Comparison of Treatment Outcomes of Selective Laser Trabeculoplasty for Primary Open-Angle Glaucoma and Pseudophakic Primary Angle-Closure Glaucoma Receiving Maximal Medical Therapy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Demographics of the Participants
3.2. IOP Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, A.; Vickerstaff, V.; Nathwani, N.; Garway-Heath, D.; Konstantakopoulou, E.; Ambler, G.; Bunce, C.; Wormald, R.; Barton, K.; Gazzard, G. Laser in ocular hypertension trial study, primary selective laser trabeculoplasty for open-angle glaucoma and ocular hypertension: Clinical outcomes, predictors of success, and safety from the laser in glaucoma and ocular hypertension trial. Ophthalmology 2019, 126, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- Gazzard, G.; Konstantakopoulou, E.; Garway-Heath, D.; Garg, A.; Vickerstaff, V.; Hunter, R.; Ambler, G.; Bunce, C.; Wormald, R.; Nathwani, N. Selective laser trabeculoplasty versus eye drops for first-line treatment of ocular hypertension and glaucoma (LiGHT): A multicentre randomised controlled trial. Lancet 2019, 393, 1505–1516. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Wong, M.O.; Liu, C.C.; Lai, J.S. Optimal selective laser trabeculoplasty energy for maximal intraocular pressure reduction in open-angle glaucoma. J. Glaucoma 2015, 24, e128–e131. [Google Scholar] [CrossRef] [PubMed]
- De Keyser, M.; De Belder, M.; De Belder, J.; De Groot, V. Selective laser trabeculoplasty as replacement therapy in medically controlled glaucoma patients. Acta Ophthalmol. 2018, 96, e577–e581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, A.; Kawashima, R.; Usui, S.; Matsushita, K.; Nishida, K. Treatment outcomes and prognostic factors of selective laser trabeculoplasty for open-angle glaucoma receiving maximal-tolerable medical therapy. J. Glaucoma 2016, 25, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dai, Y.; Chen, Y.; Yu, D.Y.; Cringle, S.J.; Chen, J.; Kong, X.; Wang, X.; Jiang, C. Primary angle closure glaucoma: What we know and what we don’t know. Prog. Retin. Eye Res. 2017, 57, 26–45. [Google Scholar] [CrossRef]
- Peng, P.H.; Nguyen, H.; Lin, H.S.; Nguyen, N.; Lin, S. Long-term outcomes of laser iridotomy in Vietnamese patients with primary angle closure. Br. J. Ophthalmol. 2011, 95, 1207–1211. [Google Scholar] [CrossRef] [PubMed]
- Aljasim, L.A.; Owaidhah, O.; Edward, D.P. Selective laser trabeculoplasty in primary angle-closure glaucoma after laser peripheral iridotomy: A case-control study. J. Glaucoma 2016, 25, e253–e258. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, A.; Leung, C.K.; Istiantoro, D.V.; Perera, S.A.; Ho, C.L.; Nongpiur, M.E.; Baskaran, M.; Htoon, H.M.; Wong, T.T.; Goh, D.; et al. Efficacy of selective laser trabeculoplasty in primary angle-closure glaucoma: A randomized clinical trial. JAMA Ophthalmol. 2015, 133, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, S.; Tigari, B.; Faisal, T.T.; Gautam, N.; Kaushik, S.; Ichhpujani, P.; Pandav, S.S.; Ram, J. Efficacy of selective laser trabeculoplasty in primary angle closure disease. Eye 2018, 32, 1710–1716. [Google Scholar] [CrossRef] [Green Version]
- Trikha, S.; Perera, S.A.; Husain, R.; Aung, T. The role of lens extraction in the current management of primary angle-closure glaucoma. Curr. Opin. Ophthalmol. 2015, 26, 128–234. [Google Scholar] [CrossRef]
- Lai, J.S.; Tham, C.C.; Chan, J.C. The clinical outcomes of cataract extraction by phacoemulsification in eyes with primary angle-closure glaucoma (PACG) and co-existing cataract: A prospective case series. J. Glaucoma 2006, 15, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Azuara-Blanco, A.; Burr, J.; Ramsay, C.; Cooper, D.; Foster, P.J.; Friedman, D.S.; Scotland, G.; Javanbakht, M.; Cochrane, C.; Norrie, J. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): A randomised controlled trial. Lancet 2016, 388, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Tham, C.C.; Kwong, Y.Y.; Leung, D.Y.; Lam, S.W.; Li, F.C.; Chiu, T.Y.; Chan, J.C.; Chan, C.H.; Poon, A.S.; Yick, D.W.; et al. Phacoemulsification versus combined phacotrabeculectomy in medically controlled chronic angle closure glaucoma with cataract. Ophthalmology 2008, 115, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Tham, C.C.; Kwong, Y.Y.; Baig, N.; Leung, D.Y.; Li, F.C.; Lam, D.S. Phacoemulsification versus trabeculectomy in medically uncontrolled chronic angle-closure glaucoma without cataract. Ophthalmology 2013, 120, 62–67. [Google Scholar] [CrossRef]
- Kurysheva, N.I.; Lepeshkina, L.V.; Shatalova, E.O. Predictors of outcome in selective laser trabeculoplasty: A long-term observation study in primary angle-closure glaucoma after laser peripheral iridotomy compared with primary open-angle glaucoma. J. Glaucoma 2018, 27, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Kurysheva, N.I.; Lepeshkina, L.V. Selective laser trabeculoplasty protects glaucoma progression in the initial primary open-angle glaucoma and angle-closure glaucoma after laser peripheral iridotomy in the long term. BioMed Res. Int. 2019, 2019, 4519412. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.G.; Asrani, S.G.; Paula, J.S. Feasibility of laser trabeculoplasty in angle closure glaucoma: A review of favourable histopathological findings in narrow angles. Clin. Exp. Ophthalmol. 2017, 45, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Masis, M.; Chen, R.; Porco, T.; Lin, S.C. Trabecular meshwork height in primary open-angle glaucoma versus primary angle-closure glaucoma. Am. J. Ophthalmol. 2017, 183, 42–47. [Google Scholar] [CrossRef]
- Wong, M.O.; Lee, J.W.; Choy, B.N.; Chan, J.C.; Lai, J.S. Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv. Ophthalmol. 2015, 60, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Chun, M.; Gracitelli, C.P.; Lopes, F.S.; Biteli, L.G.; Ushida, M.; Prata, T.S. Selective laser trabeculoplasty for early glaucoma: Analysis of success predictors and adjusted laser outcomes based on the untreated fellow eye. BMC Ophthalmol. 2016, 16, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Keyser, M.; De Belder, M.; De Groot, V. Selective laser trabeculoplasty in pseudophakic and phakic eyes: A prospective study. Int. J. Ophthalmol. 2017, 10, 593–598. [Google Scholar] [PubMed]
- Kalbag, N.; Patel, S.; Khouri, A.; Berezina, T.; Fechtner, R.; Cohen, A. Selective laser trabeculoplasty in the treatment of glaucoma in phakic versus pseudophakic patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1862. [Google Scholar]
- Seymenoglu, G.; Baser, E.F. Efficacy of selective laser trabeculoplasty in phakic and pseudophakic eyes. J. Glaucoma 2015, 24, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Ganeshrao, S.B.; Senthil, S.; Choudhari, N.; Durgam, S.S.; Garudadri, C.S. Comparison of visual field progression rates among the high tension glaucoma, primary angle closure glaucoma, and normal tension glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 889–900. [Google Scholar] [CrossRef] [Green Version]
POAG | PACG | p-Value a | |
---|---|---|---|
Number of patients | 53 | 23 | |
Age (years) | 51.7 ± 10.9 | 66.3 ± 10.2 | <0.001 |
Male gender | 17 (32.1%) | 14 (60.9%) | 0.024 |
Mean deviation (dB) | −11.3 ± 7.3 | −16.3 ± 7.7 | 0.011 |
IOP (mmHg) | 18.5 ± 3.3 | 16.9 ± 2.5 | 0.026 |
Central corneal thickness (μm) | 565.9 ± 31.1 | 555.6 ± 33.6 | 0.224 |
Circumpapillary retinal nerve fiber layer (μm) | 69.3 ± 12.7 | 65.0 ± 9.6 | 0.129 |
Pseudophakic | 4 (7.5%) | 23 (100%) | <0.001 |
Presence of peripheral anterior synechia | 0 (0%) | 4 (17.4%) | 0.007 |
Indication for SLT | 1.000 | ||
Uncontrolled IOP | 45 (84.9%) | 20(87.0%) | |
Intolerability to Topical medication | 8 (15.1%) | 3 (13.0%) | |
Topical medication | |||
Bottle | 2.1 ± 0.6 | 2.1 ± 0.5 | 0.851 |
Type | 2.8 ± 0.9 | 2.7 ± 0.8 | 0.530 |
A-agonist | 24 (45.3%) | 15 (65.2%) | 0.138 |
β-blocker | 45 (84.9%) | 16 (69.6%) | 0.208 |
Prostaglandin analog | 47 (88.7%) | 20 (87.0%) | 1.000 |
Carbonic anhydrase inhibitor | 34 (64.2%) | 11 (47.8%) | 0.211 |
Before SLT | After SLT | ||||
---|---|---|---|---|---|
Mean ± SD | (%) | Mean ± SD | (%) | p-Value a | |
POAG | |||||
Bottle | 2.1 ± 0.6 | 2.2 ± 0.6 | 0.419 | ||
Type | 2.8 ± 0.9 | 2.9 ± 0.9 | 0.444 | ||
A-agonist | 45.3% | 45.3% | 1.000 | ||
β-blocker | 84.9% | 84.9% | 1.000 | ||
Prostaglandin analog | 88.7% | 90.6% | 1.000 | ||
Carbonic anhydrase inhibitor | 64.2% | 67.9% | 0.727 | ||
PACG | |||||
Bottle | 2.1 ± 0.5 | 2.1 ± 0.6 | 1.000 | ||
Type | 2.7 ± 0.8 | 2.7 ± 1.0 | 0.665 | ||
A-agonist | 65.2% | 69.6% | 0.629 | ||
β-blocker | 69.6% | 73.9% | 1.000 | ||
Prostaglandin analog | 87.0% | 95.7% | 0.500 | ||
Carbonic anhydrase inhibitor | 47.8% | 34.8% | 0.250 |
Group Time-Point | n | IOP (Mean ± SD) | IOP Reduction (Mean ± SD) | IOP Reduction Percentage (%) | p-Value a |
---|---|---|---|---|---|
POAG (all cases) | |||||
Baseline | 53 | 18.5 ± 3.3 | |||
6 months | 48 | 15.6 ± 3.2 | 2.9 ± 3.4 | 15.5% | <0.001 |
12 months | 44 | 16.1 ± 3.5 | 2.7 ± 3.1 | 13.0% | <0.001 |
POAG (high IOP) | |||||
Baseline | 36 | 20.2 ± 2.6 | |||
6 months | 32 | 16.3 ± 3.0 | 3.9 ± 3.2 | 19.1% | <0.001 |
12 months | 31 | 16.7 ± 3.7 | 3.6 ± 3.1 | 16.9% | <0.001 |
POAG (low IOP) | |||||
Baseline | 17 | 15.0 ± 1.1 | |||
6 months | 16 | 14.2 ± 3.2 | 0.8 ± 2.7 | 4.9% | 0.250 |
12 months | 13 | 14.5 ± 2.3 | 0.5 ± 1.6 | 3.2% | 0.261 |
PACG (all cases) | |||||
Baseline | 23 | 16.9 ± 2.5 | |||
6 months | 21 | 14.8 ± 2.7 | 2.1 ± 3.1 | 12.6% | 0.005 |
12 months | 20 | 13.3 ± 2.2 | 3.3 ± 1.9 | 21.5% | <0.001 |
PACG (high IOP) | |||||
Baseline | 14 | 18.5 ± 1.9 | |||
6 months | 12 | 15.4 ± 2.6 | 3.3 ± 2.9 | 16.5% | 0.002 |
12 months | 11 | 14.3 ± 2.1 | 4.1 ± 2.0 | 22.6% | <0.001 |
PACG (low IOP) | |||||
Baseline | 9 | 14.5 ± 1.0 | |||
6 months | 9 | 13.9 ± 2.7 | 0.6 ± 2.7 | 3.1% | 0.545 |
12 months | 9 | 12.0 ± 1.6 | 2.5 ± 1.5 | 13.3% | <0.001 |
Model | 95%CI | |||
---|---|---|---|---|
Subgroup Interaction Term | B | Lower Limit | Upper Limit | p-Value |
(A) | ||||
All patients | ||||
(PACG vs. POAG) and (6th month vs. baseline) | 0.78 | −0.78 | 2.35 | 0.327 |
(PACG vs. POAG) and (12th month vs. baseline) | −0.98 | −2.26 | 0.30 | 0.135 |
1. Baseline IOP ≥ 17 mmHg | ||||
(PACG vs. POAG) and (6th month vs. baseline) | 0.71 | −1.17 | 2.59 | 0.459 |
(PACG vs. POAG) and (12th month vs. baseline) | −0.78 | −2.53 | 0.97 | 0.381 |
2. Baseline IOP < 17 mmHg | ||||
(PACG vs. POAG) and (6th month vs. baseline) | 0.23 | −1.87 | 2.33 | 0.828 |
(PACG vs. POAG) and (12th month vs. baseline) | −1.85 | −3.07 | −0.63 | 0.003 |
3. Visual field defect ≥ 12 dB | ||||
(PACG vs. POAG) and (6th month vs. baseline) | 0.76 | −1.42 | 2.94 | 0.495 |
(PACG vs. POAG) and (12th month vs. baseline) | −1.31 | −3.00 | 0.39 | 0.130 |
4. Visual field defect < 12 dB | ||||
(PACG vs. POAG) and (6th month vs. baseline) | 0.46 | −1.49 | 2.41 | 0.644 |
(PACG vs. POAG) and (12th month vs. baseline) | −0.68 | −2.68 | 1.33 | 0.509 |
(B) | ||||
1. POAG | ||||
(VF: higher vs. lower) and (6th month vs. baseline) | 0.16 | −1.73 | 2.06 | 0.867 |
(VF: higher vs. lower) and (12th month vs. baseline) | 0.54 | −1.21 | 2.29 | 0.545 |
2. PACG | ||||
(VF: higher vs. lower) and (6th month vs. baseline) | 0.41 | −1.91 | 2.73 | 0.730 |
(VF: higher vs. lower) and (12th month vs. baseline) | −0.16 | −1.89 | 1.56 | 0.852 |
3. POAG | ||||
(pre IOP: higher vs. lower) and (6th month vs. baseline) | −3.03 | −4.72 | −1.35 | <0.001 |
(pre IOP: higher vs. lower) and (12th month vs. baseline) | −2.94 | −4.24 | −1.63 | <0.001 |
4. PACG | ||||
(pre IOP: higher vs. lower) and (6th month vs. baseline) | −2.49 | −4.78 | −0.20 | 0.033 |
(pre IOP: higher vs. lower) and (12th month vs. baseline) | −1.71 | −3.32 | −0.10 | 0.038 |
Paper | Design | Number of Eyes | Postoperative Follow-up | Definition of Success | Success Rate | Average IOP Reduction |
---|---|---|---|---|---|---|
Ali Aljasim et al. [8] (2016) | Retrospective case–control study | n = 59 (PAC/PACG), n = 59 (POAG) | PAC/PACG: 6–20 months POAG: 6–17 months | IOP reduction ≧ 20% without further medical or surgical intervention or a reduction in the number of glaucoma medications by ≧1 while maintaining the target IOP | PAC/PACG: 84.7%, POAG: 79.6% p = 0.47 | IOP reduction in patients with uncontrolled IOP: 38% (PAC/PACG) vs. 32.7% (POAG), p = 0.08 |
Narayanaswamy et al. [9] (2015) | Randomized clinical trial | n = 50 (SLT), n = 50 (PGA) | 6 months | Complete success: IOP lower than 21 mmHg without any additional IOP-lowering medications Qualified success: IOP lower than 21 mmHg who required IOP lowering medication | Complete success: 60% (SLT) vs. 84% (PGA), p = 0.008 Qualified success: 18% (SLT) vs. 6% (PGA), p = 0.06 | 16.9% (SLT) vs. 18.5% (PGA) p = 0.52 |
Raj et al. [10] (2018) | Prospective cross-sectional study | n = 34 (23 PAC and 11 PACG) | 1 year | N/A | N/A | 3 month: 19.61% 6 month: 22.43% 1 year: 28.7% |
Kurysheva et al. [16] (2018) | Retrospective case–control study | n = 68 (PACG), n = 74 (POAG) | PACG/PACG: 6.94 ± 1.92 years POAG: 6.34 ± 1.94 years | 20% IOP reduction with topical hypotensive medications without any hypotensive intervention (repeated SLT, antiglaucoma surgery, phacoemulsification of cataracts) | PACG vs. POAG 2 years: 66% vs. 62% 3 years: 62% vs. 54% 4 years: 44% vs. 38% 5 years: 42% vs. 36% 6 years: 6% vs. 4% p = 0.24 | At 6 years, reduction in mean baseline IOP from 23.57 ± 2.30 to 18.77 ± 2.25 (PACG) and from 22.45 ± 1.46 to 18.86 ± 2.09 (POAG) |
Kurysheva et al. [17] (2019) | Prospective longitudinal study | n = 60 (PACG), n = 64 (POAG) | PACG: 6.75 ± 1.83 years POAG: 6.22 ± 1.54 years | 20% IOP reduction with topical hypotensive medications without any hypotensive intervention (repeated SLT, antiglaucoma surgery, and phacoemulsification). | PACG vs. POAG 1 year: 89% vs. 90% 6 year: 34% vs. 36% | N/A a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.-Y.; Wang, J.-Y.; Wang, J.-K.; Huang, T.-L.; Hsu, Y.-R. Comparison of Treatment Outcomes of Selective Laser Trabeculoplasty for Primary Open-Angle Glaucoma and Pseudophakic Primary Angle-Closure Glaucoma Receiving Maximal Medical Therapy. J. Clin. Med. 2021, 10, 2853. https://doi.org/10.3390/jcm10132853
Chang P-Y, Wang J-Y, Wang J-K, Huang T-L, Hsu Y-R. Comparison of Treatment Outcomes of Selective Laser Trabeculoplasty for Primary Open-Angle Glaucoma and Pseudophakic Primary Angle-Closure Glaucoma Receiving Maximal Medical Therapy. Journal of Clinical Medicine. 2021; 10(13):2853. https://doi.org/10.3390/jcm10132853
Chicago/Turabian StyleChang, Pei-Yao, Jiun-Yi Wang, Jia-Kang Wang, Tzu-Lun Huang, and Yung-Ray Hsu. 2021. "Comparison of Treatment Outcomes of Selective Laser Trabeculoplasty for Primary Open-Angle Glaucoma and Pseudophakic Primary Angle-Closure Glaucoma Receiving Maximal Medical Therapy" Journal of Clinical Medicine 10, no. 13: 2853. https://doi.org/10.3390/jcm10132853
APA StyleChang, P. -Y., Wang, J. -Y., Wang, J. -K., Huang, T. -L., & Hsu, Y. -R. (2021). Comparison of Treatment Outcomes of Selective Laser Trabeculoplasty for Primary Open-Angle Glaucoma and Pseudophakic Primary Angle-Closure Glaucoma Receiving Maximal Medical Therapy. Journal of Clinical Medicine, 10(13), 2853. https://doi.org/10.3390/jcm10132853