Displacement of Centre of Pressure during Rehabilitation Exercise in Adolescent Idiopathic Scoliosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject
2.2. Instruments
2.3. Procedures
2.4. Statistical and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Konieczny, M.R.; Senyurt, H.; Krauspe, R. Epidemiology of adolescent idiopathic scoliosis. J. Child. Orthop. 2013, 7, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Tones, M.; Moss, N.; Polly, D.W. A review of quality of life and psychosocial issues in scoliosis. Spine 2006, 31, 3027–3038. [Google Scholar] [CrossRef]
- Anwer, S.; Alghadir, A.; Abu Shaphe, M.; Anwar, D. Effects of Exercise on Spinal Deformities and Quality of Life in Patients with Adolescent Idiopathic Scoliosis; BioMed Research International; Hindawi Publishing Corporation: London, UK, 2015; Volume 2015. [Google Scholar]
- Sanders, A.E.; Andras, L.M.; Iantorno, S.E.; Hamilton, A.; Choi, P.D.; Skaggs, D.L. Clinically Significant Psychological and Emotional Distress in 32% of Adolescent Idiopathic Scoliosis Patients. Spine Deform. 2018, 6, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Freyler, K.; Weltin, E.; Gollhofer, A.; Ritzmann, R. Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait Posture 2014, 40, 291–296. [Google Scholar] [CrossRef]
- Bruniera, C.A.V.; Rogerio, F.R.P.G.; Rodacki, A.L.F. Stabilometric response during single-leg stance after lower limb muscle fatigue. Braz. J. Phys. Ther. 2013, 17, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sforza, C.; Grassi, G.P.; Turci, M.; Fragnito, N.; Pizzini, G.; Ferrario, V.F. Influence of training on maintenance of equilibrium on a tilting platform. Percept. Mot. Ski. 2003, 96, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.; Yoo, H.; Lee, D.; Suh, S.-W.; Yang, J.H.; Kim, H.; Mun, J.H. Analysis of sensory system aspects of postural stability during quiet standing in adolescent idiopathic scoliosis patients. J. Neuroeng. Rehabil. 2018, 15, 54. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noé, F. Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects. BioMed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Dufvenberg, M.; Adeyemi, F.; Rajendran, I.; Öberg, B.; Abbott, A. Does postural stability differ between adolescents with idiopathic scoliosis and typically developed? A systematic literature review and meta-analysis. Scoliosis Spinal Disord. 2018, 13, 19. [Google Scholar] [CrossRef]
- Le Berre, M.; Guyot, M.A.; Agnani, O.; Bourdeauducq, I.; Versyp, M.C.; Donze, C.; Thévenon, A.; Catanzariti, J.F. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur. Spine J. 2017, 26, 1638–1644. [Google Scholar] [CrossRef]
- Baldini, A.; Nota, A.; Assi, V.; Ballanti, F.; Cozza, P. Intersession reliability of a posturo-stabilometric test, using a force platform. J. Electromyogr. Kinesiol. 2013, 23, 1474–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Seol, H.; Nussbaum, M.; Madigan, M.L. Reliability of COP-based postural sway measures and age-related differences. Gait Posture 2008, 28, 337–342. [Google Scholar] [CrossRef]
- Pagnacco, G.; Carrick, F.R.; Wright, C.H.; Oggero, E. Between-subjects differences of within-subject variability in repeated balance measures: Consequences on the minimum detectable change. Gait Posture 2015, 41, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.R.; Sutton, E.E.; Diestelkamp, W.S.; Bigelow, K.E. Subtle Differences During Posturography Testing Can Influence Postural Sway Results: The Effects of Talking, Time Before Data Acquisition, and Visual Fixation. J. Appl. Biomech. 2015, 31, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Patla, A.E.; Frank, J.S. Assessment of balance control in humans. Med. Prog. Technol. 1990, 16, 31–51. [Google Scholar] [PubMed]
- Masani, K.; Vette, A.H.; Abe, M.O.; Nakazawa, K. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing. Gait Posture 2014, 39, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Saripalle, S.K.; Paiva, G.C.; Cliett, T.C.; Derakhshani, R.R.; King, G.W.; Lovelace, C.T. Classification of body movements based on posturographic data. Hum. Mov. Sci. 2014, 33, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.P.; Politti, F.; Hage, Y.E.; Arruda, E.E.C.; Amorin, C.F.; Biasotto-Gonzalez, D.A. Immediate effect of nonspecific mandibular mobilization on postural control in subjects with temporomandibular disorder: A single-blind, randomized, controlled clinical trial. Braz. J. Phys. Ther. 2013, 17. [Google Scholar] [CrossRef] [Green Version]
- Perinetti, G.; Marsi, L.; Castaldo, A.; Contardo, L. Is postural platform suited to study correlations between the masticatory system and body posture? A study of repeatability and a meta-analysis of reported variations. Prog. Orthod. 2012, 13, 273–280. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M.S.F. Revisão sobre posturografia baseada em plataforma de força para avaliação do equilíbrio Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Correale, L.; Pellino, V.C.; Marin, L.; Febbi, M.; Vandoni, M. Comparison of an Inertial Measurement Unit System and Baropodometric Platform for Measuring Spatiotemporal Parameters and Walking Speed in Healthy Adults. Mot. Control. 2021, 25, 89–99. [Google Scholar] [CrossRef]
- Berdishevsky, H.; Lebel, V.A.; Bettany-Saltikov, J.; Rigo, M.; Lebel, A.; Hennes, A.; Romano, M.; Białek, M.; M’hango, A.; Betts, T.; et al. Physiotherapy scoliosis-specific exercises—A comprehensive review of seven major schools. Scoliosis Spinal Disord. 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcaterra, V.; Vandoni, M.; Debarbieri, G.; Larizza, D.; Albertini, R.; Arpesella, M.; Bernardi, L. Deep breathing improves blunted baroreflex sensitivity in obese children and adolescents with insulin resistance. Int. J. Cardiol. 2013, 168, 1614–1615. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.R. Scoliosis; quo vadis. J. Bone Jt. Surg. Am. 1958, 40, 507–510. [Google Scholar] [CrossRef]
- Risser, J.C.; Brand, R.A. The iliac apophysis: An invaluable sign in the management of scoliosis. In Clinical Orthopaedics and Related Research; Springer: New York, NY, USA, 2010; pp. 646–653. [Google Scholar]
- Lovecchio, N.; Zago, M.; Perucca, L.; Sforza, C. Short-Term Repeatability of Stabilometric Assessments. J. Mot. Behav. 2016, 49, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kuo, F.-C.; Hong, C.-Z.; Lai, C.-L.; Tan, S.-H. Postural Control Strategies Related to Anticipatory Perturbation and Quick Perturbation in Adolescent Idiopathic Scoliosis. Spine 2011, 36, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Pasha, S.; Capraro, A.; Cahill, P.J.; Dormans, J.P.; Flynn, J.M. Bi-planar spinal stereoradiography of adolescent idiopathic scoliosis: Considerations in 3D alignment and functional balance. Eur. Spine J. 2016, 25, 3234–3241. [Google Scholar] [CrossRef]
- Le Huec, J.C.; Thompson, W.; Mohsinaly, Y.; Barrey, C.; Faundez, A. Sagittal balance of the spine. Eur. Spine J. 2019, 28, 1889–1905. [Google Scholar] [CrossRef] [Green Version]
- Vialle, R.; Levassor, N.; Rillardon, L.; Templier, A.; Skalli, W.; Guigui, P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J. Bone Surg. Ser. A 2005, 87, 260–267. [Google Scholar] [CrossRef]
- Herman, R.; Mixon, J.; Fisher, A.; Maulucci, R.; Stuyck, J. Idiopathic scoliosis and the central nervous system: A motor control problem: The harrington lecture, 1983 scoliosis research society. Spine 1985, 10, 1–14. [Google Scholar] [CrossRef]
- Lidström, J.; Friberg, S.; Lindström, L.; Sahlstrand, T. Postural Control in Siblings to Scoliosis Patients and Scoliosis Patients. Spine 1988, 13, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Kubat, O.; Ovadia, D. Frontal and sagittal imbalance in patients with adolescent idiopathic deformity. Ann. Transl. Med. 2020, 8, 29. [Google Scholar] [CrossRef] [PubMed]
Subject | Age (Years) | Weight (kg) | Height (cm) | BMI | Risser | Cobb (Degrees) |
---|---|---|---|---|---|---|
F1 | 14 | 52 | 158 | 20.83 | 3 | 12 |
F2 | 15 | 57 | 165 | 20.94 | 3 | 12 |
F3 | 14 | 55 | 160 | 21.48 | 3 | 13 |
F4 | 14 | 48 | 158 | 19.23 | 5 | 18 |
F5 | 13 | 47 | 145 | 22.35 | 4 | 15 |
F6 | 13 | 47 | 151 | 20.61 | 3 | 12 |
F7 | 13 | 42 | 149 | 18.92 | 3 | 13 |
F8 | 14 | 50 | 155 | 20.81 | 4 | 15 |
F9 | 13 | 53 | 159 | 20.96 | 3 | 13 |
F10 | 15 | 58 | 166 | 21.05 | 5 | 18 |
mean | 13.8 | 50.9 | 156.6 | 20.7 | 3.6 | 14.1 |
SD | 0.8 | 5.0 | 6.7 | 1.0 | 0.8 | 2.2 |
Sway-X (mm) | Sway-Y (mm) | Sway Area (mm2) | Speed Sway (mm/s) | e | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SP | SE | SP | SE | SP | SE | SP | SE | SP | SE | |
Median value | 3.91 | 4.73 | 4.89 | 5.82 | 20.18 | 32.09 | 8.65 | 9.87 | 0.50 | 0.36 |
p-value | 0.99 | 0.68 | 0.69 | 0.62 | 0.37 | |||||
Effect size | −0.01 | −0.16 | −0.16 | −0.20 | 0.34 | |||||
Q1 | 3.38 | 3.06 | 3.85 | 4.73 | 11.53 | 13.55 | 7.13 | 8.17 | 0.30 | 0.16 |
Q3 | 5.91 | 7.51 | 8.13 | 8.2 | 34.77 | 46.76 | 11.62 | 11.62 | 0.74 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, L.; Kawczyński, A.; Carnevale Pellino, V.; Febbi, M.; Silvestri, D.; Pedrotti, L.; Lovecchio, N.; Vandoni, M. Displacement of Centre of Pressure during Rehabilitation Exercise in Adolescent Idiopathic Scoliosis Patients. J. Clin. Med. 2021, 10, 2837. https://doi.org/10.3390/jcm10132837
Marin L, Kawczyński A, Carnevale Pellino V, Febbi M, Silvestri D, Pedrotti L, Lovecchio N, Vandoni M. Displacement of Centre of Pressure during Rehabilitation Exercise in Adolescent Idiopathic Scoliosis Patients. Journal of Clinical Medicine. 2021; 10(13):2837. https://doi.org/10.3390/jcm10132837
Chicago/Turabian StyleMarin, Luca, Adam Kawczyński, Vittoria Carnevale Pellino, Massimiliano Febbi, Dario Silvestri, Luisella Pedrotti, Nicola Lovecchio, and Matteo Vandoni. 2021. "Displacement of Centre of Pressure during Rehabilitation Exercise in Adolescent Idiopathic Scoliosis Patients" Journal of Clinical Medicine 10, no. 13: 2837. https://doi.org/10.3390/jcm10132837
APA StyleMarin, L., Kawczyński, A., Carnevale Pellino, V., Febbi, M., Silvestri, D., Pedrotti, L., Lovecchio, N., & Vandoni, M. (2021). Displacement of Centre of Pressure during Rehabilitation Exercise in Adolescent Idiopathic Scoliosis Patients. Journal of Clinical Medicine, 10(13), 2837. https://doi.org/10.3390/jcm10132837