Outcomes of Kidney Transplant Recipients with Sickle Cell Disease: An Analysis of the 2000–2019 UNOS/OPTN Database
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Data Collection
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics between SCD vs. Non-SCD Recipients in Recent Era
3.2. Post-Transplant Outcomes between SCD vs. Non-SCD Recipients in Recent Era
3.3. Clinical Characteristics and Post-Transplant Outcomes between SCD Recipients in an Early vs. Recent Era
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maigne, G.; Ferlicot, S.; Galacteros, F.; Belenfant, X.; Ulinski, T.; Niaudet, P.; Ronco, P.; Godeau, B.; Durrbach, A.; Sahali, S.; et al. Glomerular lesions in patients with sickle cell disease. Medicine 2010, 89, 18–27. [Google Scholar] [CrossRef]
- Nath, K.A.; Hebbel, R.P. Sickle cell disease: Renal manifestations and mechanisms. Nat. Rev. Nephrol. 2015, 11, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Warady, B.A.; Sullivan, E.K. Renal transplantation in children with sickle cell disease: A report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr. Transplant. 1998, 2, 130–133. [Google Scholar]
- Ataga, K.I.; Zhou, Q.; Derebail, V.K.; Saraf, S.L.; Hankins, J.S.; Loehr, L.R.; Garrett, M.E.; Ashley-Koch, A.E.; Cai, J.; Telen, M.J. Rapid decline in estimated glomerular filtration rate in sickle cell anemia: Results of a multicenter pooled analysis. Haematologica 2020. [Google Scholar] [CrossRef]
- Gosmanova, E.O.; Zaidi, S.; Wan, J.Y.; Adams-Graves, P.E. Prevalence and progression of chronic kidney disease in adult patients with sickle cell disease. J. Investig. Med. 2014, 62, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Powars, D.R.; Elliott-Mills, D.D.; Chan, L.; Niland, J.; Hiti, A.L.; Opas, L.M.; Johnson, C. Chronic renal failure in sickle cell disease: Risk factors, clinical course, and mortality. Ann. Intern. Med. 1991, 115, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Viner, M.; Zhou, J.; Allison, D.; Han, J.; Molokie, R.E.; Jain, S.; Gowhari, M.; Gordeuk, V.R.; Calip, G.; Saraf, S.L. The morbidity and mortality of end stage renal disease in sickle cell disease. Am. J. Hematol. 2019, 94, E138–E141. [Google Scholar] [CrossRef]
- Ojo, A.O.; Govaerts, T.C.; Schmouder, R.L.; Leichtman, A.B.; Leavey, S.F.; Wolfe, R.A.; Held, P.J.; Port, F.K.; Agodoa, L.Y. Renal transplantation in end-stage sickle cell nephropathy. Transplantation 1999, 67, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Johnson, M.; Massie, A.B.; Luo, X.; Haywood, C., Jr.; Lanzkron, S.M.; Grams, M.E.; Segev, D.L.; Purnell, T.S. Mortality and access to kidney transplantation in patients with sickle cell disease-associated kidney failure. Clin. J. Am. Soc. Nephrol. 2021, 16, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.J.; Donaldson, L.A.; McIntosh, M.; Adams, P.L. Relationship between underlying renal disease and renal transplantation outcome. Am. J. Kidney Dis. 2001, 37, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Abbott, K.C.; Hypolite, I.O.; Agodoa, L.Y. Sickle cell nephropathy at end-stage renal disease in the United States: Patient characteristics and survival. Clin. Nephrol. 2002, 58, 9–15. [Google Scholar] [CrossRef]
- Okafor, U.H.; Aneke, E. Outcome and challenges of kidney transplant in patients with sickle cell disease. J. Transplant. 2013, 2013, 614610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, E.; Parke, C.; Mehrnia, A.; Kamgar, M.; Pham, P.T.; Danovitch, G.; Bunnapradist, S. Improved survival among sickle cell kidney transplant recipients in the recent era. Nephrol. Dial. Transplant. 2013, 28, 1039–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, A.C. Induction therapy in renal transplantation: Why? What agent? What dose? We may never know. Clin. J. Am. Soc. Nephrol. 2015, 10, 923–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongprayoon, C.; Hansrivijit, P.; Leeaphorn, N.; Acharya, P.; Torres-Ortiz, A.; Kaewput, W.; Kovvuru, K.; Kanduri, S.R.; Bathini, T.; Cheungpasitporn, W. Recent Advances and Clinical Outcomes of Kidney Transplantation. J. Clin. Med. 2020, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Lentine, K.L.; Tan, J.C.; Kaufmann, M.; Caliskan, Y.; Bunnapradist, S.; Lam, N.N.; Schnitzler, M.; Axelrod, D.A. Immunosuppression Considerations for Older Kidney Transplant Recipients. Curr. Transplant. Rep. 2021, 8, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Lentine, K.L.; Cheungpasitporn, W.; Xiao, H.; McAdams-DeMarco, M.; Lam, N.N.; Segev, D.L.; Bae, S.; Ahn, J.B.; Hess, G.P.; Caliskan, Y.; et al. Immunosuppression Regimen Use and Outcomes in Older and Younger Adult Kidney Transplant Recipients: A National Registry Analysis. Transplantation 2020. [Google Scholar] [CrossRef]
- Arend, S.M.; Mallat, M.J.; Westendorp, R.J.; van der Woude, F.J.; van Es, L.A. Patient survival after renal transplantation; more than 25 years follow-up. Nephrol. Dial. Transplant. 1997, 12, 1672–1679. [Google Scholar] [CrossRef]
- Meier-Kriesche, H.U.; Ojo, A.O.; Port, F.K.; Arndorfer, J.A.; Cibrik, D.M.; Kaplan, B. Survival improvement among patients with end-stage renal disease: Trends over time for transplant recipients and wait-listed patients. J. Am. Soc. Nephrol. 2001, 12, 1293–1296. [Google Scholar] [CrossRef]
- Willis, J.C.; Awogbade, M.; Howard, J.; Breen, C.; Abbas, A.; Harber, M.; Shendi, A.M.; Andrews, P.A.; Galliford, J.; Thuraisingham, R.; et al. Outcomes following kidney transplantation in patients with sickle cell disease: The impact of automated exchange blood transfusion. PLoS ONE 2020, 15, e0236998. [Google Scholar] [CrossRef]
- Sharpe, C.C.; Thein, S.L. How I treat renal complications in sickle cell disease. Blood 2014, 123, 3720–3726. [Google Scholar] [CrossRef] [Green Version]
- Freedman, B.I.; Moxey-Mims, M.M.; Alexander, A.A.; Astor, B.C.; Birdwell, K.A.; Bowden, D.W.; Bowen, G.; Bromberg, J.; Craven, T.E.; Dadhania, D.M.; et al. APOL1 Long-term Kidney Transplantation Outcomes Network (APOLLO): Design and Rationale. Kidney Int. Rep. 2020, 5, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, P.T.; Pham, P.C.; Wilkinson, A.H.; Lew, S.Q. Renal abnormalities in sickle cell disease. Kidney Int. 2000, 57, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Scheinman, J.I. Sickle cell disease and the kidney. Nat. Clin. Pract. Nephrol. 2009, 5, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Miner, D.J.; Jorkasky, D.K.; Perloff, L.J.; Grossman, R.A.; Tomaszewski, J.E. Recurrent sickle cell nephropathy in a transplanted kidney. Am. J. Kidney Dis. 1987, 10, 306–313. [Google Scholar] [CrossRef]
- Wang, Y.; Doshi, M.; Khan, S.; Li, W.; Zhang, P.L. Utility of iron staining in identifying the cause of renal allograft dysfunction in patients with sickle cell disease. Case Rep. Transplant. 2015, 2015, 528792. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, E.J.; Laing, C.M.; Khan, A.U.; Hussain, R.; Standish, R.A.; Buscombe, J.R.; Hilson, A.J.; Harber, M. The case. Allograft dysfunction in a patient with sickle cell disease. Kidney Int. 2008, 74, 1219–1220. [Google Scholar] [CrossRef] [Green Version]
- Nangaku, M. Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 2006, 17, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.B.; da Rosa, A.C. Thrombosis after kidney transplantation. Blood Coagul. Fibrinolysis 2009, 20, 456–457. [Google Scholar] [CrossRef]
- Kim, L.; Garfinkel, M.R.; Chang, A.; Kadambi, P.V.; Meehan, S.M. Intragraft vascular occlusive sickle crisis with early renal allograft loss in occult sickle cell trait. Hum. Pathol. 2011, 42, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Laurin, L.P.; Nachman, P.H.; Desai, P.C.; Ataga, K.I.; Derebail, V.K. Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol. Dial. Transplant. 2014, 29, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, O.; Miller, S.T.; Wang, W.C.; Luo, Z.; McCarville, M.B.; Schwartz, G.J.; Thompson, B.; Howard, T.; Iyer, R.V.; Rana, S.R.; et al. Effect of hydroxyurea treatment on renal function parameters: Results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr. Blood Cancer 2012, 59, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.H.; Barton, F.; Castro, O.; Pegelow, C.H.; Ballas, S.K.; Kutlar, A.; Orringer, E.; Bellevue, R.; Olivieri, N.; Eckman, J.; et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA 2003, 289, 1645–1651. [Google Scholar] [CrossRef]
- Ferrandiz, I.; Congy-Jolivet, N.; Del Bello, A.; Debiol, B.; Trébern-Launay, K.; Esposito, L.; Milongo, D.; Dörr, G.; Rostaing, L.; Kamar, N. Impact of early blood transfusion after kidney transplantation on the incidence of donor-specific Anti-HLA antibodies. Am. J. Transplant. 2016, 16, 2661–2669. [Google Scholar] [CrossRef]
- Jalalonmuhali, M.; Carroll, R.P.; Tsiopelas, E.; Clayton, P.; Coates, P.T. Development of de novo HLA donor specific antibodies (HLA-DSA), HLA antibodies (HLA-Ab) and allograft rejection post blood transfusion in kidney transplant recipients. Hum. Immunol. 2020, 81, 323–329. [Google Scholar] [CrossRef]
- Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Alkindi, S.; Brown, R.C.; et al. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 2019, 381, 509–519. [Google Scholar] [CrossRef]
- Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; et al. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med. 2018, 379, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Saraf, S.L.; Gordeuk, V.R. Systematic review of crizanlizumab: A new parenteral option to reduce vaso-occlusive pain crises in patients with sickle cell disease. Pharmacotherapy 2020, 40, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Saraf, S.L.; Gordeuk, V.R. Systematic review of voxelotor: A first-in-class sickle hemoglobin polymerization inhibitor for management of sickle cell disease. Pharmacotherapy 2020, 40, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.A.; Wahba, M.; Mallik, R.; Peracha, J.; Patel, D.; De, P.; Fogarty, D.; Frankel, A.; Karalliedde, J.; Mark, P.B.; et al. Association of British Clinical Diabetologists and Renal Association guidelines on the detection and management of diabetes post solid organ transplantation. Diabet. Med. 2021, e14523. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: Recommendations and future directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [Green Version]
- 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. 1), S15–S33. [CrossRef]
- Darbari, D.S.; Kple-Faget, P.; Kwagyan, J.; Rana, S.; Gordeuk, V.R.; Castro, O. Circumstances of death in adult sickle cell disease patients. Am. J. Hematol. 2006, 81, 858–863. [Google Scholar] [CrossRef]
- Manci, E.A.; Culberson, D.E.; Yang, Y.M.; Gardner, T.M.; Powell, R.; Haynes, J., Jr.; Shah, A.K.; Mankad, V.N. Causes of death in sickle cell disease: An autopsy study. Br. J. Haematol. 2003, 123, 359–365. [Google Scholar] [CrossRef]
- Ku, E.; McCulloch, C.E.; Adey, D.B.; Li, L.; Johansen, K.L. Racial disparities in eligibility for preemptive waitlisting for kidney transplantation and modification of eGFR thresholds to equalize waitlist time. J. Am. Soc. Nephrol. 2021, 32, 677–685. [Google Scholar] [CrossRef]
- Fox, M. Barriers to kidney transplantation in racial/ethnic minorities. Clin. J. Am. Soc. Nephrol. 2021, 16, 177–178. [Google Scholar] [CrossRef]
- Wang, J.Y.; Lederer, S.E.; Ross, L.F. African-Americans with end stage renal disease in the early years of kidney transplantation. J. Natl. Med. Assoc. 2019, 111, 352–362. [Google Scholar] [CrossRef]
- Weinhandl, E.; Snyder, J.; Israni, A.; Kasiske, B. Effect of comorbidity adjustment on CMS criteria for kidney transplant center performance. Am. J. Transplant. 2009, 9, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Saraf, S.L.; Ghimire, K.; Patel, P.; Sweiss, K.; Gowhari, M.; Molokie, R.E.; Gordeuk, V.R.; Rondelli, D. Improved health care utilization and costs in transplanted versus non-transplanted adults with sickle cell disease. PLoS ONE 2020, 15, e0229710. [Google Scholar] [CrossRef] [Green Version]
- Knüppel, E.; Medinger, M.; Stehle, G.; Infanti, L.; Halter, J.; Burkhalter, F.; Mujagic, E.; Heim, D.; Passweg, J. Haploidentical hematopoietic bone marrow transplantation followed by living kidney transplantation from the same donor in a sickle cell disease patient with end-stage renal failure. Ann. Hematol. 2017, 96, 703–705. [Google Scholar] [CrossRef]
- Bunin, N.; Guzikowski, V.; Rand, E.R.; Goldfarb, S.; Baluarte, J.; Meyers, K.; Olthoff, K.M. Solid organ transplants following hematopoietic stem cell transplant in children. Pediatr. Transplant. 2010, 14, 1030–1035. [Google Scholar] [CrossRef]
- Horwitz, M.E.; Spasojevic, I.; Morris, A.; Telen, M.; Essell, J.; Gasparetto, C.; Sullivan, K.; Long, G.; Chute, J.; Chao, N.; et al. Fludarabine-based nonmyeloablative stem cell transplantation for sickle cell disease with and without renal failure: Clinical outcome and pharmacokinetics. Biol. Blood Marrow Transplant. 2007, 13, 1422–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Besien, K.; Bartholomew, A.; Stock, W.; Peace, D.; Devine, S.; Sher, D.; Sosman, J.; Chen, Y.H.; Koshy, M.; Hoffman, R. Fludarabine-based conditioning for allogeneic transplantation in adults with sickle cell disease. Bone Marrow Transplant. 2000, 26, 445–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, J. Promising strategies for sickle cell disease and β-Thalassemia. JAMA 2021, 325, 121. [Google Scholar] [PubMed]
Characteristics | Sickle Cell Disease (n = 105) | Non-Sickle Cell Disease (n = 146,325) | p-Value |
---|---|---|---|
Recipient age (year), median (25th, 75th) | 41 (33, 51) | 53 (41, 63) | <0.001 |
Male, % | 47.6 | 61.0 | 0.005 |
African American, % | 93.3 | 26.9 | <0.001 |
Recipient BMI (kg/m2), median (25th, 75th) | 22.7 (20.4, 27.1) | 27.9 (24.0, 32.1) | <0.001 |
Living-donor kidney transplants, % | 28.6 | 34.1 | 0.24 |
Dialysis duration (%) | |||
Preemptive <1 years 1–3 years >3 years Missing | 7.6 13.3 20.0 57.1 1.9 | 19.2 14.2 23.6 42.1 0.9 | 0.003 0.80 0.39 0.002 0.28 |
Diabetes, % | 1.0 | 33.4 | <0.001 |
PRA (%) | |||
<20 20–70 >70 Missing | 62.9 18.1 15.2 3.8 | 76.7 12.4 9.3 1.6 | 0.001 0.08 0.035 0.07 |
ABO incompatible | 1.0 | 1.2 | 0.84 |
HLA mismatches, median (25th, 75th) | 4 (3, 5) | 4 (3, 5) | 0.44 |
Donor age (year), median (25th, 75th) | 30 (24, 45) | 41 (28, 52) | <0.001 |
Donor race, % | |||
White Black Hispanic Others | 54.3 28.6 14.3 2.9 | 68.4 12.6 14.2 4.8 | 0.002 <0.001 0.98 0.35 |
KDPI, median (25th, 75th) | 39 (11, 60) | 44 (23, 67) | 0.008 |
Induction therapy, % | |||
Thymoglobulin Alemtuzumab Basiliximab Other induction No induction | 66.7 8.6 24.8 3.8 8.6 | 52.7 15.8 23.5 1.9 9.6 | 0.004 0.04 0.76 0.15 0.72 |
Maintenance therapy, % | |||
Tacrolimus Cyclosporine Mycophenolate Azathioprine mTOR inhibitors Steroids | 90.5 1.9 94.3 0 0 70.5 | 91.6 2.0 92.9 0.4 1.1 65.8 | 0.68 0.96 0.57 0.50 0.29 0.31 |
(A) Death-Censored Graft Failure | ||||
---|---|---|---|---|
Univariate Model | Multivariate Model * | |||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Recent era (2010–2019) | ||||
Sickle cell versus non-sickle cell | 2.92 (1.92–4.44) | <0.001 | 1.98 (1.30–3.01) | 0.001 |
Sickle cell versus diabetes | 2.84 (1.87–4.32) | <0.001 | 2.32 (1.52–3.56) | <0.001 |
Sickle cell versus hypertension | 2.53 (1.66–3.84) | <0.001 | 1.91 (1.25–2.92) | 0.003 |
Sickle cell versus glomerular disease | 2.80 (1.84–4.25) | <0.001 | 1.91 (1.25–2.92) | 0.003 |
Sickle cell between 2000–2009 and 2010–2019 | 0.90 (0.54–1.50) | 0.68 | 0.99 (0.57–1.73) | 0.98 |
(B) Mortality | ||||
Univariate Model | Multivariate Model * | |||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Recent era (2010–2019) | ||||
Sickle cell versus others | 1.67 (1.03–2.73) | 0.039 | 2.87 (1.75–4.68) | <0.001 |
Sickle cell versus diabetes | 0.95 (0.58–1.54) | 0.82 | 1.96 (1.20–3.22) | 0.007 |
Sickle cell versus hypertension | 1.61 (0.99–2.64) | 0.056 | 3.08 (1.88–5.04) | <0.001 |
Sickle cell versus glomerular disease | 3.18 (1.95–5.21) | <0.001 | 3.41 (2.07–5.61) | <0.001 |
Sickle cell between 2000–2009 and 2010–2019 | 0.89 (0.50–1.59) | 0.70 | 0.93 (0.50–1.74) | 0.82 |
Characteristics | Sickle Cell Disease in 2010–2019 (n = 105) | Sickle Cell Disease in 2000–2009 (n = 128) | p-Value |
---|---|---|---|
Recipient age (year), median (25th, 75th) | 41 (33, 51) | 35 (29, 45) | <0.001 |
male, % | 47.6 | 58.6 | 0.10 |
African American, % | 93.3 | 91.4 | 0.58 |
Recipient BMI (kg/m2), median (25th, 75th) | 22.7 (20.4, 27.1) | 20.5 (18.1, 23.7) | <0.001 |
Living-donor kidney transplants, % | 28.6 | 34.4 | 0.34 |
Dialysis duration (%) | |||
Preemptive <1 years 1–3 years >3 years Missing | 7.6 13.3 20.0 57.1 1.9 | 7.8 18.0 25.8 38.3 10.2 | 0.96 0.34 0.30 0.004 0.01 |
Diabetes, % | 1.0 | 1.6 | 0.68 |
PRA (%) | |||
<20 20–70 >70 Missing | 62.9 18.1 15.2 3.8 | 57.8 15.6 11.7 14.8 | 0.43 0.62 0.43 0.005 |
ABO incompatible | 1.0 | 0 | 0.27 |
HLA mismatches, median (25th, 75th) | 4 (3, 5) | 4 (3, 5) | 0.33 |
Donor age (year), median (25th, 75th) | 30 (24, 45) | 39 (27, 47) | 0.03 |
Donor race, % | |||
White Black Hispanic Others | 54.3 28.6 14.3 2.9 | 46.9 37.5 12.5 3.1 | 0.26 0.15 0.69 0.90 |
KDPI, median (25th, 75th) | 39 (11, 60) | 46 (30, 66) | 0.02 |
Induction therapy, % | |||
Thymoglobulin Alemtuzumab Basiliximab Other induction No induction | 66.7 8.6 24.8 3.8 8.6 | 37.5 5.5 19.5 10.2 29.7 | <0.001 0.35 0.34 0.06 <0.001 |
Maintenance therapy, % | |||
Tacrolimus Cyclosporine Mycophenolate Azathioprine mTOR inhibitors Steroids | 90.5 1.9 94.3 0 0 70.5 | 71.1 22.7 81.3 3.9 14.1 82.0 | <0.001 <0.001 0.003 0.04 <0.001 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leeaphorn, N.; Thongprayoon, C.; Vaitla, P.; Hansrivijit, P.; Jadlowiec, C.C.; Mao, S.A.; Chewcharat, A.; Katari, S.; Pattharanitima, P.; Boonpheng, B.; et al. Outcomes of Kidney Transplant Recipients with Sickle Cell Disease: An Analysis of the 2000–2019 UNOS/OPTN Database. J. Clin. Med. 2021, 10, 3063. https://doi.org/10.3390/jcm10143063
Leeaphorn N, Thongprayoon C, Vaitla P, Hansrivijit P, Jadlowiec CC, Mao SA, Chewcharat A, Katari S, Pattharanitima P, Boonpheng B, et al. Outcomes of Kidney Transplant Recipients with Sickle Cell Disease: An Analysis of the 2000–2019 UNOS/OPTN Database. Journal of Clinical Medicine. 2021; 10(14):3063. https://doi.org/10.3390/jcm10143063
Chicago/Turabian StyleLeeaphorn, Napat, Charat Thongprayoon, Pradeep Vaitla, Panupong Hansrivijit, Caroline C. Jadlowiec, Shennen A. Mao, Api Chewcharat, Sreelatha Katari, Pattharawin Pattharanitima, Boonphiphop Boonpheng, and et al. 2021. "Outcomes of Kidney Transplant Recipients with Sickle Cell Disease: An Analysis of the 2000–2019 UNOS/OPTN Database" Journal of Clinical Medicine 10, no. 14: 3063. https://doi.org/10.3390/jcm10143063
APA StyleLeeaphorn, N., Thongprayoon, C., Vaitla, P., Hansrivijit, P., Jadlowiec, C. C., Mao, S. A., Chewcharat, A., Katari, S., Pattharanitima, P., Boonpheng, B., Kaewput, W., Mao, M. A., Cooper, M., & Cheungpasitporn, W. (2021). Outcomes of Kidney Transplant Recipients with Sickle Cell Disease: An Analysis of the 2000–2019 UNOS/OPTN Database. Journal of Clinical Medicine, 10(14), 3063. https://doi.org/10.3390/jcm10143063