Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Intervention—Whole Body Cryotherapy (WBC) with a Static Stretching Exercise
2.3. Measures
2.3.1. Fatigue Measurements
2.3.2. Assessment of Cognitive Function
2.3.3. Objective Assessment of Autonomic and Cardiovascular Function
2.3.4. Arterial Stiffness Measurement
2.3.5. Body Composition Analysis
2.4. Statistical Analysis
3. Results
3.1. Network Relationship before Intervention
3.2. Network Relationships in Difference before and after Intervention (Delta Value)
4. Discussion
4.1. General Topography of Networks
4.2. Network before WBC with Static Stretching (SS) Program in CFS vs. Healthy Controls
4.3. Dynamics of the Network of WBC with Static Stretching (SS) Program in CFS vs. Healthy Controls
4.4. Study Limitations
4.5. Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CFS (n = 32) | Control (n = 18) | ||
---|---|---|---|
Parameter | Mean ± SD | Mean ± SD | p-Value |
TMT A (s) | 23.03 ± 6.2 | 24.50 ± 7.6 | 0.5 |
TMT B (s) | 50.19 ± 13.9 | 59.72 ± 25.0 | 0.09 |
TMT B-A (s) | 27.16 ± 11.4 | 35.22 ± 23.7 | 0.32 |
Coding 1 min (symbols_to_go) | 52.81 ± 9.5 | 55.17 ± 7.3 | 0.35 |
Coding 2 min (symbols_to_go) | 12.68 ± 11.5 | 15.11 ± 11.1 | 0.48 |
CFQ (points) | 22.06 ± 4.5 | 12.50 ± 3.3 | <0.001 |
FIS (points) | 54.47 ± 24.2 | 22.72 ± 19.5 | <0.001 |
FSS (points) | 45.41 ± 8.7 | 30.00 ± 11.4 | <0.001 |
PWV aortic (m/s) | 8.41 ± 2.1 | 8.06 ± 1.6 | 0.89 |
Aix aortic (%) | 28.72 ± 12.4 | 22.45 ± 11.4 | 0.08 |
sBP aortic (mmHg) | 135.06 ± 17.8 | 128.91 ± 19.0 | 0.25 |
HR (n/1) | 69.98 ± 8.8 | 75.56 ± 10.5 | 0.05 |
mBP (mmHg) | 95.80 ± 8.9 | 96.41 ± 11.0 | 0.83 |
SI (mL/m2) | 54.22 ± 12.6 | 48.97 ± 10.3 | 0.14 |
CI (L/min/m2) | 3.76 ± 0.9 | 3.67 ± 0.9 | 0.71 |
TPRI (dyne*s*m2/cm5) | 2127.60 ± 666.2 | 2167.97 ± 579.0 | 0.59 |
LVWI (mmHg*L/(min*m2)) | 4.78 ± 1.1 | 4.68 ± 1.0 | 0.77 |
LVET (ms) | 316.79 ± 12.0 | 305.36 ± 16.1 | 0.01 |
PEP (ms) | 110.07 ± 14.2 | 104.60 ± 12.7 | 0.18 |
HI (1/s²) | 0.37 ± 0.1 | 0.33 ± 0.1 | 0.27 |
LF/HF | 1.60 ± 1.9 | 2.48 ± 1.7 | 0.002 |
Total BEI (%) | 67.28 ± 11.6 | 65.95 ± 22.8 | 0.79 |
References
- Gizińska, M.; Rutkowski, R.; Romanowski, W.; Lewandowski, J.; Straburzyńska-Lupa, A. Effects of Whole-Body Cryotherapy in Comparison with Other Physical Modalities Used with Kinesitherapy in Rheumatoid Arthritis. BioMed Res. Int. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulis, A.; Misiorek, A.; Marchewka, J.; Głodzik, J.; Teległów, A.; Dąbrowski, Z.; Marchewka, A. Effect of whole-body cryotherapy on the rheological parameters of blood in older women with spondyloarthrosis. Clin. Hemorheol. Microcirc. 2017, 66, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Lombardi, G.; Colombini, A.; Melegati, G.; Banfi, P.G. Whole-Body Cryotherapy in Athletes. Sports Med. 2010, 40, 509–517. [Google Scholar] [CrossRef]
- Vitenet, M.; Tubez, F.; Marreiro, A.; Polidori, G.; Taiar, R.; Legrand, F.; Boyer, F. Effect of whole body cryotherapy interventions on health-related quality of life in fibromyalgia patients: A randomized controlled trial. Complement. Ther. Med. 2018, 36, 6–8. [Google Scholar] [CrossRef]
- Zalewski, P.; Bitner, A.; Słomko, J.; Szrajda, J.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature. J. Therm. Biol. 2014, 45, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Rymaszewska, J.; Lion, K.M.; Stańczykiewicz, B.; Rymaszewska, J.E.; Trypka, E.; Pawlik-Sobecka, L.; Kokot, I.; Płaczkowska, S.; Zabłocka, A.; Szcześniak, D. The improvement of cognitive deficits after whole-body cryotherapy—A randomised controlled trial. Exp. Gerontol. 2021, 146, 111237. [Google Scholar] [CrossRef]
- Miller, E.; Kostka, J.; Włodarczyk, T.; Dugué, B. Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study. Acta Neurol. Scand. 2016, 134, 420–426. [Google Scholar] [CrossRef]
- Pawik, M.; Kowalska, J.; Rymaszewska, J. The effectiveness of whole-body cryotherapy and physical exercises on the psychological well-being of patients with multiple sclerosis: A comparative analysis. Adv. Clin. Exp. Med. 2019, 28, 1477–1483. [Google Scholar] [CrossRef] [Green Version]
- e Silva, G.C.; Costa, P.B.; Conceição, R.R.; Pimenta, L.; Almeida, R.L.; Sato, M.A. Acute effects of different static stretching exercise orders on cardiovascular and autonomic responses. Sci. Rep. 2019, 9, 15738. [Google Scholar] [CrossRef]
- Lima, T.P.; Farinatti, P.T.; Rubini, E.C.; Silva, E.B.; Monteiro, W.D. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver. Clinics 2015, 70, 333–338. [Google Scholar] [CrossRef]
- Silva, G.C.E.; Simão, R.; Da Conceição, R.R.; Costa, P.B.; Miranda, H.; Da Conceição, R.R.; Almeida, R.L.; Sato, M.A. Does the combination of resistance training and stretching increase cardiac overload? Clinics 2019, 74, e1066. [Google Scholar] [CrossRef]
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugue, B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review with Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Riebe, D.; Thompson, P.D. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2018. [Google Scholar]
- Nelson, A.G.; Kokkonen, J. Elevated metabolic rate during passive stretching is not a sufficient aerobic warm-up. J. Sport Health Sci. 2013, 2, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K.; Van Kessel, A.L.; Burton, G.G. Interaction of physiological mechanisms during exercise. J. Appl. Physiol. 1967, 22, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Estévez-López, F.; Mudie, K.; Wang-Steverding, X.; Bakken, I.J.; Ivanovs, A.; Castro-Marrero, J.; Nacul, L.; Alegre, J.; Zalewski, P.; Słomko, J.; et al. Systematic Review of the Epidemiological Burden of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Across Europe: Current Evidence and EUROMENE Research Recommendations for Epidemiology. J. Clin. Med. 2020, 9, 1557. [Google Scholar] [CrossRef] [PubMed]
- McGregor, N.R.; Armstrong, C.W.; Lewis, D.P.; Gooley, P.R. Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics 2019, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Goudsmit, E.M.; Nijs, J.; Jason, L.A.; Wallman, K.E. Pacing as a strategy to improve energy management in myalgic encephalomyelitis/chronic fatigue syndrome: A consensus document. Disabil. Rehabil. 2011, 34, 1140–1147. [Google Scholar] [CrossRef]
- Kruse, N.T.; Scheuermann, B.W. Cardiovascular Responses to Skeletal Muscle Stretching: “Stretching” the Truth or a New Exercise Paradigm for Cardiovascular Medicine? Sports Med. 2017, 47, 2507–2520. [Google Scholar] [CrossRef]
- Nelson, M.J.; Bahl, J.S.; Buckley, J.D.; Thomson, R.L.; Davison, K. Evidence of altered cardiac autonomic regulation in myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and meta-analysis. Medicine 2019, 98, e17600. [Google Scholar] [CrossRef]
- Słomko, J.; Estévez-López, F.; Kujawski, S.; Zawadka-Kunikowska, M.; Tafil-Klawe, M.; Klawe, J.J.; Morten, K.J.; Szrajda, J.; Murovska, M.; Newton, J.L.; et al. Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) are Associated with Illness Severity: A Cluster Analysis. J. Clin. Med. 2020, 9, 2531. [Google Scholar] [CrossRef]
- Clayton, E.W. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. JAMA 2015, 313, 1101–1102. [Google Scholar] [CrossRef]
- Jain, V.; Arunkumar, A.; Kingdon, C.; Lacerda, E.; Nacul, L. Prevalence of and risk factors for severe cognitive and sleep symptoms in ME/CFS and MS. BMC Neurol. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Logsdon, R.G.; Gibbons, L.E.; McCurry, S.M.; Teri, L. Assessing Quality of Life in Older Adults with Cognitive Impairment. Psychosom. Med. 2002, 64, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, R. Chronic fatigue: An evolutionary concept analysis. J. Adv. Nurs. 2008, 63, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Cockshell, S.J.; Mathias, J.L. Cognitive deficits in chronic fatigue syndrome and their relationship to psychological status, symptomatology, and everyday functioning. Neuropsychology 2013, 27, 230–242. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.J.; Gallagher, P.; Watson, S.; Pearce, R.; Finkelmeyer, A.; MacLachlan, L.; Newton, J.L. Impairments in cognitive performance in chronic fatigue syndrome are common, not related to co-morbid depression but do associate with autonomic dysfunction. PLoS ONE 2019, 14, e0210394. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Jung, W.; Jang, K.-I.; Lee, S.-H. Heart and Brain Interaction of Psychiatric Illness: A Review Focused on Heart Rate Variability, Cognitive Function, and Quantitative Electroencephalography. Clin. Psychopharmacol. Neurosci. 2019, 17, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.E.; Ng, W.-F.; Rushton, S.; Watson, S.; Newton, J.L. Network structure underpinning (dys)homeostasis in chronic fatigue syndrome; Preliminary findings. PLoS ONE 2019, 14, e0213724. [Google Scholar] [CrossRef]
- Fink, G. Stress: Concepts, Cognition, Emotion, and Behavior: Handbook of Stress Series; Academic Press: Cambridge, MA, USA, 2016; Volume 1. [Google Scholar]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The Chronic Fatigue Syndrome: A Comprehensive Approach to Its Definition and Study. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Zmijewski, P.; Lipinska, P.; Czajkowska, A.; Mróz, A.; Kapuściński, P.; Mazurek, K. Acute Effects of a Static vs. a Dynamic Stretching Warm-up on Repeated-Sprint Performance in Female Handball Players. J. Hum. Kinet. 2020, 72, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Jackson, G. The Chalder Fatigue Scale (CFQ 11). Occup. Med. 2015, 65, 86. [Google Scholar] [CrossRef] [Green Version]
- Fisk, J.D.; Ritvo, P.G.; Ross, L.; Haase, D.A.; Marrie, T.J.; Schlech, W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994, 18, S79–S83. [Google Scholar] [CrossRef]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The Fatigue Severity Scale: Application to Patients with Multiple Sclerosis and Systemic Lupus Erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004; pp. 368–370. ISBN 978-0-19-511121-7. [Google Scholar]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Crowe, S.F. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J. Clin. Psychol. 1998, 54, 585–591. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail Making Test, Part B as a Measure of Executive Control: Validation Using a Set-Switching Paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The Trail Making Test, Part B: Cognitive Flexibility or Ability to Maintain Set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, J. Digit Symbol Substitution Test. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Bianchi, A.M.; Mainardi, L.T.; Meloni, C.; Chierchia, S.; Cerutt, S. Continuous monitoring of the sympatho-vagal balancethrough spectral analysis. IEEE Eng. Med. Biol. Mag. 1997, 16, 64–73. [Google Scholar] [CrossRef]
- Fortin, J.; Klinger, T.; Wagner, C.; Sterner, H.; Madritsch, C.; Grullenberger, R. The task force monitor–a non-invasive beat-to-beat monitor for hemodynamic and autonomic function of the human body. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Austin, TX, USA, 1 November 1998. [Google Scholar]
- Fortin, J.; Marte, W.; Grüllenberger, R.; Hacker, A.; Habenbacher, W.; Heller, A.; Wagner, C.; Wach, P.; Skrabal, F. Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput. Biol. Med. 2006, 36, 941–957. [Google Scholar] [CrossRef]
- Ring, M.; Eriksson, M.J.; Zierath, J.R.; Caidahl, K. Arterial stiffness estimation in healthy subjects: A validation of oscillometric (Arteriograph) and tonometric (SphygmoCor) techniques. Hypertens. Res. 2014, 37, 999–1007. [Google Scholar] [CrossRef]
- Baulmann, J.; Schilings, U.; Rickert, S.; Uen, S.; Dusing, R.; Cziraki, A.; Nickenig, G.; Mengden, T. A new oscillometric method for assessment of arterial stiffness: Comparison with tonometric and piezo-electronic methods. J. Hypertens. 2008, 26, 3. [Google Scholar] [CrossRef] [Green Version]
- Field, A. Discovering Statistics Using SPSS; Sage Publications: London, UK, 2009; p. 550. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Zanzoni, A.; Soler-López, M.; Aloy, P. A network medicine approach to human disease. FEBS Lett. 2009, 583, 1759–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, P.C.; Liu, K.K.L.; Bartsch, R. Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 2016, 18. [Google Scholar] [CrossRef] [PubMed]
- Hammer, P.E.; Saul, J.P. Resonance in a mathematical model of baroreflex control: Arterial blood pressure waves accompanying postural stress. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R1637–R1648. [Google Scholar] [CrossRef] [Green Version]
- Liang, F.; Liu, H. Simulation of Hemodynamic Responses to the Valsalva Maneuver: An Integrative Computational Model of the Cardiovascular System and the Autonomic Nervous System. J. Physiol. Sci. 2006, 56, 45–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieluf, S.; Hasija, T.; Jakobsmeyer, R.; Schreier, P.J.; Reinsberger, C. Exercise-Induced Changes of Multimodal Interactions Within the Autonomic Nervous Network. Front. Physiol. 2019, 10, 240. [Google Scholar] [CrossRef]
- Rensma, S.P.; Stehouwer, C.D.; Van Boxtel, M.P.; Houben, A.J.; Berendschot, T.T.; Jansen, J.F.; Schalkwijk, C.G.; Verhey, F.R.; Kroon, A.A.; Henry, R.M.; et al. Associations of Arterial Stiffness with Cognitive Performance, and the Role of Microvascular Dysfunction. Hypertension 2020, 75, 1607–1614. [Google Scholar] [CrossRef]
- Mitchell, G.F. Aortic stiffness, pressure and flow pulsatility, and target organ damage. J. Appl. Physiol. 2018, 125, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Garner, R.; Baraniuk, J.N. Orthostatic intolerance in chronic fatigue syndrome. J. Transl. Med. 2019, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.L.; Sheth, A.; Shin, J.; Pairman, J.; Wilton, K.; Burt, J.A.; Jones, D.E.J. Lower Ambulatory Blood Pressure in Chronic Fatigue Syndrome. Psychosom. Med. 2009, 71, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Wyller, V.B.; Barbieri, R.; Saul, J.P. Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress. Graefe Arch. Clin. Exp. Ophthalmol. 2010, 111, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frith, J.; Zalewski, P.; Klawe, J.J.; Pairman, J.; Bitner, A.; Tafil-Klawe, M.; Newton, J.L. Impaired blood pressure variability in chronic fatigue syndrome--a potential biomarker. QJM Int. J. Med. 2012, 105, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Peckerman, A.; LaManca, J.J.; Qureishi, B.; Dahl, K.A.; Golfetti, R.; Yamamoto, Y.; Natelson, B.H. Baroreceptor Reflex and Integrative Stress Responses in Chronic Fatigue Syndrome. Psychosom. Med. 2003, 65, 889–895. [Google Scholar] [CrossRef]
- del Paso, G.A.R.; Contreras-Merino, A.M.; de la Coba, P.; Duschek, S. The cardiac, vasomotor, and myocardial branches of the baroreflex in fibromyalgia: Associations with pain, affective impairments, sleep problems, and fatigue. Psychophysiology 2021, 58, e13800. [Google Scholar] [CrossRef]
- Lacaze, D.H.D.C.; Sacco, I.D.C.N.; Rocha, L.E.; Pereira, C.A.D.B.; Casarotto, R.A. Stretching and joint mobilization exercises reduce call-center operators’ musculoskeletal discomfort and fatigue. Clinics 2010, 65, 657–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Lee, S.; Kim, M.S. The Effect of Stretching on Fatigue and Concentration in High School Students. Child Health Nurs. Res. 2006, 12, 196–203. [Google Scholar]
- Gladwell, V.F.; Coote, J.H. Heart rate at the onset of muscle contraction and during passive muscle stretch in humans: A role for mechanoreceptors. J. Physiol. 2002, 540, 1095–1102. [Google Scholar] [CrossRef]
- Gladwell, V.F.; Fletcher, J.; Patel, N.; Elvidge, L.J.; Lloyd, D.; Chowdhary, S.; Coote, J.H. The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J. Physiol. 2005, 567, 713–721. [Google Scholar] [CrossRef]
- Cui, J.; Blaha, C.; Moradkhan, R.; Gray, K.S.; Sinoway, L.I. Muscle sympathetic nerve activity responses to dynamic passive muscle stretch in humans. J. Physiol. 2006, 576, 625–634. [Google Scholar] [CrossRef]
- Słomko, J.; Newton, J.L.; Kujawski, S.; Tafil-Klawe, M.; Klawe, J.; Staines, D.; Marshall-Gradisnik, S.; Zalewski, P. Prevalence and characteristics of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) in Poland: A cross-sectional study. BMJ Open 2019, 9, e023955. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, A.; Fukuda, S.; Kuratsune, H.; Nojima, J.; Nakatomi, Y.; Watanabe, Y.; Feldstein, A.E. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav. Immun. 2020, 84, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Kitami, T.; Fukuda, S.; Kato, T.; Yamaguti, K.; Nakatomi, Y.; Yamano, E.; Kataoka, Y.; Mizuno, K.; Tsuboi, Y.; Kogo, Y.; et al. Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci. Rep. 2020, 10, 19933. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Valencia, I.J.; Garvert, D.W.; Montoya, J.G. Deconstructing post-exertional malaise in myalgic encephalomyelitis/ chronic fatigue syndrome: A patient-centered, cross-sectional survey. PLoS ONE 2018, 13, e0197811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawski, S.; Cossington, J.; Słomko, J.; Dawes, H.; Strong, J.W.; Estevez-Lopez, F.; Murovska, M.; Newton, J.L.; Hodges, L.; Zalewski, P. Prediction of Discontinuation of Structured Exercise Programme in Chronic Fatigue Syndrome Patients. J. Clin. Med. 2020, 9, 3436. [Google Scholar] [CrossRef] [PubMed]
CFS (n = 32) | Control (n = 18) | ||
---|---|---|---|
Parameter | Mean ± SD | Mean ± SD | p-Value |
Age (years) | 36.72 ± 8.4 | 38.39 | 0.50 |
Body height (cm) | 170.4 ± 8.3 | 172.6 ± 9.8 | 0.41 |
Body mass (kg) | 72.2 ± 12.7 | 77.6 ± 20.3 | 0.27 |
BMI (kg/m2) | 24.8 ± 3.6 | 25.8 ± 5.7 | 0.4 |
BMR (kcal) | 6477.5 ± 1010.1 | 7029.1 ± 1624.2 | 0.15 |
FatP (%) | 27.7 ± 7.5 | 26.4 ± 7.8 | 0.57 |
FatM (%) | 20.4 ± 8.0 | 21.2 ± 10.5 | 0.75 |
FFM (kg) | 51.8 ± 8.7 | 56.4 ± 12.9 | 0.14 |
VFat (level) | 4.6 ± 2.4 | 5.9 ± 4.1 | 0.18 |
BoneM (kg) | 2.6 ± 0.4 | 2.8 ± 0.6 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawski, S.; Bach, A.M.; Słomko, J.; Pheby, D.F.H.; Murovska, M.; Newton, J.L.; Zalewski, P. Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals. J. Clin. Med. 2021, 10, 2795. https://doi.org/10.3390/jcm10132795
Kujawski S, Bach AM, Słomko J, Pheby DFH, Murovska M, Newton JL, Zalewski P. Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals. Journal of Clinical Medicine. 2021; 10(13):2795. https://doi.org/10.3390/jcm10132795
Chicago/Turabian StyleKujawski, Sławomir, Anna M. Bach, Joanna Słomko, Derek F. H. Pheby, Modra Murovska, Julia L. Newton, and Paweł Zalewski. 2021. "Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals" Journal of Clinical Medicine 10, no. 13: 2795. https://doi.org/10.3390/jcm10132795
APA StyleKujawski, S., Bach, A. M., Słomko, J., Pheby, D. F. H., Murovska, M., Newton, J. L., & Zalewski, P. (2021). Changes in the Allostatic Response to Whole-Body Cryotherapy and Static-Stretching Exercises in Chronic Fatigue Syndrome Patients vs. Healthy Individuals. Journal of Clinical Medicine, 10(13), 2795. https://doi.org/10.3390/jcm10132795