Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review
Abstract
:1. Introduction
2. Preoperative Care
2.1. Medical Optimisation
2.1.1. Cardiovascular Disease
Electrocardiogram
Echocardiogram
Non-Invasive Coronary Tests
Cardiac Troponins
Percutaneous Coronary Intervention
Screening
Pulmonary Hypertension
Infective Endocarditis
2.1.2. Pulmonary Disease
2.1.3. Reasons to Delay Transplant
2.2. Patient Education
2.3. Pre-Habilitation
2.4. Improving Nutritional Status
2.5. Carbohydrate Drink before Surgery
2.6. Preoperative Anaemia Correction
2.7. Anxiolysis
3. Intraoperative Care
3.1. Standard Anaesthetic Protocol
3.1.1. Induction of Anaesthesia
3.1.2. Opioids
3.1.3. Maintenance of Anaesthesia
3.1.4. Neuromuscular Blocking Agents
3.1.5. Diuretics
3.1.6. Vasopressors
3.1.7. Blood Pressure during Reperfusion
3.1.8. Sodium Bicarbonate
3.2. Prevention of Postoperative Nausea and Vomiting
3.3. Perioperative Fluid Management
3.3.1. Crystalloids
3.3.2. Colloids
3.3.3. Albumin
3.4. Perioperative Glycaemic Control
3.5. Temperature Management
3.6. Prevention of Postoperative Delirium
4. Postoperative Care
4.1. Bed Rest and Early Mobilization
4.2. Nutrition after Surgery
4.3. Perioperative Pain Control
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, T.G.; Yang, H.T.; Zhang, H.; Meng, H.P.; Li, B. Enhanced recovery after surgery programs in patients undergoing hepatectomy: A meta-analysis. World J. Gastroenterol. 2015, 21, 9209–9216. [Google Scholar] [CrossRef] [PubMed]
- Group, E.C. The Impact of Enhanced Recovery Protocol Compliance on Elective Colorectal Cancer Resection: Results From an International Registry. Ann. Surg. 2015, 261, 1153–1159. [Google Scholar] [CrossRef]
- Dias, B.H.; Rana, A.A.M.; Olakkengil, S.A.; Russell, C.H.; Coates, P.T.H.; Clayton, P.A.; Bhattacharjya, S. Development and implementation of an enhanced recovery after surgery protocol for renal transplantation. ANZ J. Surg. 2019, 89, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Halawa, A.; Rowe, S.; Roberts, F.; Nathan, C.; Hassan, A.; Kumar, A.; Suvakov, B.; Edwards, B.; Gray, C. A Better Journey for Patients, a Better Deal for the NHS: The Successful Implementation of an Enhanced Recovery Program after Renal Transplant Surgery. Exp. Clin. Transplant. 2018, 16, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Prionas, A.; Craddock, C.; Papalois, V. Feasibility, Safety and Efficacy of Enhanced Recovery After Living Donor Nephrectomy: Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 10, 21. [Google Scholar] [CrossRef]
- Espino, K.A.; Narvaez, J.R.F.; Ott, M.C.; Kayler, L.K. Benefits of multimodal enhanced recovery pathway in patients undergoing kidney transplantation. Clin. Transplant. 2018, 32, e13173. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic Kidney Disease and Coronary Artery Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1823–1838. [Google Scholar] [CrossRef]
- Palepu, S.; Prasad, G.V. Screening for cardiovascular disease before kidney transplantation. World J. Transplant. 2015, 5, 276–286. [Google Scholar] [CrossRef]
- Lee, L.K.K.; Tsai, P.N.W.; Ip, K.Y.; Irwin, M.G. Pre-operative cardiac optimisation: A directed review. Anaesthesia 2019, 74 (Suppl. S1), 67–79. [Google Scholar] [CrossRef] [Green Version]
- Lumb, A.B. Pre-operative respiratory optimisation: An expert review. Anaesthesia 2019, 74 (Suppl. S1), 43–48. [Google Scholar] [CrossRef]
- McDonald, S.; Page, M.J.; Beringer, K.; Wasiak, J.; Sprowson, A. Preoperative education for hip or knee replacement. Cochrane Database Syst. Rev. 2014, 2014, CD003526. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, M.R.; Rosenkranz, P.; McCabe, K.; Rosen, J.E.; McAneny, D. I COUGH: Reducing postoperative pulmonary complications with a multidisciplinary patient care program. JAMA Surg. 2013, 148, 740–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longenecker, J.C.; Coresh, J.; Powe, N.R.; Levey, A.S.; Fink, N.E.; Martin, A.; Klag, M.J. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: The CHOICE Study. J. Am. Soc. Nephrol. 2002, 13, 1918–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving Global Outcomes Diabetes Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S3), S1–S155. [Google Scholar] [CrossRef]
- Lentine, K.L.; Costa, S.P.; Weir, M.R.; Robb, J.F.; Fleisher, L.A.; Kasiske, B.L.; Carithers, R.L.; Ragosta, M.; Bolton, K.; Auerbach, A.D.; et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: A scientific statement from the American Heart Association and the American College of Cardiology Foundation: Endorsed by the American Society of Transplant Surgeons, American Society of Transplantation, and National Kidney Foundation. Circulation 2012, 126, 617–663. [Google Scholar] [CrossRef]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104, S1–S103. [Google Scholar] [CrossRef]
- Wang, L.W.; Masson, P.; Turner, R.M.; Lord, S.W.; Baines, L.A.; Craig, J.C.; Webster, A.C. Prognostic value of cardiac tests in potential kidney transplant recipients: A systematic review. Transplantation 2015, 99, 731–745. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.K.; Lata, S. Kidney transplantation in valvular heart disease and pulmonary hypertension: Consensus in waiting. Clin. Transplant. 2021, 35, e14116. [Google Scholar] [CrossRef]
- Devasahayam, J.; Oliver, T.; Joseph, V.; Nambiar, S.; Gunasekaran, K. Pulmonary hypertension in end-stage renal disease. Respir. Med. 2020, 164, 105905. [Google Scholar] [CrossRef]
- Pascual, J. Kidney transplant after a COVID-19. Nefrol. Engl. Ed. 2021, 41, 91–94. [Google Scholar] [CrossRef]
- El-Boghdadly, K.; Cook, T.M.; Goodacre, T.; Kua, J.; Denmark, S.; McNally, S.; Mercer, N.; Moonesinghe, S.R.; Summerton, D.J. Timing of elective surgery and risk assessment after SARS-CoV-2 infection: An update: A multidisciplinary consensus statement on behalf of the Association of Anaesthetists, Centre for Perioperative Care, Federation of Surgical Specialty Associations, Royal College of Anaesthetists, Royal College of Surgeons of England. Anaesthesia 2022, 77, 580–587. [Google Scholar] [CrossRef]
- Miskovic, A.; Lumb, A.B. Postoperative pulmonary complications. Br. J. Anaesth. 2017, 118, 317–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, E.; Eyawo, O.; Lockhart, I.; Kelly, S.; Wu, P.; Ebbert, J.O. Smoking cessation reduces postoperative complications: A systematic review and meta-analysis. Am. J. Med. 2011, 124, 144–154.e8. [Google Scholar] [CrossRef] [PubMed]
- Munagala, M.R.; Phancao, A. Managing Cardiovascular Risk in the Post Solid Organ Transplant Recipient. Med. Clin. N. Am. 2016, 100, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Gillott, H.; Jackson Spence, F.; Tahir, S.; Mytton, J.; Evison, F.; Nath, J.; Sharif, A. Smoking History Is Associated With Adverse Outcomes for Kidney Allograft Recipients. Exp. Clin. Transplant. 2018, 16, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Dohler, B. Influence of Current and Previous Smoking on Cancer and Mortality After Kidney Transplantation. Transplantation 2016, 100, 227–232. [Google Scholar] [CrossRef]
- Weinrauch, L.A.; Claggett, B.; Liu, J.; Finn, P.V.; Weir, M.R.; Weiner, D.E.; D’Elia, J.A. Smoking and outcomes in kidney transplant recipients: A post hoc survival analysis of the FAVORIT trial. Int. J. Nephrol. Renovasc. Dis. 2018, 11, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Egholm, J.W.; Pedersen, B.; Møller, A.M.; Adami, J.; Juhl, C.B.; Tønnesen, H. Perioperative alcohol cessation intervention for postoperative complications. Cochrane Database Syst. Rev. 2018, 11, Cd008343. [Google Scholar] [CrossRef] [Green Version]
- Gueye, A.S.; Chelamcharla, M.; Baird, B.C.; Nguyen, C.; Tang, H.; Barenbaum, A.L.; Koford, J.K.; Shihab, F.; Goldfarb-Rumyantzev, A.S. The association between recipient alcohol dependency and long-term graft and recipient survival. Nephrol. Dial. Transplant. 2007, 22, 891–898. [Google Scholar] [CrossRef] [Green Version]
- Zelle, D.M.; Agarwal, P.K.; Ramirez, J.L.; van der Heide, J.J.; Corpeleijn, E.; Gans, R.O.; Navis, G.; Bakker, S.J. Alcohol consumption, new onset of diabetes after transplantation, and all-cause mortality in renal transplant recipients. Transplantation 2011, 92, 203–209. [Google Scholar] [CrossRef]
- Camilleri, B.; Pararajasingam, R.; Buttigieg, J.; Halawa, A. Renal transplantation in the elderly: Outcomes and recommendations. Transplant. Rev. 2020, 34, 100530. [Google Scholar] [CrossRef] [PubMed]
- Schopmeyer, L.; El Moumni, M.; Nieuwenhuijs-Moeke, G.J.; Berger, S.P.; Bakker, S.J.L.; Pol, R.A. Frailty has a significant influence on postoperative complications after kidney transplantation-a prospective study on short-term outcomes. Transpl. Int. 2019, 32, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, N.M.; Gross, A.L.; Shaffer, A.A.; Haugen, C.E.; Norman, S.P.; Xue, Q.L.; Sharrett, A.R.; Carlson, M.C.; Bandeen-Roche, K.; Segev, D.L.; et al. Frailty and Changes in Cognitive Function after Kidney Transplantation. J. Am. Soc. Nephrol. 2019, 30, 336–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos Mantovani, M.; Coelho de Carvalho, N.; Archangelo, T.E.; Modelli de Andrade, L.G.; Pires Ferreira Filho, S.; de Souza Cavalcante, R.; Kawano, P.R.; Papini, S.J.; Costa, N.A.; Monteiro de Barros Almeida, R.A. Frailty predicts surgical complications after kidney transplantation. A propensity score matched study. PLoS ONE 2020, 15, e0229531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milder, D.A.; Pillinger, N.L.; Kam, P.C.A. The role of prehabilitation in frail surgical patients: A systematic review. Acta Anaesthesiol. Scand. 2018, 62, 1356–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ljungqvist, O.; de Boer, H.D.; Balfour, A.; Fawcett, W.J.; Lobo, D.N.; Nelson, G.; Scott, M.J.; Wainwright, T.W.; Demartines, N. Opportunities and Challenges for the Next Phase of Enhanced Recovery After Surgery: A Review. JAMA Surg. 2021, 156, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.; Rosenthal, R.A.; Russell, M.M.; Neuman, M.D.; Ko, C.Y.; Esnaola, N.F. Optimal Perioperative Management of the Geriatric Patient: A Best Practices Guideline from the American College of Surgeons NSQIP and the American Geriatrics Society. J. Am. Coll. Surg. 2016, 222, 930–947. [Google Scholar] [CrossRef] [Green Version]
- Carli, F. Prehabilitation for the Anesthesiologist. Anesthesiology 2020, 133, 645–652. [Google Scholar] [CrossRef]
- Heiwe, S.; Jacobson, S.H. Exercise training for adults with chronic kidney disease. Cochrane Database Syst. Rev. 2011, 5, Cd003236. [Google Scholar] [CrossRef]
- Yamagata, K.; Hoshino, J.; Sugiyama, H.; Hanafusa, N.; Shibagaki, Y.; Komatsu, Y.; Konta, T.; Fujii, N.; Kanda, E.; Sofue, T.; et al. Clinical practice guideline for renal rehabilitation: Systematic reviews and recommendations of exercise therapies in patients with kidney diseases. Ren. Replace. Ther. 2019, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- McAdams-DeMarco, M.A.; Ying, H.; Van Pilsum Rasmussen, S.; Schrack, J.; Haugen, C.E.; Chu, N.M.; Gonzalez Fernandez, M.; Desai, N.; Walston, J.D.; Segev, D.L. Prehabilitation prior to kidney transplantation: Results from a pilot study. Clin. Transplant. 2019, 33, e13450. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Gamboa, J.; Wilund, K. Exercise and CKD: Skeletal Muscle Dysfunction and Practical Application of Exercise to Prevent and Treat Physical Impairments in CKD. Am. J. Kidney Dis. 2017, 69, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hubner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.; et al. ESPEN guideline: Clinical nutrition in surgery. Clin. Nutr. 2017, 36, 623–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.P.; Ip, K.Y.; Irwin, M.G. Peri-operative optimisation of elderly and frail patients: A narrative review. Anaesthesia 2019, 74 (Suppl. S1), 80–89. [Google Scholar] [CrossRef]
- Toigo, G.; Aparicio, M.; Attman, P.O.; Cano, N.; Cianciaruso, B.; Engel, B.; Fouque, D.; Heidland, A.; Teplan, V.; Wanner, C. Expert working group report on nutrition in adult patients with renal insufficiency (Part 2 of 2). Clin. Nutr. 2000, 19, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Toigo, G.; Aparicio, M.; Attman, P.O.; Cano, N.; Cianciaruso, B.; Engel, B.; Fouque, D.; Heidland, A.; Teplan, V.; Wanner, C. Expert Working Group report on nutrition in adult patients with renal insufficiency (part 1 of 2). Clin. Nutr. 2000, 19, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Wischmeyer, P.E.; Carli, F.; Evans, D.C.; Guilbert, S.; Kozar, R.; Pryor, A.; Thiele, R.H.; Everett, S.; Grocott, M.; Gan, T.J.; et al. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on Nutrition Screening and Therapy Within a Surgical Enhanced Recovery Pathway. Anesth. Analg. 2018, 126, 1883–1895. [Google Scholar] [CrossRef]
- Wright, M.; Southcott, E.; MacLaughlin, H.; Wineberg, S. Clinical practice guideline on undernutrition in chronic kidney disease. BMC Nephrol. 2019, 20, 370. [Google Scholar] [CrossRef]
- Mah, J.Y.; Choy, S.W.; Roberts, M.A.; Desai, A.M.; Corken, M.; Gwini, S.M.; McMahon, L.P. Oral protein-based supplements versus placebo or no treatment for people with chronic kidney disease requiring dialysis. Cochrane Database Syst. Rev. 2020, 5, CD012616. [Google Scholar] [CrossRef]
- Awad, S.; Varadhan, K.K.; Ljungqvist, O.; Lobo, D.N. A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin. Nutr. 2013, 32, 34–44. [Google Scholar] [CrossRef]
- Stauffer, M.E.; Fan, T. Prevalence of anemia in chronic kidney disease in the United States. PLoS ONE 2014, 9, e84943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraris, V.A.; Davenport, D.L.; Saha, S.P.; Austin, P.C.; Zwischenberger, J.B. Surgical outcomes and transfusion of minimal amounts of blood in the operating room. Arch. Surg. 2012, 147, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drueke, T.B.; Parfrey, P.S. Summary of the KDIGO guideline on anemia and comment: Reading between the (guide)line(s). Kidney Int. 2012, 82, 952–960. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. Chronic Kidney Disease: Assestment and Management. NICE Clin. Guidel. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34672500/ (accessed on 9 May 2021).
- Albaramki, J.; Hodson, E.M.; Craig, J.C.; Webster, A.C. Parenteral versus oral iron therapy for adults and children with chronic kidney disease. Cochrane Database Syst. Rev. 2012, 1, CD007857. [Google Scholar] [CrossRef]
- Coronado Daza, J.; Marti-Carvajal, A.J.; Ariza Garcia, A.; Rodelo Ceballos, J.; Yomayusa Gonzalez, N.; Paez-Canro, C.; Loza Munarriz, C.; Urrutia, G. Early versus delayed erythropoietin for the anaemia of end-stage kidney disease. Cochrane Database Syst. Rev. 2015, 2015, CD011122. [Google Scholar] [CrossRef]
- Mikhail, A.; Brown, C.; Williams, J.A.; Mathrani, V.; Shrivastava, R.; Evans, J.; Isaac, H.; Bhandari, S. Renal association clinical practice guideline on Anaemia of Chronic Kidney Disease. BMC Nephrol. 2017, 18, 345. [Google Scholar] [CrossRef]
- Gafter-Gvili, A.; Ayalon-Dangur, I.; Cooper, L.; Shochat, T.; Rahamimov, R.; Gafter, U.; Mor, E.; Grossman, A. Posttransplantation anemia in kidney transplant recipients: A retrospective cohort study. Medicine 2017, 96, e7735. [Google Scholar] [CrossRef]
- Ayyadhah Alanazi, A. Reducing anxiety in preoperative patients: A systematic review. Br. J. Nurs. 2014, 23, 387–393. [Google Scholar] [CrossRef]
- Valencia, L.; Becerra, A.; Ojeda, N.; Dominguez, A.; Prados, M.; Gonzalez-Martin, J.M.; Rodriguez-Perez, A. Effect of Preoperative Anxiety on Postoperative Pain after Craniotomy. J. Clin. Med. 2022, 11, 556. [Google Scholar] [CrossRef]
- De Rosa, S.; Samoni, S.; Villa, G.; Ronco, C. Management of Chronic Kidney Disease Patients in the Intensive Care Unit: Mixing Acute and Chronic Illness. Blood Purif. 2017, 43, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Olyaei, A.J.; Steffl, J.L. A quantitative approach to drug dosing in chronic kidney disease. Blood Purif. 2011, 31, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Aldecoa, C.; Bettelli, G.; Bilotta, F.; Sanders, R.D.; Audisio, R.; Borozdina, A.; Cherubini, A.; Jones, C.; Kehlet, H.; MacLullich, A.; et al. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur. J. Anaesthesiol. 2017, 34, 192–214. [Google Scholar] [CrossRef] [PubMed]
- Markota, M.; Rummans, T.A.; Bostwick, J.M.; Lapid, M.I. Benzodiazepine Use in Older Adults: Dangers, Management, and Alternative Therapies. Mayo Clin. Proc. 2016, 91, 1632–1639. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Xu, J.; Wu, C.; Zhang, B.; Wang, G.; Ma, D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: Systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 777–794. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, C.; Zhang, Y.; Luo, B.; She, S.; Xu, L.; Ruan, X. Low-dose intramuscular dexmedetomidine as premedication: A randomized controlled trial. Med. Sci. Monit. 2014, 20, 2714–2719. [Google Scholar] [CrossRef] [Green Version]
- Sezen, G.; Demiraran, Y.; Seker, I.S.; Karagoz, I.; Iskender, A.; Ankarali, H.; Ersoy, O.; Ozlu, O. Does premedication with dexmedetomidine provide perioperative hemodynamic stability in hypertensive patients? BMC Anesthesiol. 2014, 14, 113. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zhang, L.M.; Zhang, Y.; Ying, Y.; Li, L.; Xu, L.; Ruan, X. Intranasal Dexmedetomidine as a Sedative Premedication for Patients Undergoing Suspension Laryngoscopy: A Randomized Double-Blind Study. PLoS ONE 2016, 11, e0154192. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Hang, L.H.; Wang, H.; Shao, D.H.; Xu, Y.G.; Cui, W.; Chen, Z. Intranasally Administered Adjunctive Dexmedetomidine Reduces Perioperative Anesthetic Requirements in General Anesthesia. Yonsei Med. J. 2016, 57, 998–1005. [Google Scholar] [CrossRef]
- Barends, C.R.M.; Driesens, M.K.; Struys, M.; Visser, A.; Absalom, A.R. Intranasal dexmedetomidine in elderly subjects with or without beta blockade: A randomised double-blind single-ascending-dose cohort study. Br. J. Anaesth. 2020, 124, 411–419. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Y.; Zhang, M.Z.; Huang, X.H.; Li, Y.; Li, R.; Liu, Q.W. Pharmacokinetics of dexmedetomidine administered to patients with end-stage renal failure and secondary hyperparathyroidism undergoing general anaesthesia. J. Clin. Pharm. Ther. 2018, 43, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Munar, M.Y.; Singh, H. Drug dosing adjustments in patients with chronic kidney disease. Am. Fam. Physician 2007, 75, 1487–1496. [Google Scholar] [PubMed]
- Burkhalter, H.; De Geest, S.; Wirz-Justice, A.; Cajochen, C. Melatonin rhythms in renal transplant recipients with sleep-wake disturbances. Chronobiol. Int. 2016, 33, 810–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.V.; Halladin, N.L.; Rosenberg, J.; Gögenur, I.; Møller, A.M. Melatonin for pre- and postoperative anxiety in adults. Cochrane Database Syst. Rev. 2015, 2015, Cd009861. [Google Scholar] [CrossRef] [Green Version]
- Ivry, M.; Goitein, D.; Welly, W.; Berkenstadt, H. Melatonin premedication improves quality of recovery following bariatric surgery—A double blind placebo controlled prospective study. Surg. Obes. Relat. Dis. 2017, 13, 502–506. [Google Scholar] [CrossRef]
- Esteban-Zubero, E.; Garcia-Gil, F.A.; Lopez-Pingarron, L.; Alatorre-Jimenez, M.A.; Inigo-Gil, P.; Tan, D.X.; Garcia, J.J.; Reiter, R.J. Potential benefits of melatonin in organ transplantation: A review. J. Endocrinol. 2016, 229, R129–R146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panah, F.; Ghorbanihaghjo, A.; Argani, H.; Haiaty, S.; Rashtchizadeh, N.; Hosseini, L.; Dastmalchi, S.; Rezaeian, R.; Alirezaei, A.; Jabarpour, M.; et al. The effect of oral melatonin on renal ischemia-reperfusion injury in transplant patients: A double-blind, randomized controlled trial. Transpl. Immunol. 2019, 57, 101241. [Google Scholar] [CrossRef]
- Haddad, C.F.; Haddad, J.M.; Veiga, E.C.A.; Sorpreso, I.C.E.; Simões, R.S.; Baracat, E.C.; Soares Júnior, J.M. Melatonin and organ transplantation: What is the relationship? Rev. Assoc. Med. Bras. 2020, 66, 353–358. [Google Scholar] [CrossRef]
- Ricaurte, L.; Vargas, J.; Lozano, E.; Diaz, L.; Organ Transplant, G. Anesthesia and kidney transplantation. Transplant. Proc. 2013, 45, 1386–1391. [Google Scholar] [CrossRef]
- Tena, B.; Vendrell, M. Perioperative considerations for kidney and pancreas-kidney transplantation. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 3–14. [Google Scholar] [CrossRef]
- Mittel, A.M.; Wagener, G. Anesthesia for Kidney and Pancreas Transplantation. Anesthesiol. Clin. 2017, 35, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Karmarkar, S.; Natarajan, A. Kidney transplantation. Anaesth. Intensive Care Med. 2012, 13, 285–291. [Google Scholar] [CrossRef]
- Amir-Zargar, M.A.; Gholyaf, M.; Kashkouli, A.I.; Moradi, A.; Torabian, S. Comparison of safety and efficacy of general and spinal anesthesia in kidney transplantation: Evaluation of the peri-operative outcome. Saudi J. Kidney Dis. Transpl. 2015, 26, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Jungwirth, B. Anaesthesia for renal transplant surgery: An update. Eur. J. Anaesthesiol. 2012, 29, 552–558. [Google Scholar] [CrossRef]
- Brusich, K.T.; Acan, I.; Filipcic, N.V.; Gustin, D. Anaesthesia for renal transplant surgery. Eur. J. Anaesthesiol. 2013, 30, 715–716. [Google Scholar] [CrossRef]
- Karadeniz, M.S.; Ciftci, H.S.; Tefik, T.; Mammadov, O.; Yazici, H.; Nane, I.; Turkmen, A.; Oguz, F.; Tugrul, K.M. Comparison of Two Different Inhalation Anesthetics on Grafted Kidney Function in Patients Undergoing Renal Transplantation Surgery: Desflurane or Sevoflurane? Transplant. Proc. 2017, 49, 448–453. [Google Scholar] [CrossRef]
- Cammu, G.; Van Vlem, B.; van den Heuvel, M.; Stet, L.; el Galta, R.; Eloot, S.; Demeyer, I. Dialysability of sugammadex and its complex with rocuronium in intensive care patients with severe renal impairment. Br. J. Anaesth. 2012, 109, 382–390. [Google Scholar] [CrossRef] [Green Version]
- SarinKapoor, H.; Kaur, R.; Kaur, H. Anaesthesia for renal transplant surgery. Acta Anaesthesiol. Scand. 2007, 51, 1354–1367. [Google Scholar] [CrossRef]
- Ono, Y.; Fujita, Y.; Kajiura, T.; Okawa, H.; Nakashima, J.; Isobe, H.; Fujiwara, Y. Efficacy and safety of sugammadex in patients undergoing renal transplantation. JA Clin. Rep. 2018, 4, 56. [Google Scholar] [CrossRef]
- Adams, D.R.; Tollinche, L.E.; Yeoh, C.B.; Artman, J.; Mehta, M.; Phillips, D.; Fischer, G.W.; Quinlan, J.J.; Sakai, T. Short-term safety and effectiveness of sugammadex for surgical patients with end-stage renal disease: A two-centre retrospective study. Anaesthesia 2020, 75, 348–352. [Google Scholar] [CrossRef]
- Staals, L.M.; Snoeck, M.M.; Driessen, J.J.; van Hamersvelt, H.W.; Flockton, E.A.; van den Heuvel, M.W.; Hunter, J.M. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: A pharmacokinetic study. Br. J. Anaesth. 2010, 104, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes, S.; Porter, S.B.; Porter, I.E., 2nd; Renew, J.R. Sugammadex use in patients with end-stage renal disease: A historical cohort study. Can. J. Anaesth. 2020, 67, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Hanif, F.; Macrae, A.N.; Littlejohn, M.G.; Clancy, M.J.; Murio, E. Outcome of renal transplantation with and without intra-operative diuretics. Int. J. Surg. 2011, 9, 460–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugo-Baruqui, J.A.; Ayyathurai, R.; Sriram, A.; Pragatheeshwar, K.D. Use of Mannitol for Ischemia Reperfusion Injury in Kidney Transplant and Partial Nephrectomies-Review of Literature. Curr. Urol. Rep. 2019, 20, 6. [Google Scholar] [CrossRef]
- McMahon, B.A.; Koyner, J.L.; Novick, T.; Menez, S.; Moran, R.A.; Lonze, B.E.; Desai, N.; Alasfar, S.; Borja, M.; Merritt, W.T.; et al. The prognostic value of the furosemide stress test in predicting delayed graft function following deceased donor kidney transplantation. Biomarkers 2018, 23, 61–69. [Google Scholar] [CrossRef]
- Udomkarnjananun, S.; Townamchai, N.; Iampenkhae, K.; Petchlorlian, A.; Srisawat, N.; Katavetin, P.; Sutherasan, M.; Santingamkun, A.; Praditpornsilpa, K.; Eiam-Ong, S.; et al. Furosemide Stress Test as a Predicting Biomarker for Delayed Graft Function in Kidney Transplantation. Nephron 2019, 141, 236–248. [Google Scholar] [CrossRef]
- Smudla, A.; Trimmel, D.; Szabo, G.; Fazakas, J. Systolic Blood Pressure Pattern: The Tick Mark Signal of Delayed Renal Graft Function. Transplant. Proc. 2019, 51, 1226–1230. [Google Scholar] [CrossRef]
- Gan, T.J.; Diemunsch, P.; Habib, A.S.; Kovac, A.; Kranke, P.; Meyer, T.A.; Watcha, M.; Chung, F.; Angus, S.; Apfel, C.C.; et al. Consensus guidelines for the management of postoperative nausea and vomiting. Anesth. Analg. 2014, 118, 85–113. [Google Scholar] [CrossRef] [Green Version]
- Pierre, S.; Whelan, R. Nausea and vomiting after surgery. Contin. Educ. Anaesth. Crit. Care Pain 2013, 13, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; White, P.F.; Ma, H. An update on the management of postoperative nausea and vomiting. J. Anesth. 2017, 31, 617–626. [Google Scholar] [CrossRef]
- Awad, K.; Ahmed, H.; Abushouk, A.I.; Al Nahrawi, S.; Elsherbeny, M.Y.; Mustafa, S.M.; Attia, A. Dexamethasone combined with other antiemetics versus single antiemetics for prevention of postoperative nausea and vomiting after laparoscopic cholecystectomy: An updated systematic review and meta-analysis. Int. J. Surg. 2016, 36, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Doleman, B.; Read, D.; Lund, J.N.; Williams, J.P. Preventive Acetaminophen Reduces Postoperative Opioid Consumption, Vomiting, and Pain Scores After Surgery: Systematic Review and Meta-Analysis. Reg. Anesth. Pain Med. 2015, 40, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calixto Fernandes, M.H.; Schricker, T.; Magder, S.; Hatzakorzian, R. Perioperative fluid management in kidney transplantation: A black box. Crit. Care 2018, 22, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampmeier, T.G.; Ertmer, C. Individualized Goal-Directed Therapy: The Challenge With the Fluids. Anesth. Analg. 2020, 130, 596–598. [Google Scholar] [CrossRef] [PubMed]
- Mitsides, N.; Cornelis, T.; Broers, N.J.H.; Diederen, N.M.P.; Brenchley, P.; van der Sande, F.M.; Schalkwijk, C.G.; Kooman, J.P.; Mitra, S. Extracellular overhydration linked with endothelial dysfunction in the context of inflammation in haemodialysis dependent chronic kidney disease. PLoS ONE 2017, 12, e0183281. [Google Scholar] [CrossRef]
- Eriksen, J.K.; Nielsen, L.H.; Moeslund, N.; Keller, A.K.; Krag, S.; Pedersen, M.; Pedersen, J.A.K.; Birn, H.; Jespersen, B.; Norregaard, R. Goal-Directed Fluid Therapy Does Not Improve Early Glomerular Filtration Rate in a Porcine Renal Transplantation Model. Anesth. Analg. 2020, 130, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, K.B.; Baar, W.; Silbach, K.; Knorlein, J.; Janigen, B.; Kalbhenn, J.; Heinrich, S.; Pisarski, P.; Buerkle, H.; Gobel, U. Modifiable Risk Factors for Delayed Graft Function After Deceased Donor Kidney Transplantation. Prog. Transplant. 2019, 29, 269–274. [Google Scholar] [CrossRef]
- Wagener, G.; Bezinover, D.; Wang, C.; Kroepfl, E.; Diaz, G.; Giordano, C.; West, J.; Kindscher, J.D.; Moguilevitch, M.; Nicolau-Raducu, R.; et al. Fluid Management During Kidney Transplantation: A Consensus Statement of the Committee on Transplant Anesthesia of the American Society of Anesthesiologists. Transplantation 2021, 105, 1677–1684. [Google Scholar] [CrossRef]
- Gurgel, S.T.; do Nascimento, P., Jr. Maintaining tissue perfusion in high-risk surgical patients: A systematic review of randomized clinical trials. Anesth. Analg. 2011, 112, 1384–1391. [Google Scholar] [CrossRef]
- Abbas, S.M.; Hill, A.G. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia 2008, 63, 44–51. [Google Scholar] [CrossRef]
- Corbella, D.; Toppin, P.J.; Ghanekar, A.; Ayach, N.; Schiff, J.; Van Rensburg, A.; McCluskey, S.A. Cardiac output-based fluid optimization for kidney transplant recipients: A proof-of-concept trial. Can. J. Anaesth. 2018, 65, 873–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandham, J.D.; Hull, R.D.; Brant, R.F.; Knox, L.; Pineo, G.F.; Doig, C.J.; Laporta, D.P.; Viner, S.; Passerini, L.; Devitt, H.; et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N. Engl. J. Med. 2003, 348, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Guen, M.; Follin, A.; Gayat, E.; Fischler, M. The plethysmographic variability index does not predict fluid responsiveness estimated by esophageal Doppler during kidney transplantation: A controlled study. Medicine 2018, 97, e10723. [Google Scholar] [CrossRef] [PubMed]
- Morkane, C.M.; Fabes, J.; Banga, N.R.; Berry, P.D.; Kirwan, C.J. Perioperative management of adult cadaveric and live donor renal transplantation in the UK: A survey of national practice. Clin. Kidney J. 2019, 12, 880–887. [Google Scholar] [CrossRef]
- Wan, S.; Roberts, M.A.; Mount, P. Normal saline versus lower-chloride solutions for kidney transplantation. Cochrane Database Syst. Rev. 2016, 2016, CD010741. [Google Scholar] [CrossRef]
- Weinberg, L.; Harris, L.; Bellomo, R.; Ierino, F.L.; Story, D.; Eastwood, G.; Collins, M.; Churilov, L.; Mount, P.F. Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148(R) on hyperkalaemia in deceased donor renal transplantation: A double-blind randomized trial. Br. J. Anaesth. 2017, 119, 606–615. [Google Scholar] [CrossRef] [Green Version]
- Potura, E.; Lindner, G.; Biesenbach, P.; Funk, G.C.; Reiterer, C.; Kabon, B.; Schwarz, C.; Druml, W.; Fleischmann, E. An acetate-buffered balanced crystalloid versus 0.9% saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: A prospective randomized controlled trial. Anesth. Analg. 2015, 120, 123–129. [Google Scholar] [CrossRef]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.; Minkovich, L.; Tait, G.; Beattie, W.S. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensity-matched cohort study. Anesth. Analg. 2013, 117, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Castro, A.; Ortiz-Lasa, M.; Peñasco, Y.; González, C.; Blanco, C.; Rodriguez-Borregan, J.C. Choice of fluids in the perioperative period of kidney transplantation. Nefrol. Engl. Ed. 2017, 37, 572–578. [Google Scholar] [CrossRef]
- Demir, A.; Aydinli, B.; Toprak, H.I.; Karadeniz, U.; Yilmaz, F.M.; Zungun, C.; Ucar, P.; Guclu, C.Y.; Bostanci, E.B.; Yilmaz, S. Impact of 6% Starch 130/0.4 and 4% Gelatin Infusion on Kidney Function in Living-Donor Liver Transplantation. Transplant. Proc. 2015, 47, 1883–1889. [Google Scholar] [CrossRef]
- Martin, C.; Jacob, M.; Vicaut, E.; Guidet, B.; Van Aken, H.; Kurz, A. Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology 2013, 118, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Parekh, J.; Niemann, C.U.; Dang, K.; Hirose, R. Intraoperative hyperglycemia augments ischemia reperfusion injury in renal transplantation: A prospective study. J. Transplant. 2011, 2011, 652458. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.A. Post-transplant diabetes mellitus. Clin. Med. 2019, 19, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Chakkera, H.A.; Weil, E.J.; Castro, J.; Heilman, R.L.; Reddy, K.S.; Mazur, M.J.; Hamawi, K.; Mulligan, D.C.; Moss, A.A.; Mekeel, K.L.; et al. Hyperglycemia during the immediate period after kidney transplantation. Clin. J. Am. Soc. Nephrol. 2009, 4, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Conte, C.; Secchi, A. Post-transplantation diabetes in kidney transplant recipients: An update on management and prevention. Acta Diabetol. 2018, 55, 763–779. [Google Scholar] [CrossRef]
- Evans, D.C.; Martindale, R.G.; Kiraly, L.N.; Jones, C.M. Nutrition optimization prior to surgery. Nutr. Clin. Pract. 2014, 29, 10–21. [Google Scholar] [CrossRef]
- Hermayer, K.L.; Egidi, M.F.; Finch, N.J.; Baliga, P.; Lin, A.; Kettinger, L.; Biggins, S.; Carter, R.E. A randomized controlled trial to evaluate the effect of glycemic control on renal transplantation outcomes. J. Clin. Endocrinol. Metab. 2012, 97, 4399–4406. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.; Toyama, T.; Oshima, M.; Jun, M.; Chin, K.L.; Hawley, C.M.; Zoungas, S. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst. Rev. 2020, 8, CD009966. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef]
- Riley, C.; Andrzejowski, J. Inadvertent perioperative hypothermia. BJA Educ. 2018, 18, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Becerra, A.; Valencia, L.; Villar, J.; Rodriguez-Perez, A. Short-Periods of Pre-Warming in Laparoscopic Surgery. A Non-Randomized Clinical Trial Evaluating Current Clinical Practice. J. Clin. Med. 2021, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence NICE. Hypothermia: Prevention and Management in Adults Having Surgery. NICE Clin. Guidel. 2016, 65. Available online: https://pubmed.ncbi.nlm.nih.gov/32134602/ (accessed on 9 May 2021).
- Haugen, C.E.; Mountford, A.; Warsame, F.; Berkowitz, R.; Bae, S.; Thomas, A.G.; Brown, C.H.t.; Brennan, D.C.; Neufeld, K.J.; Carlson, M.C.; et al. Incidence, Risk Factors, and Sequelae of Post-kidney Transplant Delirium. J. Am. Soc. Nephrol. 2018, 29, 1752–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raats, J.W.; Steunenberg, S.L.; de Lange, D.C.; van der Laan, L. Risk factors of post-operative delirium after elective vascular surgery in the elderly: A systematic review. Int. J. Surg. 2016, 35, 1–6. [Google Scholar] [CrossRef]
- Ayob, F.; Lam, E.; Ho, G.; Chung, F.; El-Beheiry, H.; Wong, J. Pre-operative biomarkers and imaging tests as predictors of post-operative delirium in non-cardiac surgical patients: A systematic review. BMC Anesthesiol. 2019, 19, 25. [Google Scholar] [CrossRef]
- Chan, M.T.; Cheng, B.C.; Lee, T.M.; Gin, T.; Group, C.T. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J. Neurosurg. Anesthesiol. 2013, 25, 33–42. [Google Scholar] [CrossRef]
- Punjasawadwong, Y.; Chau-In, W.; Laopaiboon, M.; Punjasawadwong, S.; Pin-On, P. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst. Rev. 2018, 5, CD011283. [Google Scholar] [CrossRef]
- Duan, X.; Coburn, M.; Rossaint, R.; Sanders, R.D.; Waesberghe, J.V.; Kowark, A. Efficacy of perioperative dexmedetomidine on postoperative delirium: Systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. Br. J. Anaesth. 2018, 121, 384–397. [Google Scholar] [CrossRef] [Green Version]
- Brower, R.G. Consequences of bed rest. Crit. Care Med. 2009, 37, S422–S428. [Google Scholar] [CrossRef]
- Pashikanti, L.; Von Ah, D. Impact of early mobilization protocol on the medical-surgical inpatient population: An integrated review of literature. Clin. Nurse Spec. 2012, 26, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Pederson, J.L.; Padwal, R.S.; Warkentin, L.M.; Holroyd-Leduc, J.M.; Wagg, A.; Khadaroo, R.G. The impact of delayed mobilization on post-discharge outcomes after emergency abdominal surgery: A prospective cohort study in older patients. PLoS ONE 2020, 15, e0241554. [Google Scholar] [CrossRef]
- Bauer, V.P. The Evidence against Prophylactic Nasogastric Intubation and Oral Restriction. Clin. Colon Rectal Surg. 2013, 26, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Scott, M.J.; Baldini, G.; Fearon, K.C.; Feldheiser, A.; Feldman, L.S.; Gan, T.J.; Ljungqvist, O.; Lobo, D.N.; Rockall, T.A.; Schricker, T.; et al. Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 1: Pathophysiological considerations. Acta Anaesthesiol. Scand. 2015, 59, 1212–1231. [Google Scholar] [CrossRef] [Green Version]
- Madeira, I.; Frada, R.; Marvao, J.; Cruz, F.; Casal, M.; Costa, E. Morphine patient controlled analgesia for postoperative analgesia in patients who have transplanted cadaver donor kidneys. Transplant. Proc. 2011, 43, 125–130. [Google Scholar] [CrossRef]
- Williams, M.; Milner, Q.J. Postoperative analgesia following renal transplantation—Current practice in the UK. Anaesthesia 2003, 58, 712–713. [Google Scholar] [CrossRef]
- Lentine, K.L.; Lam, N.N.; Naik, A.S.; Axelrod, D.A.; Zhang, Z.; Dharnidharka, V.R.; Hess, G.P.; Segev, D.L.; Ouseph, R.; Randall, H.; et al. Prescription opioid use before and after kidney transplant: Implications for posttransplant outcomes. Am. J. Transplant. 2018, 18, 2987–2999. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Kirksey, M.A.; Duong, S.; Wu, C.L. A Review of Opioid-Sparing Modalities in Perioperative Pain Management: Methods to Decrease Opioid Use Postoperatively. Anesth. Analg. 2017, 125, 1749–1760. [Google Scholar] [CrossRef]
- Pham, P.C.; Khaing, K.; Sievers, T.M.; Pham, P.M.; Miller, J.M.; Pham, S.V.; Pham, P.A.; Pham, P.T. 2017 update on pain management in patients with chronic kidney disease. Clin. Kidney J. 2017, 10, 688–697. [Google Scholar] [CrossRef]
- Roy, P.J.; Weltman, M.; Dember, L.M.; Liebschutz, J.; Jhamb, M.; on behalf of the HOPE Consortium. Pain management in patients with chronic kidney disease and end-stage kidney disease. Curr. Opin. Nephrol. Hypertens. 2020, 29, 671–680. [Google Scholar] [CrossRef]
- Kim, S.Y.; Huh, K.H.; Roh, Y.H.; Oh, Y.J.; Park, J.; Choi, Y.S. Nefopam as an adjunct to intravenous patient-controlled analgesia after renal transplantation: A randomised trial. Acta Anaesthesiol. Scand. 2015, 59, 1068–1075. [Google Scholar] [CrossRef]
- Martinez, V.; Beloeil, H.; Marret, E.; Fletcher, D.; Ravaud, P.; Trinquart, L. Non-opioid analgesics in adults after major surgery: Systematic review with network meta-analysis of randomized trials. Br. J. Anaesth. 2017, 118, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Waddy, S.P.; Becerra, A.Z.; Ward, J.B.; Chan, K.E.; Fwu, C.W.; Eggers, P.W.; Abbott, K.C.; Kimmel, P.L. Concomitant Use of Gabapentinoids with Opioids Is Associated with Increased Mortality and Morbidity among Dialysis Patients. Am. J. Nephrol. 2020, 51, 424–432. [Google Scholar] [CrossRef]
- Weibel, S.; Jelting, Y.; Pace, N.L.; Helf, A.; Eberhart, L.H.; Hahnenkamp, K.; Hollmann, M.W.; Poepping, D.M.; Schnabel, A.; Kranke, P. Continuous intravenous perioperative lidocaine infusion for postoperative pain and recovery in adults. Cochrane Database Syst. Rev. 2018, 6, CD009642. [Google Scholar] [CrossRef]
- Davison, S.N. Clinical Pharmacology Considerations in Pain Management in Patients with Advanced Kidney Failure. Clin. J. Am. Soc. Nephrol. 2019, 14, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.J.; Na, H.S.; Do, S.H. Magnesium and Pain. Nutrients 2020, 12, 2184. [Google Scholar] [CrossRef]
- De Oliveira, G.S., Jr.; Castro-Alves, L.J.; Khan, J.H.; McCarthy, R.J. Perioperative Systemic Magnesium to Minimize Postoperative Pain: A Meta-analysis of Randomized Controlled Trials. Anesthesiology 2013, 119, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Jabbour, H.; Jabbour, K.; Abi Lutfallah, A.; Abou Zeid, H.; Nasser-Ayoub, E.; Abou Haidar, M.; Naccache, N. Magnesium and Ketamine Reduce Early Morphine Consumption After Open Bariatric Surgery: A Prospective Randomized Double-Blind Study. Obes. Surg. 2020, 30, 1452–1458. [Google Scholar] [CrossRef]
- Capdevila, X.; Moulard, S.; Plasse, C.; Peshaud, J.L.; Molinari, N.; Dadure, C.; Bringuier, S. Effectiveness of Epidural Analgesia, Continuous Surgical Site Analgesia, and Patient-Controlled Analgesic Morphine for Postoperative Pain Management and Hyperalgesia, Rehabilitation, and Health-Related Quality of Life After Open Nephrectomy: A Prospective, Randomized, Controlled Study. Anesth. Analg. 2017, 124, 336–345. [Google Scholar] [CrossRef]
- Hosgood, S.A.; Thiyagarajan, U.M.; Nicholson, H.F.; Jeyapalan, I.; Nicholson, M.L. Randomized clinical trial of transversus abdominis plane block versus placebo control in live-donor nephrectomy. Transplantation 2012, 94, 520–525. [Google Scholar] [CrossRef]
- Yeap, Y.L.; Fridell, J.A.; Wu, D.; Mangus, R.S.; Kroepfl, E.; Wolfe, J.; Powelson, J.A. Comparison of methods of providing analgesia after pancreas transplant: IV opioid analgesia versus transversus abdominis plane block with liposomal bupivacaine or continuous catheter infusion. Clin. Transplant. 2019, 33, e13581. [Google Scholar] [CrossRef]
- Soltani Mohammadi, S.; Dabir, A.; Shoeibi, G. Efficacy of transversus abdominis plane block for acute postoperative pain relief in kidney recipients: A double-blinded clinical trial. Pain Med. 2014, 15, 460–464. [Google Scholar] [CrossRef]
- Onwochei, D.N.; Borglum, J.; Pawa, A. Abdominal wall blocks for intra-abdominal surgery. BJA Educ. 2018, 18, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, H.; Otake, H.; Lin, J.A. Ultrasound-Guided Quadratus Lumborum Block: An Updated Review of Anatomy and Techniques. Biomed Res. Int. 2017, 2017, 2752876. [Google Scholar] [CrossRef]
- Aditianingsih, D.; Pryambodho; Anasy, N.; Tantri, A.R.; Mochtar, C.A. A randomized controlled trial on analgesic effect of repeated Quadratus Lumborum block versus continuous epidural analgesia following laparoscopic nephrectomy. BMC Anesthesiol. 2019, 19, 221. [Google Scholar] [CrossRef]
- Kose, H.C.; Kose, S.G.; Thomas, D.T. Lumbar versus thoracic erector spinae plane block: Similar nomenclature, different mechanism of action. J. Clin. Anesth. 2018, 48, 1. [Google Scholar] [CrossRef]
- World Federation of Societies of Anaesthesiologist WFSA. Anaesthesia Tutorial of the Week-The Erector Spinae Plane Block: A Review of Current Evidence. Available online: https://resources.wfsahq.org/atotw/the-erector-spinae-plane-block-a-review-of-current-evidence-2/ (accessed on 9 May 2021).
- Temirov, T.; Ben-David, B.; Mustafin, A.; Viderman, D. Erector Spinae Plane Block in Management of Pain After Kidney Transplantation. Pain Med. 2019, 20, 1053–1054. [Google Scholar] [CrossRef]
- Hutchins, J.L.; Kesha, R.; Blanco, F.; Dunn, T.; Hochhalter, R. Ultrasound-guided subcostal transversus abdominis plane blocks with liposomal bupivacaine vs. non-liposomal bupivacaine for postoperative pain control after laparoscopic hand-assisted donor nephrectomy: A prospective randomised observer-blinded study. Anaesthesia 2016, 71, 930–937. [Google Scholar] [CrossRef]
- Kim, H.C.; Bae, J.Y.; Kim, T.K.; Jeon, Y.; Min, J.J.; Goo, E.K.; Hong, D.M. Efficacy of intrathecal morphine for postoperative pain management following open nephrectomy. J. Int. Med. Res. 2016, 44, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Jun, J.H.; Kim, G.S.; Lee, J.J.; Ko, J.S.; Kim, S.J.; Jeon, P.H. Comparison of intrathecal morphine and surgical-site infusion of ropivacaine as adjuncts to intravenous patient-controlled analgesia in living-donor kidney transplant recipients. Singapore Med. J. 2017, 58, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Laycock, H. Acute postoperative pain management. Br. J. Surg. 2020, 107, e70–e80. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence NICE. Perioperative Care in Adults NICE Guideline NICE Clin. Guidel. 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32931177/ (accessed on 9 May 2021).
ERAS Intervention | Recommendation | Key Articles |
---|---|---|
Preoperative medical optimisation | Repeat cardiac evaluation, especially in patients with unstable coronary syndromes, decompensated heart failure, significant valvular disease, and arrhythmias. Echocardiography is recommended for patients with ventricular impairment or valvular disease, and patient at risk of pulmonary hypertension. Recipients with PSP greater than 45 mmHg should be assessed by a cardiologist. Pulmonary function testing should be performed in symptomatic patients. | [15,16,17] |
Patient education | Patients should quit smoking at least four weeks before surgery, and smokers should be offered nicotine replacement therapy. We recommend cessation of risky drinking for four to eight weeks before surgery. Preoperative frailty screening should be used for risk assessment. | [14,16,29] |
Pre-habilitation | KTx recipients should be offered exercise therapy two to three times a week, lasting more than 30 min. | [39,40] |
Improving nutritional status | Kidney transplant recipients should be evaluated, and malnourished patients should be referred to a dietician. Diet and exercise advice should be offered to all obese KTx recipients. | [16,45,46,47] |
Carbohydrate drink before surgery | A drink containing at least 45 g of carbohydrates should be offered to all patients, except those with diabetes mellitus and anticipated delayed gastric emptying. | [43] |
Anaemia correction | Avoid blood transfusion in KTx recipients. Assess response to iron treatment in anaemic patients. Consider ESA treatment for anaemic KTx recipients with Hb levels 90–100 g/L; balance benefits of reducing blood transfusion and risk of side effects. Do not start ESA in patients with iron deficiency. | [53,54,57] |
Anxiolysis | Use anxiolytic for anxious patients before anaesthesia. Avoid routine use of sedative agents. | [64,70,74] |
Anaesthetic protocol | Administer PPIs or H2 inhibitors for patients with gastroparesis. Avoid anaesthetic agents that accumulate in ESRF. Avoid hypotension during surgery, and aim for MAP targets above 80 mmHg. Consider noradrenaline as vasoconstrictor. Transfuse 250 mL 20% mannitol before reperfusion. Oliguric patients with post-transplant metabolic acidosis should be offered dialysis. | [79,80,81] |
Prevention of PONV | Risk stratification and PONV prophylaxis for all patients. | [98,99,100] |
Perioperative fluid management | Avoid fluid overload. Use cardiac output monitoring to assess fluid responsiveness. Use balanced crystalloids. | [103,107,108] |
Perioperative glycaemic control | Maintain glycaemia within the recommended range 7.8–10 mmol/L (140–180 mg/dL) in the perioperative period. | [125,129] |
Temperature management | The patient’s core temperature should be maintained at least 36.5 °C intraoperatively. Active warming should be commenced to maintain normothermia. Temperature should be monitored every 30 min intraoperatively and every 15 min in recovery. | [132] |
Prevention of delirium | Minimise the risk of delirium. Cerebral monitoring should be performed in elderly patients during anaesthesia. We recommend postoperative screening for POD and early management. | [63,136,137] |
Bed rest and early mobilisation | Early mobilisation after surgery. | [139,140] |
Nutrition after surgery | An early return to oral diet. Enteral and parenteral nutrition when recommended. | [43] |
Perioperative pain control | Opioid sparing analgesia; multimodal analgesia as a combination of opioids, non-opioid analgesics, and regional anaesthesia techniques; self-reporting scales for pain assessment and urgent management of moderate and severe pain; oral analgesia as soon as oral intake is possible. | [147,149,171] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaszczuk, S.; Natarajan, S.; Papalois, V. Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review. J. Clin. Med. 2022, 11, 3435. https://doi.org/10.3390/jcm11123435
Jaszczuk S, Natarajan S, Papalois V. Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review. Journal of Clinical Medicine. 2022; 11(12):3435. https://doi.org/10.3390/jcm11123435
Chicago/Turabian StyleJaszczuk, Slawomir, Shweta Natarajan, and Vassilios Papalois. 2022. "Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review" Journal of Clinical Medicine 11, no. 12: 3435. https://doi.org/10.3390/jcm11123435
APA StyleJaszczuk, S., Natarajan, S., & Papalois, V. (2022). Anaesthetic Approach to Enhanced Recovery after Surgery for Kidney Transplantation: A Narrative Review. Journal of Clinical Medicine, 11(12), 3435. https://doi.org/10.3390/jcm11123435