Preoperative Cardiovascular Assessment of the Renal Transplant Recipient: A Narrative Review
Abstract
:1. Introduction
2. Screening for CAD in Kidney Transplant Candidates
3. Methods of Screening
4. History and Physical Examination
5. Risk Prediction Scores
6. Biomarkers
7. Proteinuria
8. Electrocardiography (ECG)
9. Functional Status Evaluation
10. Exercise-Based Stress Assessment
11. Functional Non-Invasive Imaging
12. Echocardiography
13. Single-Photon Emission Computed Tomography (SPECT)
14. Cardiac Magnetic Resonance (CMR)
15. Positron Emission Tomography (PET)
16. Anatomical Imaging
17. Coronary Artery Calcium Score (CACS)
18. Coronary Computed Tomography Angiography (CCTA)
19. Invasive Coronary Angiography (ICA)
20. Evaluating the Principle of CAD Screening
21. Summary on Screening for CAD
22. Management of Stable CAD in Kidney Transplant Candidates
23. Medical Therapy for Stable CAD
24. Revascularisation for Stable CAD
25. Summary of Management of Coronary Artery Disease
26. Arrhythmias and Sudden Cardiac Death in CKD and ESKD Patients
27. Management of Arrhythmias
28. Anticoagulation
29. Cardiac Function
30. Valvulopathies
31. Smoking
32. Obesity
33. Pulmonary Hypertension
- Intrinsic arteriopathy due results in increased pulmonary vascular resistance [142]: this can be seen in genetic disorders (hereditary PAH), idiopathically, connective tissue diseases (systemic lupus erythematosus and scleroderma), infections and portopulmonary syndrome. Some of these conditions can also result in renal impairment (systemic lupus erythematosus) while right heart failure due to PAH can lead to CKD due to venous congestion. This can be managed by treating any underlying condition as well as pulmonary artery vasodilators (endothelin receptor antagonists, prostacyclins, phosphodiesterase-5 inhibitors and ricioguat).
- Left ventricular dysfunction [143,144]: LV dysfunction will lead to pulmonary venous congestion resulting in a compensatory increase in right ventricular contraction to maintain blood flow. The increased pressures will lead to vascular remodeling in the long term which may result in persistent PAH even if left atrial pressures are reduced. This is the most common form of PAH in renal failure with a 30–50% incidence of LV dysfunction noted in some cohorts. Renal patients are at risk of both systolic dysfunction due to ischemia and cardiomyopathy as well as diastolic dysfunction due to myocardial stiffening from hypertension and diabetes mellitus.
- Hypoxic pulmonary vasoconstriction [145]: pulmonary vascular is unique in the human body in that there is hypoxic vasoconstriction allowing poorly oxygenated areas of the lung to shunt blood to well-oxygenated areas of lung reducing ventilation-perfusion mismatch. This can be problematic in primary lung disorders as hypoxemia will result in generalised pulmonary constriction and PAH. This is seen in many pulmonary disorders with reduced oxygenation including chronic obstructive pulmonary disease (COPD), obstructive sleep apnea (OSA) and fibrotic lung diseases. Obstructive sleep apnea has been identified in up to 60% of patients with ESKD partly due to the increased incidence of obesity. It is important to manage the underlying respiratory condition to prevent the progression of PAH.
- Chronic thromboembolic pulmonary hypertension (CTEPH) [146]: this is due to multiple pulmonary emboli forming in the pulmonary vasculature often due to multiple risk factors (obesity, inactivity, tobacco, vascular disorders). This can be treated with pulmonary endarterectomy although ESKD patients are likely to be high risk due to their co-morbidities or conservatively with anti-coagulation and riociguat.
- Multifactorial or unclear aetiology: these patients have PAH due to haematological disorders (haemolytic anaemia, myeloproliferative disorders), systemic disease (e.g Langerhans cell histiocytosis), metabolic disease or even unknown aetiology. In ESKD, a potential culprit could be a high-output arterio-venous fistula [146]. Retrospective studies have shown a high incidence of PAH in patients undergoing haemodialysis compared to peritoneal dialysis [147]. The increased cardiopulmonary flow (as seen in some patients with congenital heart disease) is hypothesised to lead to pulmonary vascular remodeling and PAH. In patients with potential high-output AVF, AVF occlusion testing with possible ligation could lead to amelioration of PAH.
34. Summary of Investigations
35. Hints for Future Research
36. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UK Renal Registry 22nd Annual Report—Data to 31/12/2018; UK Renal Registry: Bristol, UK, 2020; Available online: Renal.org/audit-research/annual-report (accessed on 2 June 2021).
- Awan, A.A.; Niu, J.; Pan, J.S.; Erickson, K.F.; Mandayam, S.; Winkelmayer, W.C.; Navaneethan, S.D.; Ramanathan, V. Trends in the causes of death among kidney transplant recipients in the United States (1996–2014). Am. J. Nephrol. 2018, 48, 472–481. [Google Scholar] [CrossRef]
- Tabriziani, H.; Baron, P.; Abudayyeh, I.; Lipkowitz, M. Cardiac risk assessment for end-stage renal disease patients on the renal transplant waiting list. Clin. Kidney J. 2019, 12, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, S11–S103. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Maron, D.J.; O’Brien, S.M.; Fleg, J.L.; Kretov, E.I.; Briguori, C.; Kaul, U.; Reynolds, H.R.; Mazurek, T.; Sidhu, M.S.; et al. Management of Coronary Disease in Patients with Advanced Kidney Disease. N. Engl. J. Med. 2020, 382, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Winther, S.; Svensson, M.; Jørgensen, H.S.; Rasmussen, L.D.; Holm, N.R.; Gormsen, L.C.; Bouchelouche, K.; Bøtker, H.E.; Ivarsen, P.; Bøttcher, M. Prognostic Value of Risk Factors, Calcium Score, Coronary CTA, Myocardial Perfusion Imaging, and Invasive Coronary Angiography in Kidney Transplantation Candidates. JACC Cardiovasc. Imaging 2018, 11, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Fahim, M.A.; Hayen, A.; Mitchell, R.L.; Baines, L.; Lord, S.; Craig, J.C.; Webster, A.C. Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary Artery Disease in Patients with Chronic Kidney Disease: A Clinical Update. Curr. Cardiol. Rev. 2013, 9, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, T.; Kobayashi, S.; Moriya, H.; Negishi, K.; Okamoto, K.; Maesato, K.; Saito, S. High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: An angiographic examination. J. Am. Soc. Nephrol. 2005, 16, 1141–1148. [Google Scholar] [CrossRef]
- Bennett, W.M.; Kloster, F.; Rosch, J.; Barry, J.; Porter, G.A. Natural history of asymptomatic coronary arteriographic lesions in diabetic patients with end-stage renal disease. Am. J. Med. 1978, 65, 779–784. [Google Scholar] [CrossRef]
- Weinrauch, L.; D’elia, J.A.; Healy, R.W.; Gleason, R.E.; Christlieb, A.R.; Stevens Leland, J.R.; Hospital, D.; Clinic, J.; Research, E.P.J. Asymptomatic Coronary Artery Disease: Angiographic Assessment of Diabetics Evaluated for Renal Transplantation. Am. J. Cardiol. 1978, 58, 1184–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilsizian, V.; Gewirtz, H.; Marwick, T.H.; Kwong, R.Y.; Raggi, P.; Al-Mallah, M.H.; Herzog, C.A. Cardiac Imaging for Coronary Heart Disease Risk Stratification in Chronic Kidney Disease. JACC Cardiovasc. Imaging 2020, 14, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Ramos, E.L.; Gaston, R.S.; Bia, M.J.; Danovitch, G.M.; Bowen, P.A.; Lundin, P.A.; Murphy, K.J. The evaluation of renal transplant candidates: Clinical practice guidelines. Am. J. Transplant. 2002, 1, 1–95. [Google Scholar]
- Fleisher, L.A.; Beckman, J.A.; Brown, K.A.; Calkins, H.; Chaikof, E.; Fleischmann, K.E.; Freeman, W.K.; Froehlich, J.B.; Kasper, E.K.; Kersten, J.R.; et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: Executive summary—A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 2002 guidelines on perioperative cardiovascular evaluation for noncardiac surgery). Circulation 2007, 116, 1971–1996. [Google Scholar] [PubMed] [Green Version]
- Lentine, K.L.; Costa, S.P.; Weir, M.R.; Robb, J.F.; Fleisher, L.A.; Kasiske, B.L.; Carithers, R.L.; Ragosta, M.; Bolton, K.; Auerbach, A.D.; et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: A scientific statement from the American Heart Association and the American College of Cardiology Foundation. J. Am. Coll. Cardiol. 2012, 126, 617–663. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, D.; Cochat, P.; Claas, F.H.J.; Heemann, U.; Pascual, J.; Dudley, C.; Harden, P.; Hourmant, M.; Maggiore, U.; Salvadori, M.; et al. European Renal Best Practice Guideline on kidney donor and recipient evaluation and perioperative care. Nephrol. Dial. Transplant. 2015, 30, 1790–1797. [Google Scholar] [CrossRef]
- Friedman, S.E.; Palac, R.T.; Zlotnick, D.M.; Chobanian, M.C.; Costa, S.P. A call to action: Variability in guidelines for cardiacevaluation before renal transplantation. Clin. J. Am. Soc. Nephrol. 2011, 6, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.K.; Mark, P.B.; Johnston, N.; McGeoch, R.; Lindsay, M.; Kingsmore, D.B.; Dargie, H.J.; Jardine, A.G. Prognostic value of cardiovascular screening in potential renal transplant recipients: A single-center prospective observational study. Am. J. Transplant. 2008, 8, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- De Lima, J.J.G.; Gowdak, L.H.W.; De Paula, F.J.; Muela, H.C.S.; David-Neto, E.; Bortolotto, L.A. Coronary artery disease assessment and intervention in renal transplant patients: Analysis from the kiheart cohort. Transplantation 2016, 100, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Dunn, T.; Saeed, M.J.; Shpigel, A.; Novak, E.; Alhamad, T.; Stwalley, D.; Rich, M.W.; Brown, D.L. The association of preoperative cardiac stress testing with 30-day death and myocardial infarction among patients undergoing kidney transplantation. PLoS ONE 2019, 14, e0211161. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A. The Argument for Abolishing Cardiac Screening of Asymptomatic Kidney Transplant Candidates. Am. J. Kidney Dis. 2020, 75, 946–954. [Google Scholar] [CrossRef]
- Mettler, F.A.; Huda, W.; Yoshizumi, T.T.; Mahesh, M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008, 248, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Ix, J.H.; Mercado, N.; Shlipak, M.G.; Lemos, P.A.; Boersma, E.; Lindeboom, W.; O’Neill, W.W.; Wijns, W.; Serruys, P.W. Association of chronic kidney disease with clinical outcomes after coronary revascularization: The arterial revascularization therapies study (ARTS). Am. Heart J. 2005, 149, 512–519. [Google Scholar] [CrossRef]
- Palepu, S. Screening for cardiovascular disease before kidney transplantation. World J. Transplant. 2015, 5, 276. [Google Scholar] [CrossRef] [PubMed]
- Silver, S.A.; Huang, M.; Nash, M.M.; Prasad, G.V.R. Framingham risk score and novel cardiovascular risk factors underpredict major adverse cardiac events in kidney transplant recipients. Transplantation 2011, 92, 183–189. [Google Scholar] [CrossRef]
- Soveri, I.; Snyder, J.; Holdaas, H.; Holme, I.; Jardine, A.G.; L’Italien, G.J.; Fellström, B. The external validation of the cardiovascular risk equation for renal transplant recipients: Applications to BENEFIT and BENEFIT-EXT trials. Transplantation 2013, 95, 142–147. [Google Scholar] [CrossRef]
- Eggers, K.M.; Lindahl, B.; Carrero, J.J.; Evans, M.; Szummer, K.; Jernberg, T. Cardiac troponins and their prognostic importance in patients with suspected acute coronary syndrome and renal dysfunction. Clin. Chem. 2017, 63, 1409–1417. [Google Scholar] [CrossRef]
- Gunsolus, I.; Sandoval, Y.; Smith, S.W.; Sexter, A.; Schulz, K.; Herzog, C.A.; Apple, F.S. Renal Dysfunction Influences the Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin I. J. Am. Soc. Nephrol. 2018, 29, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Fahim, M.A.; Hayen, A.D.; Horvath, A.R.; Dimeski, G.; Coburn, A.; Tan, K.S.; Johnson, D.W.; Craig, J.C.; Campbell, S.B.; Hawley, C.M. Biological variation of high sensitivity cardiac troponin-T in stable dialysis patients: Implications for clinical practice. Clin. Chem. Lab. Med. 2015, 53, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Borch-Johnsen, K.; Feldt-Rasmussen, B.; Strandgaard, S.; Schroll, M.; Skov Jensen, J. Urinary Albumin Excretion An Independent Predictor of Ischemic Heart Disease. Arter. Thromb. Vasc. Biol. 1999, 19, 1992–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillege, H.L.; Fidler, V.; Diercks, G.F.; van Gilst, W.H.; de Zeeuw, D.; van Veldhuisen, D.J.; de Jong, P.E. Urinary Albumin Excretion Predicts Cardiovascular and Noncardiovascular Mortality in General Population. Circulation 2002, 106, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Hemmelgarn, B.; Lloyd, A.; James, M.T.; Manns, B.J.; Klarenbach, S.; Tonelli, M. Associations among Estimated Glomerular Filtration Rate, Proteinuria, and Adverse Cardiovascular Outcomes. Clin. J. Am. Soc. Nephrol. 2011, 6, 1418–1426. [Google Scholar] [CrossRef]
- Sharma, R.; Pellerin, D.; Gaze, D.C.; Gregson, H.; Streather, C.P.; Collinson, P.O.; Brecker, S.J.D. Dobutamine stress echocardiography and the resting but not exercise electrocardiograph predict severe coronary artery disease in renal transplant candidates. Nephrol. Dial. Transplant. 2005, 20, 2207–2214. [Google Scholar] [CrossRef] [Green Version]
- Rosas, S.E.; Reese, P.P.; Huan, Y.; Doria, C.; Cochetti, P.T.; Doyle, A. Pretransplant physical activity predicts all-cause mortality in kidney transplant recipients. Am. J. Nephrol. 2012, 35, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellizzi, V.; Cupisti, A.; Capitanini, A.; Calella, P.; D’Alessandro, C. Physical activity and renal transplantation. Kidney Blood Press. Res. 2014, 39, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Zelle, D.M.; Corpeleijn, E.; Stolk, R.P.; de Greef, M.H.G.; Gans, R.O.B.; van der Heide, J.J.H.; Navis, G.; Bakker, S.J.L. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. 2001, 6, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.S.; Myers, J.N.; Chertow, G.M.; Rabkin, R.; Chan, K.N.; Chen, Y.; Tan, J.C. Prehabilitation for kidney transplant candidates: Is it time? Clin. Transplant. 2017, 31, e13020. [Google Scholar] [CrossRef] [PubMed]
- McAdams-DeMarco, M.A.; Ying, H.; Van Pilsum Rasmussen, S.; Schrack, J.; Haugen, C.E.; Chu, N.M.; González Fernández, M.; Desai, N.; Walston, J.D.; Segev, D.L. Prehabilitation prior to kidney transplantation: Results from a pilot study. Clin. Transplant. 2019, 33, e13450. [Google Scholar] [CrossRef]
- Clarke, A.L.; Zaccardi, F.; Gould, D.W.; Hull, K.L.; Smith, A.C.; Burton, J.O.; Yates, T. Association of self-reported physical function with survival in patients with chronic kidney disease. Clin. Kidney J. 2019, 12, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Reese, P.P.; Shults, J.; Bloom, R.D.; Mussell, A.; Harhay, M.N.; Abt, P.; Levine, M.; Johansen, K.L.; Karlawish, J.T.; Feldman, H.I. Functional Status, Time to Transplantation, and Survival Benefit of Kidney Transplantation Among Wait-Listed Candidates. Am. J. Kidney Dis. 2015, 66, 837–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohl, L.D.M.; Signori, L.U.; Ribeiro, R.A.; Silva, A.M.V.; Moreira, P.R.; Dipp, T.; Sbruzzi, G.; Lukrafka, J.L.; Plentz, R.D.M. Prognostic value of the six-minute walk test in endstage renal disease life expectancy: A prospective cohort study. Clinics 2012, 67, 581. [Google Scholar] [CrossRef]
- Hartmann, E.L.; Kitzman, D.; Rocco, M.; Leng, X.; Klepin, H.; Gordon, M.; Rejeski, J.; Berry, M.; Kritchevsky, S. Physical function in older candidates for renal transplantation: An impaired population. Clin. J. Am. Soc. Nephrol. 2009, 4, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, P.; Marcus, R.L. Assessing physical function and physical activity in patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Nastasi, A.J.; McAdams-DeMarco, M.A.; Schrack, J.; Ying, H.; Olorundare, I.; Warsame, F.; Mountford, A.; Haugen, C.E.; González Fernández, M.; Norman, S.P.; et al. Pre-Kidney Transplant Lower Extremity Impairment and Post-Kidney Transplant Mortality. Am. J. Transplant. 2018, 18, 189–196. [Google Scholar] [CrossRef] [Green Version]
- McAdams-Demarco, M.A.; Law, A.; Salter, M.L.; Chow, E.; Grams, M.; Walston, J.; Segev, D.L. Frailty and early hospital readmission after kidney transplantation. Am. J. Transplant. 2013, 13, 2091–2095. [Google Scholar] [CrossRef] [Green Version]
- McAdams-DeMarco, M.A.; King, E.A.; Luo, X.; Haugen, C.; DiBrito, S.; Shaffer, A.; Kucirka, L.M.; Desai, N.M.; Dagher, N.N.; Lonze, B.E.; et al. Frailty, length of stay, and mortality in kidney transplant recipients: A national registry and prospective cohort study. Ann. Surg. 2017, 266, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobashigawa, J.; Dadhania, D.; Bhorade, S.; Adey, D.; Berger, J.; Bhat, G.; Budev, M.; Duarte-Rojo, A.; Dunn, M.; Hall, S.; et al. Report from the American Society of Transplantation on frailty in solid organ transplantation. Am. J. Transplant. 2019, 19, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Miller, P.J.; Case, B.C.; Gilbert, A.J.; Widell, J.K.; Rogers, T.; Satler, L.F.; Waksman, R.; Ben-Dor, I. Pre-Operative Cardiovascular Testing and Post-Renal Transplant Clinical Outcomes. Cardiovasc. Revascularization Med. 2019, 20, 588–593. [Google Scholar] [CrossRef]
- Wang, L.W.; Masson, P.; Turner, R.M.; Lord, S.W.; Baines, L.A.; Craig, J.C.; Webster, A.C. Prognostic value of cardiac tests in potential kidney transplant recipients: A systematic review. Transplantation 2015, 99, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Parikh, S.; Bhatt, U.; Vonvisger, J.; Nori, U.; Hasan, A.; Samavedi, S.; Andreoni, K.; Henry, M.; Pelletier, R.; et al. Cardiac stress test as a risk-stratification tool for posttransplant cardiac outcomes in diabetic kidney transplant recipients. Transplantation 2012, 94, 122. [Google Scholar] [CrossRef]
- Neumann, F.J.; Sechtem, U.; Banning, A.P.; Bonaros, N.; Bueno, H.; Bugiardini, R.; Chieffo, A.; Crea, F.; Czerny, M.; Delgado, V.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Narahara, K.A.; Thompson, C.J.; Hazen, J.F.; Brizendine, M.; Mena, I. The effect of beta blockade on single photon emission computed tomographic (SPECT) thallium-201 images in patients with coronary disease. Am. Heart J. 1989, 117, 1030–1035. [Google Scholar] [CrossRef]
- Sharir, T.; Rabinowitz, B.; Livschitz, S.; Moalem, I.; Baron, J.; Kaplinsky, E.; Chouraqui, P. Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single-photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J. Am. Coll. Cardiol. 1998, 31, 1540–1546. [Google Scholar] [CrossRef] [Green Version]
- Raggi, P. Pre-Renal Transplant Risk Stratification: A Perpetual Quandary. JACC Cardiovasc. Imaging 2018, 11, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.; Sandhu, P.; Boobes, K.; Hatahet, K.; Raza, F.; Boobes, Y. Cardiac complications of arteriovenous fistulas in patients with end-stage renal disease. Nefrologia 2015, 35, 234–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangla, A.; Oliveros, E.; Williams, K.A.; Kalra, D.K. Cardiac Imaging in the Diagnosis of Coronary Artery Disease. Curr. Probl. Cardiol. 2017, 42, 316–366. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.X.; Sun, C.B.; Liu, Y.; Wang, Y.; Guo, Y.; Li, H.E. Detection of coronary artery disease in diabetic hypertensive patients using conventional transthoratic echocardiography at rest. Int. J. Cardiovasc. Imaging 2015, 31, 987–993. [Google Scholar] [CrossRef]
- Bergeron, S.; Hillis, G.S.; Haugen, E.N.; Oh, J.K.; Bailey, K.R.; Pellikka, P.A. Prognostic value of dobutamine stress echocardiography in patients with chronic kidney disease. Am. Heart J. 2007, 153, 385. [Google Scholar] [CrossRef]
- Dundon, B.K.; Pisaniello, A.D.; Nelson, A.J.; Maia, M.; Teo, K.S.L.; Worthley, S.G.; Coates, P.T.; Russ, G.R.; Faull, R.J.; Bannister, K.; et al. Dobutamine Stress Cardiac MRI for Assessment of Coronary Artery Disease Prior to Kidney Transplantation. Am. J. Kidney Dis. 2015, 65, 808–809. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.S.; Moore, K.G.; Gillis, S.N.; Ford, K.F.; Gray, T.; Steinwinder, A.H.; Graham, A. GBCAs and risk for nephrogenic systemic fibrosis: A literature review. Radiol. Technol. 2017, 88, 583–589. [Google Scholar] [PubMed]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Yiu, K.H.; de Graaf, F.R.; van Velzen, J.E.; Marsan, N.A.; Roos, C.J.; de Bie, M.K.; Tse, H.F.; van der Wall, E.E.; Schalij, M.J.; Bax, J.J.; et al. Different value of coronary calcium score to predict obstructive coronary artery disease in patients with and without moderate chronic kidney disease. Neth. Hear. J. 2013, 21, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahni, S.; Tobis, J.M. Decision-Making for Invasive Coronary Angiography in Patients With SIHD: An Interventionalist’s Perspective—American College of Cardiology. Am. Coll. Cardiol. Expert Anal. 2018. Available online: https://www.acc.org/latest-in-cardiology/articles/2018/01/12/08/20/decision-making-for-invasive-coronary-angiography-in-patients-with-sihd (accessed on 2 June 2021).
- Wilson, R.S.; Lin, T.; Chambers, C.E.; Kadry, Z.; Jain, A.B. Assessing cardiovascular risk in the prerenal transplant population: Comparison of myocardial perfusion imaging and coronary angiography with risk factor stratification. Clin. Transplant. 2019, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Woolen, S.A.; Shankar, P.R.; Gagnier, J.J.; MacEachern, M.P.; Singer, L.; Davenport, M.S. Risk of Nephrogenic Systemic Fibrosis in Patients with Stage 4 or 5 Chronic Kidney Disease Receiving a Group II Gadolinium-Based Contrast Agent: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2020, 180, 223. [Google Scholar] [CrossRef] [PubMed]
- Spertus, J.A.; Jones, P.G.; Maron, D.J.; Mark, D.B.; O’Brien, S.M.; Fleg, J.L.; Reynolds, H.R.; Stone, G.W.; Sidhu, M.S.; Chaitman, B.R.; et al. Health Status after Invasive or Conservative Care in Coronary and Advanced Kidney Disease. N. Engl. J. Med. 2020, 382, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Kamran, H.; Kupferstein, E.; Sharma, N.; Singh, G.; Sowers, J.R.; Whaley-Connell, A.; Yacoub, M.; Marmur, J.D.; Salifu, M.O.; McFarlane, S.I. Revascularization versus medical management of coronary artery disease in prerenal transplant patients: A meta-analysis. Cardiorenal Med. 2018, 8, 192–198. [Google Scholar] [CrossRef] [Green Version]
- McFalls, E.O.; Ward, H.B.; Moritz, T.E.; Goldman, S.; Krupski, W.C.; Littooy, F.; Pierpont, G.; Santilli, S.; Rapp, J.; Hattler, B.; et al. Coronary-Artery Revascularization before Elective Major Vascular Surgery. N. Engl. J. Med. 2004, 351, 2795–2804. [Google Scholar] [CrossRef] [Green Version]
- Poldermans, D.; Schouten, O.; Vidakovic, R.; Bax, J.J.; Thomson, I.R.; Hoeks, S.E.; Feringa, H.H.H.; Dunkelgrün, M.; de Jaegere, P.; Maat, A.; et al. A Clinical Randomized Trial to Evaluate the Safety of a Noninvasive Approach in High-Risk Patients Undergoing Major Vascular Surgery. The DECREASE-V Pilot Study. J. Am. Coll. Cardiol. 2007, 49, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Shin, J.I.; Chen, T.K.; Inker, L.A.; Coresh, J.; Alexander, G.C.; Jackson, J.W.; Chang, A.R.; Grams, M.E. Association between Renin-Angiotensin System Blockade Discontinuation and All-Cause Mortality among Persons with Low Estimated Glomerular Filtration Rate. JAMA Intern. Med. 2020, 180, 718–726. [Google Scholar] [CrossRef]
- Bittl, J.A.; He, Y.; Jacobs, A.K.; Yancy, C.W.; Normand, S.L.T. Bayesian Methods affirm the use of percutaneous coronary intervention to improve survival in patients with unprotected left main coronary artery disease. Circulation 2013, 127, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzavik, V.; Ghali, W.A.; Norris, C.; Mitchell, L.B.; Koshal, A.; Saunders, L.D.; Galbraith, P.D.; Hui, W.; Faris, P.; Knudtson, M.L. Long-term survival in 11,661 patients with multivessel coronary artery disease in the era of stenting: A report from the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH) investigators. Am. Heart J. 2001, 142, 119. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.H.; Ahn, J.M.; Chang, M.; Baek, S.; Yoon, S.H.; Kang, S.J.; Lee, S.W.; Kim, Y.H.; Lee, C.W.; Park, S.W.; et al. Left Main Coronary Artery Disease: Secular Trends in Patient Characteristics, Treatments, and Outcomes. J. Am. Coll. Cardiol. 2016, 68, 123. [Google Scholar] [CrossRef]
- Hannan, E.L.; Samadashvili, Z.; Cozzens, K.; Walford, G.; Jacobs, A.K.; Holmes, D.R.; Stamato, N.J.; Gold, J.P.; Sharma, S.; Venditti, F.J.; et al. Comparative outcomes for patients who do and do not undergo percutaneous coronary intervention for stable coronary artery disease in new york. Circulation 2012, 125, 1870–1879. [Google Scholar] [CrossRef] [Green Version]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Windecker, S.; Stortecky, S.; Stefanini, G.G.; DaCosta, B.R.; Rutjes, A.W.; Di Nisio, M.; Siletta, M.G.; Maione, A.; Alfonso, F.; Clemmensen, P.M.; et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: Network meta-analysis. BMJ 2014, 348, g3859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeremias, A.; Kaul, S.; Rosengart, T.K.; Gruberg, L.; Brown, D.L. The Impact of Revascularization on Mortality in Patients with Nonacute Coronary Artery Disease. Am. J. Med. 2009, 122, 152. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.J.; Lee, K.L.; Jones, R.H.; Al-Khalidi, H.R.; Hill, J.A.; Panza, J.A.; Michler, R.E.; Bonow, R.O.; Doenst, T.; Petrie, M.C.; et al. Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy. N. Engl. J. Med. 2016, 374, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Guo, Y.; Samadashvili, Z.; Blecker, S.; Xu, J.; Hannan, E.L. Revascularization in Patients with Multivessel Coronary Artery Disease and Chronic Kidney Disease: Everolimus Eluting Stents vs. Coronary Artery Bypass Graft Surgery. Physiol. Behav. 2019, 176, 139–148. [Google Scholar] [CrossRef]
- Lemoine, M.; Titeca Beauport, D.; Lobbedez, T.; Choukroun, G.; Hurault de Ligny, B.; Hazzan, M.; Guerrot, D.; Bertrand, D. Risk Factors for Early Graft Failure and Death After Kidney Transplantation in Recipients Older Than 70 Years. Kidney Int. Reports 2019, 4, 656–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, P.E.; Khan, S.S.; VanWagner, L.B. Cardiac evaluation of the kidney or liver transplant candidate. Curr. Opin. Organ. Transplant. 2021, 26, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Marcassi, A.P.; Yasbek, D.C.; Pestana, J.O.M.; Fachini, F.C.; De Lira Filho, E.B.; Cassiolato, J.L.; Canziani, M.E.F. Ventricular arrhythmia in incident kidney transplant recipients: Prevalence and associated factors. Transpl. Int. 2011, 24, 67–72. [Google Scholar] [CrossRef]
- Aursulesei, V.; Costache, I.I. Anticoagulation in chronic kidney disease: From guidelines to clinical practice. Clin. Cardiol. 2019, 2, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, M.P.; Blankestijn, P.J.; Carrero, J.J.; Clase, C.M.; Deo, R.; Herzog, C.A.; Kasner, S.E.; Passman, R.S.; Pecoits-Filho, R.; Reinecke, H.; et al. Chronic kidney disease and arrhythmias: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Eur. Heart J. 2018, 39, 2314–2325e. [Google Scholar] [CrossRef] [PubMed]
- Potpara, T.S.; Ferro, C.J.; Lip, G.Y.H. Use of oral anticoagulants in patients with atrial fibrillation and renal dysfunction. Nat. Publ. Gr. 2018, 14. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Pearce, L.A.; Asinger, R.W.; Herzog, C.A. Warfarin in Atrial Fibrillation Patients with Moderate Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2599–2604. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Kunwar, S.; Rijal, J.; Schulman, P.; Lee, J. Stroke, major bleeding, and mortality outcomes in warfarin users with atrial fibrillation and chronic kidney disease: A meta-analysis of observational studies. Chest 2016, 149, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Winkelmayer, W.C.; Liu, J.; Setoguchi, S.; Choudhry, N.K. Effectiveness and Safety of Warfarin Initiation in Older Hemodialysis Patients with Incident Atrial Fibrillation. Clin. J. Am. Soc. Nephrol. 2011, 6, 2662–2668. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.E.; Lazarus, J.M.; Thadhani, R.; Hakim, R.M. Warfarin Use Associates with Increased Risk for Stroke in Hemodialysis Patients with Atrial Fibrillation. J. Am. Soc. Nephrol. 2009, 20, 2223–2233. [Google Scholar] [CrossRef]
- Wizemann, V.; Tong, L.; Satayathum, S.; Disney, A.; Akiba, T.; Fissell, R.B.; Kerr, P.G.; Young, E.W.; Robinson, B.M. Atrial fibrillation in hemodialysis patients: Clinical features and associations with anticoagulant therapy. Kidney Int. 2010, 77, 1098–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friberg, L.; Benson, L.; Lip, G.Y.H. Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: The Swedish Atrial Fibrillation Cohort study. Eur. Heart J. 2015, 36, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proietti, M.; Lane, D.A.; Lip, G.Y.H. Chronic Kidney Disease, Time in Therapeutic Range and Adverse Clinical Outcomes in Anticoagulated Patients with Non-valvular Atrial Fibrillation: Observations from the SPORTIF Trials. EBioMedicine 2016, 8, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonde, A.N.; Lip, G.Y.H.; Kamper, A.L.; Staerk, L.; Torp-Pedersen, C.; Gislason, G.H.; Olesen, J.B. Effect of Reduced Renal Function on Time in Therapeutic Range Among Anticoagulated Atrial Fibrillation Patients. J. Am. Coll. Cardiol. 2017, 69, 752–753. [Google Scholar] [CrossRef] [PubMed]
- Heidbuchel, H.; Verhamme, P.; Alings, M.; Antz, M.; Diener, H.C.; Hacke, W.; Oldgren, J.; Sinnaeve, P.; Camm, A.J.; Kirchhof, P. Updated European Heart Rhythm Association Practical Guide on the use of non-Vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace 2015, 17, 1467–1507. [Google Scholar] [CrossRef]
- Kirchhof, P.; Benussi, S.; Kotecha, D.; Ahlsson, A.; Atar, D.; Casadei, B.; Castella, M.; Diener, H.C.; Heidbuchel, H.; Hendriks, J.; et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 2016, 37, e1–e88. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Shah, N.D.; Sangaralingham, L.R.; Gersh, B.J.; Noseworthy, P.A. Non–Vitamin K Antagonist Oral Anticoagulant Dosing in Patients With Atrial Fibrillation and Renal Dysfunction. J. Am. Coll. Cardiol. 2017, 69, 2779–2790. [Google Scholar] [CrossRef]
- Charytan, D.M.; Patrick, A.R.; Liu, J.; Setoguchi, S.; Herzog, C.A.; Brookhart, M.A.; Winkelmayer, W.C. Trends in the use and outcomes of implantable cardioverter-defibrillators in patients undergoing dialysis in the united states. Am. J. Kidney Dis. 2011, 58, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.V.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Phil, D.; Weitz, J.I.; et al. Edoxaban versus Warfarin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Hoevelmann, J.; Mahfoud, F.; Lauder, L.; Scheller, B.; Böhm, M.; Ewen, S. Valvular heart disease in patients with chronic kidney disease. Herz 2021. [Google Scholar] [CrossRef]
- Abbott, K.C.; Hashieh, P.; Cruess, D.; Agodoa, L.Y.C.; Welch, P.G.; Taylor, A.J.; Yuan, C.M. Hospitalized valvular heart disease in patients on renal transplant waiting list: Incidence, clinical correlates and outcomes. Clin. Nephrol. 2003, 59, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Kawamoto, T.; Akasaka, T.; Watanabe, N.; Toyota, E.; Neishi, Y.; Wada, N.; Okahashi, N.; Yoshida, K. Rate of Progression of Valvular Aortic Stenosis in Patients Undergoing Dialysis. J. Am. Soc. Echocardiogr. 2006, 19, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, T.; Pislaru, S.V.; Blustin, J.M.; Nkomo, V.T.; Abel, M.D.; Scott, C.G.; Pellikka, P.A. Perioperative risk of major non-cardiac surgery in patients with severe aortic stenosis: A reappraisal in contemporary practice. Eur. Heart J. 2014, 35, 2372–2381. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Rajamanickam, A.; Bajaj, N.S.; Griffin, B.P.; Catacutan, T.; Svensson, L.G.; Anabtawi, A.G.; Tuzcu, E.M.; Kapadia, S.R. Impact of aortic stenosis on postoperative outcomes after noncardiac surgeries. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, N.S.; Agarwal, S.; Rajamanickam, A.; Parashar, A.; Poddar, K.L.; Griffin, B.P.; Catacutan, T.; Tuzcu, E.M.; Kapadia, S.R. Impact of severe mitral regurgitation on postoperative outcomes after noncardiac surgery. Am. J. Med. 2013, 126, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Luis, S.A.; Dohaei, A.; Chandrashekar, P.; Scott, C.G.; Padang, R.; Lokineni, S.; Kane, G.C.; Crestanello, J.A.; Abel, M.D.; Nkomo, V.T.; et al. Impact of Aortic Valve Replacement for Severe Aortic Stenosis on Perioperative Outcomes Following Major Noncardiac Surgery. Mayo Clin. Proc. 2020, 95, 727–737. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef]
- Mir, T.; Darmoch, F.; Ullah, W.; Sattar, Y.; Hakim, Z.; Pacha, H.M.; Fouad, L.; Gardi, D.; Glazier, J.J.; Zehr, K.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Renal Transplant Patients: A Meta-Analysis. Cardiol. Res. 2020, 11, 280–285. [Google Scholar] [CrossRef]
- Khan, M.Z.; Khan, M.U.; Kalra, A.; Krupica, T.; Kaluski, E.; Khan, S.U. Transcatheter versus surgical aortic valve replacement in patients with end stage renal disease. Catheter. Cardiovasc. Interv. 2020, 96, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.; Eyawo, O.; Lockhart, I.; Kelly, S.; Wu, P.; Ebbert, J.O. Smoking cessation reduces postoperative complications: A systematic review and meta-analysis. Am. J. Med. 2011, 124, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, T.; Villebro, N.; Møller, A.M. Interventions for preoperative smoking cessation. Cochrane Database Syst. Rev. 2014, 2014, CD002294. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, L.T. Wound healing and infection in surgery: The clinical impact of smoking and smoking cessation: A systematic review and meta-analysis. Arch. Surg. 2012, 147, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Lam, D.P.; Abrishami, A.; Chan, M.T.V.; Chung, F. Short-term preoperative smoking cessation and postoperative complications: A systematic review and meta-analysis. Can. J. Anesth. 2012, 59, 268–279. [Google Scholar] [CrossRef]
- Anis, K.H.; Weinrauch, L.A.; D’Elia, J.A. Effects of Smoking on Solid Organ Transplantation Outcomes. Am. J. Med. 2019, 132, 413–419. [Google Scholar] [CrossRef]
- Weinrauch, L.A.; Claggett, B.; Liu, J.; Finn, P.V.; Weir, M.R.; Weiner, D.E.; D’elia, J.A. Smoking and outcomes in kidney transplant recipients: A post hoc survival analysis of the FAVORIT trial. Int. J. Nephrol. Renovasc. Dis. 2018, 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Nourbala, M.H.; Nemati, E.; Rostami, Z.; Einollahi, B. Impact of cigarette smoking on kidney transplant recipients: A systematic review. Iran J. Kidney Dis. 2011, 5, 141–148. [Google Scholar] [PubMed]
- Khalil, M.A.M.; Tan, J.; Khamis, S.; Khalil, M.A.; Azmat, R.; Ullah, A.R. Cigarette Smoking and Its Hazards in Kidney Transplantation. Adv. Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Doyle, S.E.; Matas, A.J.; Gillingham, K.; Rosenberg, M.E. Predicting clinical outcome in the elderly renal transplant recipient. Kidney Int. 2000, 57, 2144–2150. [Google Scholar] [CrossRef] [Green Version]
- Sung, R.S.; Althoen, M.; Howell, T.A.; Ojo, A.O.; Merion, R.M. Excess risk of renal allograft loss associated with cigarette smoking. Transplantation 2001, 71, 1752–1757. [Google Scholar] [CrossRef] [Green Version]
- Banas, M.C.; Banas, B.; Wolf, J.; Hoffmann, U.; Krüger, B.; Böger, C.A.; Orth, S.R.; Krämer, B.K. Smoking behaviour of patients before and after renal transplantation. Nephrol. Dial. Transplant. 2008, 23, 1442–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindström, D.; Azodi, O.S.; Wladis, A.; Tønnesen, H.; Linder, S.; Nåsell, H.; Ponzer, S.; Adami, J. Effects of a perioperative smoking cessation intervention on postoperative complications: A randomized trial. Ann. Surg. 2008, 248, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Møller, A.M.; Villebro, N.; Pedersen, T.; Tønnesen, H. Effect of preoperative smoking intervention on postoperative complications: A randomised clinical trial. Lancet 2002, 359, 114–117. [Google Scholar] [CrossRef]
- Seijo-Bestilleiro, R.; Seoane-Pillado, T.; Pertega-Diaz, S.; González-Martín, C.; Valdes-Cañedo, F.; Balboa-Barreiro, V.; Fernandez-Rivera, C.; Alonso-Hernandez, A.; Cao-Vilariño, M.; Gil-Guillen, V.; et al. Randomized clinical trial to determine the effectiveness of CO-oximetry and anti-smoking brief advice in a cohort of kidney transplant patients who smoke. Int. J. Med. Sci. 2020, 17, 2673–2684. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.J.; Courtney, A.E.; Cardwell, C.R.; Maxwell, A.P.; Lucarelli, G.; Veroux, M.; Furriel, F.; Cannon, R.M.; Hoogeveen, E.K.; Doshi, M.; et al. Recipient obesity and outcomes after kidney transplantation: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2015, 30, 1403–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cacciola, R.A.S.; Pujar, K.; Ilham, M.A.; Puliatti, C.; Asderakis, A.; Chavez, R. Effect of Degree of Obesity on Renal Transplant Outcome. Transplant. Proc. 2008, 40, 3408–3412. [Google Scholar] [CrossRef]
- Pesce de Souza, F.; Massierer, D.; Anand Raje, U.; Tansey, C.M.; Boruff, J.; Janaudis-Ferreira, T. Exercise interventions in solid organ transplant candidates: A systematic review. Clin. Transplant. 2020, 34, 1–25. [Google Scholar] [CrossRef]
- Gross, C.R.; Reilly-Spong, M.; Park, T.; Zhao, R.; Gurvich, O.V.; Ibrahim, H.N. Telephone-adapted Mindfulness-based Stress Reduction (tMBSR) for patients awaiting kidney transplantation. Contemp. Clin. Trials 2017, 57, 37–43. [Google Scholar] [CrossRef]
- Sheetz, K.H.; Gerhardinger, L.; Dimick, J.B.; Waits, S.A. Bariatric Surgery and Long-term Survival in Patients with Obesity and End-stage Kidney Disease. JAMA Surg. 2020, 155, 581–588. [Google Scholar] [CrossRef]
- Schindel, H.; Winkler, J.; Yemini, R.; Carmeli, I.; Nesher, E.; Keidar, A. Survival benefit in bariatric surgery kidney recipients may be mediated through effects on kidney graft function and improvement of co-morbidities: A case-control study. Surg. Obes. Relat. Dis. 2019, 15, 621–627. [Google Scholar] [CrossRef]
- Gheith, O.; Al-Otaibi, T.; Halim, M.A.; Mahmoud, T.; Mosaad, A.; Yagan, J.; Zakaria, Z.; Rida, S.; Nair, P.; Hassan, R. Bariatric surgery in renal transplant patients. Exp. Clin. Transplant. 2017, 15, 164–169. [Google Scholar] [CrossRef]
- Montgomery, J.R.; Telem, D.A.; Waits, S.A. Bariatric surgery for prospective living kidney donors with obesity? Am. J. Transplant. 2019, 19, 2415–2420. [Google Scholar] [CrossRef] [PubMed]
- Guggino, J.; Coumes, S.; Wion, N.; Reche, F.; Arvieux, C.; Borel, A.L. Effectiveness and Safety of Bariatric Surgery in Patients with End-Stage Chronic Kidney Disease or Kidney Transplant. Obesity 2020, 28, 2290–2304. [Google Scholar] [CrossRef]
- Chang, A.R.; Grams, M.E.; Navaneethan, S.D. Bariatric Surgery and Kidney-Related Outcomes. Kidney Int. Rep. 2017, 2, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.B.; Lim, M.A.; Tewksbury, C.M.; Torres-Landa, S.; Trofe-Clark, J.; Abt, P.L.; Williams, N.N.; Dumon, K.R.; Goral, S. Bariatric surgery before and after kidney transplantation: Long-term weight loss and allograft outcomes. Surg. Obes. Relat. Dis. 2019, 15, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Yemini, R.; Nesher, E.; Carmeli, I.; Winkler, J.; Rahamimov, R.; Mor, E.; Keidar, A. Bariatric Surgery Is Efficacious and Improves Access to Transplantation for Morbidly Obese Renal Transplant Candidates. Obes. Surg. 2019, 29, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Dobrzycka, M.; Proczko-Stepaniak, M.; Kaska, Ł.; Wilczyński, M.; Dębska-Ślizień, A.; Kobiela, J. Weight Loss After Bariatric Surgery in Morbidly Obese End-Stage Kidney Disease Patients as Preparation for Kidney Transplantation. Matched Pair Analysis in a High-Volume Bariatric and Transplant Center. Obes. Surg. 2020, 30, 2708–2714. [Google Scholar] [CrossRef] [Green Version]
- Navaneethan, S.D.; Roy, J.; Tao, K.; Brecklin, C.S.; Chen, J.; Deo, R.; Flack, J.M.; Ojo, A.O.; Plappert, T.J.; Raj, D.S.; et al. Prevalence, predictors, and outcomes of pulmonary hypertension in CKD. J. Am. Soc. Nephrol. 2016, 27, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Janda, S.; Shahidi, N.; Gin, K.; Swiston, J. Diagnostic accuracy of echocardiography for pulmonary hypertension: A systematic review and meta-analysis. Heart 2011, 97, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Simonneau, G.; Gatzoulis, M.A.; Adatia, I.; Celermajer, D.; Denton, C.; Ghofrani, A.; Gomez Sanchez, M.A.; Krishna Kumar, R.; Landzberg, M.; Machado, R.F.; et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, D34–D41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vachiéry, J.L.; Tedford, R.J.; Rosenkranz, S.; Palazzini, M.; Lang, I.; Guazzi, M.; Coghlan, G.; Chazova, I.; De Marco, T. Pulmonary hypertension due to left heart disease. Eur. Respir. J. 2019, 53, 1801897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vachiéry, J.L.; Adir, Y.; Barberà, J.A.; Champion, H.; Coghlan, J.G.; Cottin, V.; De Marco, T.; Galiè, N.; Ghio, S.; Gibbs, J.S.R.; et al. Pulmonary hypertension due to left heart diseases. J. Am. Coll. Cardiol. 2013, 62, D100–D108. [Google Scholar] [CrossRef] [PubMed]
- Seeger, W.; Adir, Y.; Barberà, J.A.; Champion, H.; Coghlan, J.G.; Cottin, V.; De Marco, T.; Galiè, N.; Ghio, S.; Gibbs, S.; et al. Pulmonary hypertension in chronic lung diseases. J. Am. Coll. Cardiol. 2013, 62, D109–D116. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Delcroix, M.; Jenkins, D.P.; Channick, R.; Dartevelle, P.; Jansa, P.; Lang, I.; Madani, M.M.; Ogino, H.; Pengo, V.; et al. Chronic thromboembolic pulmonary hypertension. J. Am. Coll. Cardiol. 2013, 62, D92–D99. [Google Scholar] [CrossRef]
- Lentine, K.L.; Villines, T.C.; Axelrod, D.; Kaviratne, S.; Weir, M.R.; Costa, S.P. Evaluation and management of pulmonary hypertension in kidney transplant candidates and recipients: Concepts and controversies. Transplantation 2017, 101, 166–181. [Google Scholar] [CrossRef]
The 2020 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline [4] |
|
American Society of Transplantation (AST) [14] (2002) |
|
American College of Cardiology/American Heart Association (ACC/AHA) [15] (2007) |
|
American Heart Association/American College of Cardiology Foundation (AHA/ACCF) [16] (2012) |
|
European Renal Best Practice (ERBP) [17] (2015) |
|
|
Assessment tool | Examples and Details | Advantages | Disadvantages |
---|---|---|---|
Self-reported physical assessment questionnaires | Short Form-36 Physical Function Scale, Instrumental Activities of Daily Living, Duke Activity Status Index (DASI), Physical Activity Scale for the Elderly (PASE) | Easy to conduct | Subjective, inaccurate reporting, difficult to use them longitudinally to quantify the improvement Studies have found the scores of the questionnaires to be associated with outcomes such as mortality in CKD patients [35,40,41] |
Physical performance measures | Grip strength and 6-min walk test (6MWT) | Easy to use, low or no cost, time efficiency Objective In small ESKD cohort studies, better performance on the 6MWT was correlated with improved quality of life [42] | Assesses only specific functions and muscle groups Grip strength is significantly worse in the arm with arteriovenous fistula and older ESKD patients are already known to have lower grip strength. [43] The 6MWT can be unreliable due to variability resulting from changes in volume status and timing around dialysis (slow 6MWT if fluid overloaded) [44] |
Short performance physical battery | Combines the use of three physical, lower-extremity performance measures: standing balance, walking speed, and chair stand tests | 5–10 min to conduct Objective In a prospective study including 700 kidney transplant patients, the short performance physical battery score was associated with post-transplantation mortality [45] | Cannot be utilised in those with lower extremity abnormalities e.g., lower extremity amputations |
Fried’s Frailty Phenotype Score | Five domains: weight loss, exhaustion, physical activity, grip strength, and walking speed | Measured frailty by Fried’s frailty phenotype scoring has shown a correlation with post-transplantation outcomes [46,47] | Unintentional weight loss and exhaustion—are subjective and self-reported American Society of Transplantation frailty assessment survey results show that the Fried’s frailty phenotype score was utilized by only 3.6% of the survey takers who reported assessing frailty for candidacy evaluation [48] |
Diagnostic Value | Prognostic Value | Benefits | Limitations | Radiation, Safety in CKD, Cost (US $) | |
---|---|---|---|---|---|
Echocardiography | Variable numbers with most studies reporting moderate sensitivity in the mid-70s range and moderate specificity in the mid-80s range [13] | Abnormal dobutamine stress echocardiography is associated with an increased risk of MACEs, cardiovascular mortality and all-cause mortality [25,50,51] DSE is as good as ICA at predicting cardiovascular mortality and MACE [50] | Permits assessment of LV size and function, valve disease Widely available, bedside test Sensitivity can be improved by the addition of contrast [57] | Poor acoustic windows and tachycardia limit accuracy LV structural changes; antianginals and AVFs—common in CKD—can reduce sensitivity for wall motion abnormalities | No radiation exposure Safe in CKD $800 [57] |
SPECT | Variable numbers with most studies reporting moderate sensitivity and specificity in the mid-70s range [13], some studies report sensitivities in the 90s [65] | Abnormal SPECT nearly doubles the risk of death in CKD patients [6]; a normal SPECT is associated with a relatively low risk of future adverse events [50,51] SPECT is as good as ICA at predicting cardiovascular mortality and MACE [50] | Permits assessment of LV function Widely available Quantification now possible, overcoming limitations of subjective interpretation | Attenuation correction is required to correct artefacts, resulting in low image quality LV structural changes; antianginal drugs and AVFs common in CKD, can reduce sensitivity for perfusion defects | Radiation exposure: 10–15 mSv Safe in CKD $1600 [57] |
PET | Highly accurate with quantitative measurements of rest and stress myocardial blood flow, absolute and relative flow reserve [13] | Quantitative PET measurements especially flow reserve and myocardial blood flow are strongly associated with adverse patient outcomes such as cardiac mortality, with a greater prognostic value than SPECT [13] | Quantitative measurements permit better recognition of focal epicardial and diffuse microvascular disease | Limited availability | Radiation exposure: 2–5 mSv [57] Safe in CKD $1800 [57] |
CMR | Dobutamine stress CMR in transplant candidates has been reported to have a sensitivity of 100%, a specificity of 89% for detecting angiographically significant CAD [60] | Due to fears about gadolinium-based contrast agents, the prognostic value of stress MRI perfusion studies has not been tested in CKD patients | Permits assessment of cardiomyopathy, cardiac remodelling, infarction, myocardial fibrosis and myocardial infiltration | Vasodilator stress CMR perfusion studies require gadolinium-based contrast agents Limited availability | No radiation exposure Gadolinium-based contrast agents pose a risk of nephrogenic systemic fibrosis [13]. Newer macrocyclic gadolinium-based contrast agents are substantially safer [66] $3700 [57] |
CACS | High sensitivity but limited specificity in CKD patients who have vascular wall medial calcifications | Winther et al. [7] reported that a CACS > 400 has a greater prognostic value of MACE compared to risk factors and SPECT and is equivalent to CCTA and ICA | The total volume of CAC is a surrogate for plaque burden and CAD High negative predictive value | Statins increase CACS Localization of CAC does not correlate to vulnerable plaques. | $1600 [57] Radiation exposure: 1 mSV [57] |
CCTA | High sensitivity (in the 90s) but limited specificity in CKD patients who have extensive coronary artery calcium | CCTA is a strong predictor of MACE, morbidity and mortality [7,13] | Can assess the degree of coronary stenosis, plaque volume, plaque characteristics, plaque vulnerability and when combined with perfusion or FFR, functional severity of stenosis can be assessed [57] High negative predictive value Preferred test in patients with a lower range of clinical likelihood of CAD [52] | Heart rate should be slow (<65 beats per minute) and regular Brief breath-holding is required to minimize motion artefact Atrial fibrillation (AF) is a relative contraindication Stenosis identified is not necessarily functionally significant, follow-on functional testing is recommended to evaluate the ischemic significance | Radiation exposure: 3–10 mSv [57] Risk of contrast-induced nephropathy from iodinated contrast agents $1600 [57] |
ICA | Although previously considered the gold standard for the diagnosis of CAD, with the growth in non-invasive imaging modalities, it is reserved for patients whose clinical risk is high or when stress testing indicates significant ischemic burden [64] | Winther et al. [7] found that obstructive stenosis at ICA was associated with MACE but not mortality | Permits functional evaluation and hemodynamic assessment of stenosis Guides revascularisation options and permits simultaneous revascularisation when indicated | It is a lumenogram not an arteriogram: reduced sensitivity for diffuse disease and eccentric disease Risk of bleeding requiring blood transfusions is approximately 0.5–2% [52] Composite rate of death, MI or stroke is 0.1–0.2% [52] | 7–9 mSv [57] Risk of contrast nephropathy should be reserved for patients with a high risk for CAD and those who would benefit from revascularisation |
|
|
Favours PCI | Favours CABG |
---|---|
|
|
Oral Anticoagulant | Evidence | Recommendations [86] |
---|---|---|
Warfarin | A subgroup analysis from the SPAF (Stroke Prevention in Atrial Fibrillation) III trials showed that the efficacy of warfarin was broadly similar in stage 3 CKD patients and patients without CKD [87] | At all levels of kidney function, maintain time in therapeutic range ≥ 70% [93,94] |
Dabigatran 80% renal excretion | RE-LY trial [99] excluded patients with CrCl < 30 mL/min/1.73 m2 | In the USA only, CrCl 15–29 mL/min/1.73 m2: 75 mg Other areas, CrCl < 30 mL/min/1.73 m2: Do not use |
Rivaroxaban 33% renal excretion | ROCKET-AF trial [100] excluded patients with CrCl < 30 mL/min/1.73 m2 | CrCl 15–29 mL/min/1.73 m2: 15 mg once a day CrCl < 15 mL/min/1.73 m2: Do not use |
Apixaban 27% renal excretion | ARISTOTLE trial [101] excluded patients with CrCl < 25 mL/min/1.73 m2 Lower risk of major bleeding events with apixaban than with warfarin in patients with CKD | CrCl 15–29 mL/min/1.73 m2: 2.5 mg twice daily In the USA only, CrCl < 15 mL/min/1.73 m2 or stable ESKD on dialysis: 5 mg twice daily Other areas, CrCl < 15 mL/min/1.73 m2: Do not use |
Edoxaban 50% renal excretion | ENGAGE-AF TIMI 48 trial [102] excluded patients with CrCl < 30 mL/min/1.73 m2 | CrCl 15–29 mL/min/1.73 m2: 30 mg once daily CrCl < 15 mL/min/1.73 m2: Do not use |
Element Name | Explanation |
---|---|
Smoking counselling | High prevalence of smokers on the waiting list that can be successfully targeted to improve postoperative outcomes |
Exercise program | A regular exercise program to increase cardiopulmonary reserve improving both surgical outcomes and cardiovascular health |
ECG | Basic screening test to look for rhythm abnormalities, ischaemic changes and chamber hypertrophy |
Arrhythmia management | Consideration of anticoagulation with either warfarin or DOACs with warfarin preferred in advanced CKD |
TTE | Assess ventricular function, valvular function and PASP |
Non-invasive functional cardiac imaging | Stress-induced imaging to identify perfusion abnormalities and ischemia |
Non-invasive anatomical cardiac imaging | CTCA and cardiac MR to allow for better visualisation of coronary anatomy and identification of patient who may benefit from invasive coronary angiography |
Coronary angiogram and revascularisation | Invasive imaging in high-risk patients to view coronary anatomy to guide decisions about appropriate revascularisation strategy (PCI or CABG) in patients meeting criteria |
RHC | Measuring PAP, PCWP, PVR and cardiac output to manage any PAH as appropriate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotta, P.A.; Elango, M.; Papalois, V. Preoperative Cardiovascular Assessment of the Renal Transplant Recipient: A Narrative Review. J. Clin. Med. 2021, 10, 2525. https://doi.org/10.3390/jcm10112525
Kotta PA, Elango M, Papalois V. Preoperative Cardiovascular Assessment of the Renal Transplant Recipient: A Narrative Review. Journal of Clinical Medicine. 2021; 10(11):2525. https://doi.org/10.3390/jcm10112525
Chicago/Turabian StyleKotta, Prasanti Alekhya, Madhivanan Elango, and Vassilios Papalois. 2021. "Preoperative Cardiovascular Assessment of the Renal Transplant Recipient: A Narrative Review" Journal of Clinical Medicine 10, no. 11: 2525. https://doi.org/10.3390/jcm10112525
APA StyleKotta, P. A., Elango, M., & Papalois, V. (2021). Preoperative Cardiovascular Assessment of the Renal Transplant Recipient: A Narrative Review. Journal of Clinical Medicine, 10(11), 2525. https://doi.org/10.3390/jcm10112525