinal deformity surgery. J. Neurosurg. Spine 2019, 31, 408–417. [Google Scholar] [CrossRef]
- Yoshida, G.; Hasegawa, T.; Yamato, Y.; Kobayashi, S.; Oe, S.; Banno, T.; Mihara, Y.; Arima, H.; Ushirozako, H.; Yasuda, T.; et al. Predicting perioperative complications in adult spinal deformity surgery using a simple sliding scale. Spine 2018, 43, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.W.; Lim, C.Y.; Kim, K.; Hwang, J.; Chung, S.G. The relationships between low back pain and lumbar lordosis: A systematic review and meta-analysis. Spine J. 2017, 17, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, N.; Kasukawa, Y.; Ishikawa, Y.; Nozaka, K.; Shimada, Y. Spinal alignment and mobility in subjects with chronic low back pain with walking disturbance: A community-dwelling study. Tohoku J. Exp. Med. 2010, 221, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total | VF: 0 | VF: 1 | VF: ≥2 | Comparison | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | 259 | 129 | 50 | 80 | - | |||||
Sex (M:W) | 48:211 | 18:111 | 9:41 | 21:59 | N.S. | |||||
mean | SD | mean | SD | mean | SD | mean | SD | |||
Age | 71.5 | 10.3 | 69.6 | 9.5 | 72.4 | 10.8 | 73.8 | 10.8 | N.S. | |
BMD | LS | 0.783 | 0.169 | 0.776 | 0.166 | 0.786 | 0.153 | 0.791 | 0.185 | N.S. |
FN | 0.558 | 0.118 | 0.586 | 0.122 | 0.543 | 0.099 | 0.522 | 0.113 | VF: 0 vs. ≥2 p < 0.05 | |
TH | 0.623 | 0.132 | 0.652 | 0.136 | 0.591 | 0.126 | 0.596 | 0.121 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
Bone turnover marker | BAP | 14.8 | 12.5 | 14.2 | 14.6 | 15.3 | 10.0 | 15.5 | 9.9 | N.S. |
TRACP5b | 407 | 244 | 390 | 198 | 406 | 231 | 436 | 309 | N.S. | |
Spinal sagittal alignment | PT | 24.8 | 11.9 | 22.4 | 11.2 | 26.2 | 10.4 | 27.6 | 13.3 | VF: 0 vs. ≥2 p < 0.05 |
PI-LL | 15.1 | 21.3 | 13.1 | 20.3 | 16.5 | 18.4 | 17.6 | 24.4 | N.S. | |
SVA | 60.4 | 68.4 | 48.6 | 64.8 | 69.1 | 62.8 | 74.0 | 74.5 | VF: 0 vs. ≥2 p < 0.05 | |
JOABPEQ | pain-related disorders | 77.3 | 31.6 | 77.3 | 31.6 | 62.2 | 32.4 | 66.1 | 32.2 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 |
lumbar spine dysfunction | 69.9 | 29.1 | 78.1 | 26.3 | 64.1 | 26.8 | 60.4 | 31.1 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
gait disturbance | 61.5 | 34.7 | 72.6 | 31.5 | 54.1 | 34.0 | 48.1 | 34.3 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
social life dysfunction | 58.2 | 27.5 | 68.2 | 25.8 | 52.4 | 26.7 | 45.5 | 24.5 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
psychological disorders | 49.6 | 17.3 | 54.7 | 17.3 | 44.2 | 15.9 | 44.9 | 15.8 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
ODI | 26.7 | 20.7 | 20.3 | 18.5 | 29.3 | 19.6 | 35.5 | 21.3 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
VAS | 3.3 | 3.8 | 2.6 | 2.4 | 3.7 | 3.0 | 4.2 | 5.5 | VF: 0 vs. ≥2 p < 0.05 | |
SF-36 | PF | 63.7 | 43.3 | 74.7 | 52.4 | 57.8 | 27.4 | 49.9 | 28.1 | VF: 0 vs. ≥2 p < 0.05 |
RP | 60.3 | 31.7 | 71.5 | 26.8 | 54.0 | 32.1 | 46.3 | 32.2 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
BP | 53.4 | 25.4 | 59.3 | 24.1 | 46.8 | 25.1 | 47.9 | 25.6 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
GH | 44.9 | 16.8 | 48.2 | 15.8 | 42.4 | 18.0 | 41.2 | 16.9 | VF: 0 vs. ≥2 p < 0.05 | |
VT | 51.7 | 21.6 | 55.8 | 21.5 | 49.5 | 22.4 | 46.5 | 20.0 | VF: 0 vs. ≥2 p < 0.05 | |
SF | 69.7 | 28.7 | 76.4 | 27.3 | 64.0 | 26.3 | 62.4 | 29.9 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
RE | 63.8 | 33.4 | 74.1 | 28.8 | 56.1 | 32.0 | 51.9 | 36.2 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
MH | 63.7 | 20.8 | 68.3 | 20.0 | 59.7 | 21.7 | 58.8 | 20.1 | VF: 0 vs. 1, 0 vs. ≥2 p < 0.05 | |
N | % | N | % | N | % | N | % | |||
normal alignment | 54 | 20.8 | 36 | 27.9 | 7 | 14.0 | 11 | 13.8 | p < 0.05 | |
malalignment | 205 | 79.2 | 93 | 72.1 | 43 | 86.0 | 69 | 86.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsunaga, T.; Miyagi, M.; Nakazawa, T.; Murata, K.; Kawakubo, A.; Fujimaki, H.; Koyama, T.; Kuroda, A.; Yokozeki, Y.; Mimura, Y.; et al. Prevalence and Characteristics of Spinal Sagittal Malalignment in Patients with Osteoporosis. J. Clin. Med. 2021, 10, 2827. https://doi.org/10.3390/jcm10132827
Matsunaga T, Miyagi M, Nakazawa T, Murata K, Kawakubo A, Fujimaki H, Koyama T, Kuroda A, Yokozeki Y, Mimura Y, et al. Prevalence and Characteristics of Spinal Sagittal Malalignment in Patients with Osteoporosis. Journal of Clinical Medicine. 2021; 10(13):2827. https://doi.org/10.3390/jcm10132827
Chicago/Turabian StyleMatsunaga, Takayuki, Masayuki Miyagi, Toshiyuki Nakazawa, Kosuke Murata, Ayumu Kawakubo, Hisako Fujimaki, Tomohisa Koyama, Akiyoshi Kuroda, Yuji Yokozeki, Yusuke Mimura, and et al. 2021. "Prevalence and Characteristics of Spinal Sagittal Malalignment in Patients with Osteoporosis" Journal of Clinical Medicine 10, no. 13: 2827. https://doi.org/10.3390/jcm10132827
APA StyleMatsunaga, T., Miyagi, M., Nakazawa, T., Murata, K., Kawakubo, A., Fujimaki, H., Koyama, T., Kuroda, A., Yokozeki, Y., Mimura, Y., Shirasawa, E., Saito, W., Imura, T., Uchida, K., Nanri, Y., Inage, K., Akazawa, T., Ohtori, S., Takaso, M., & Inoue, G. (2021). Prevalence and Characteristics of Spinal Sagittal Malalignment in Patients with Osteoporosis. Journal of Clinical Medicine, 10(13), 2827. https://doi.org/10.3390/jcm10132827