Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome
Abstract
:1. Introduction
2. Aim of the Study
3. Material and Methods
4. Statistical Analysis
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lipska-Ziętkiewicz, B.S.; Ozaltin, F.; Hölttä, T.; Bockenhauer, D.; Bérody, S.; Levtchenko, E.; Vivarelli, M.; Webb, H.; Haffner, D.; Schaefer, F.; et al. Genetic aspects of congenital nephrotic syndrome: A consensus statement from the ERKNet-ESPN inherited glomerulopathy working group. Eur. J. Hum. Genet. 2020, 28, 1368–1378. [Google Scholar] [CrossRef]
- Giliberti, M.; Mitrotti, A.; Gesualdo, L. Podocytes: The Role of Lysosomes in the Development of Nephrotic Syndrome. Am. J. Pathol. 2020, 190, 1172–1174. [Google Scholar] [CrossRef]
- Shima, Y.; Nakanishi, K.; Sato, M.; Hama, T.; Mukaiyama, H.; Togawa, H.; Tanaka, R.; Nozu, K.; Sako, M.; Iijima, K.; et al. IgA nephropathy with presentation of nephrotic syndrome at onset in children. Pediatr. Nephrol. 2016, 32, 457–465. [Google Scholar] [CrossRef]
- Peruzzi, L.; Coppo, R. IgA vasculitis nephritis in children and adults: One or different entities? Pediatr. Nephrol. 2020, 20. [Google Scholar] [CrossRef]
- Pinheiro, S.V.B.; Dias, R.; Fabiano, R.C.G.; Araujo, S.D.A.; e Silva, A.C.S. Pediatric lupus nephritis. Braz. J. Nephrol. 2019, 41, 252–265. [Google Scholar] [CrossRef] [Green Version]
- Nephrotic syndrome in children: Prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Available online: https://pubmed.ncbi.nlm.nih.gov/713276/ (accessed on 30 May 2021).
- KDIGO Clinical Practice Guideline for Glomerulonephritis. Available online: https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2012-GN-Guideline-English.pdf (accessed on 30 May 2021).
- Lombel, R.M.; Gipson, D.; Hodson, E.M. Treatment of steroid-sensitive nephrotic syndrome: New guidelines from KDIGO. Pediatr. Nephrol. 2013, 28, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, A.C.Q.; Oliveira, E.A.; Fróes, B.P.; Faria, L.D.C.; Pinto, J.S.; Nogueira, M.M.I.; Lima, G.O.; Resende, P.I.; Assis, N.S.; e Silva, A.C.S.; et al. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2015, 30, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiao, X.-H.; Mao, J.-H. Immunopathogenesis of idiopathic nephrotic syndrome in children: Two sides of the coin. World J. Pediatr. 2021, 17, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Shalhoub, R. PATHOGENESIS OF LIPOID NEPHROSIS: A DISORDER OF T-CELL FUNCTION. Lancet 1974, 304, 556–560. [Google Scholar] [CrossRef]
- Garin, E.H.; West, L.; Zheng, W. Effect of interleukin-8 on glomerular sulfated compounds and albuminuria. Pediatr. Nephrol. 1997, 11, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Souto, M.F.O.; Teixeira, A.L.; Russo, R.C.; Penido, M.-G.M.G.; Silveira, K.D.; Teixeira, M.M.; e Silva, A.C.S. Immune Mediators in Idiopathic Nephrotic Syndrome: Evidence for a Relation Between Interleukin 8 and Proteinuria. Pediatr. Res. 2008, 64, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, K.-W.; Wei, C.-L.; Tan, L.-K.; Tan, P.-H.; Chiang, G.S.; Lee, C.; Jordan, S.C.; Yap, H.K. Overexpression of Interleukin-13 Induces Minimal-Change–Like Nephropathy in Rats. J. Am. Soc. Nephrol. 2007, 18, 1476–1485. [Google Scholar] [CrossRef] [Green Version]
- Reiser, J.; Mundel, P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J. Am. Soc. Nephrol. 2004, 15, 2246–2248. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Araya, C.; Rivard, C.; Ishimoto, T.; Johnson, R.J.; Garin, E.H. Minimal change disease: A “two-hit” podocyte immune disorder? Pediatr. Nephrol. 2011, 26, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Cara-Fuentes, G.; Wasserfall, C.H.; Wang, H.; Johnson, R.J.; Garin, E.H. Minimal change disease: A dysregulation of the podocyte CD80–CTLA-4 axis? Pediatr. Nephrol. 2014, 29, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Park, S.J.; Ha, T.S.; Shin, J.I. Effect of rituximab in MCNS: A role for IL-13 suppression? Nat. Rev. Nephrol. 2013, 9, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davin, J.-C. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2015, 31, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Trachtman, H.; Li, J.; Dong, C.; Friedman, A.L.; Gassman, J.J.; McMahan, J.L.; Radeva, M.; Heil, K.M.; Trautmann, A.; et al. PodoNet and FSGS CT Study Consortia. Circulating suPAR in Two Cohorts of Primary FSGS. J. Am. Soc. Nephrol. 2012, 23, 2051–2059. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zheng, C.; Zhong, Y.; Zeng, C.; Xu, F.; Yin, R.; Jiang, Q.; Zhou, M.; Liu, Z.-H. Relationship between Serum Soluble Urokinase Plasminogen Activator Receptor Level and Steroid Responsiveness in FSGS. Clin. J. Am. Soc. Nephrol. 2014, 9, 1903–1911. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Nangaku, M. A circulating permeability factor in focal segmental glomerulosclerosis: The hunt continues. Clin. Kidney J. 2015, 8, 708–715. [Google Scholar] [CrossRef]
- Cara-Fuentes, G.; Wei, C.; Segarra, A.; Ishimoto, T.; Rivard, C.; Johnson, R.J.; Reiser, J.; Garin, E.H. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: Diagnostic and pathogenic significance. Pediatr. Nephrol. 2014, 29, 1363–1371. [Google Scholar] [CrossRef] [Green Version]
- Muller-Eberhard, U. Hemopexin. Methods Enzymol. 1998, 163, 536–568. [Google Scholar] [CrossRef] [PubMed]
- Naylor, S.L.; Altruda, F.; Marshall, A.; Silengo, L.; Bowman, B.H. Hemopexin is localized to human chromosome 11. Somat. Cell Mol. Genet. 1987, 13, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Altruda, F.; Poli, V.; Restagno, G.; Silengo, L. Structure of the human hemopexin gene and evidence for intron-mediated evolution. J. Mol. Evol. 1988, 27, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Takahasi, N.; Takahashi, Y.; Putnam, F.W. Complete aminoacid sequence of human hemopexin, the heme-binding protein of serum. Proc. Natl. Acid. Sci. USA 1985, 82, 73–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A. Role of Redox-Reactive Metals in the Regulation of Metallothionein and Hemeoxygenase Genes by Heme and Hemopexin. In Iron Metabolism; Ferreira, G.C., Moura, J.J.G., Franco, R., Eds.; Wiley-VCH: Weinheim, Germany, 1999; pp. 65–92. [Google Scholar]
- Delanghe, J.R.; Langlois, M.R. Hemopexin: A review of biological aspects and the role in laboratory medicine. Clin. Chim. Acta 2001, 312, 13–23. [Google Scholar] [CrossRef]
- Bernard, A.; Amor, A.O.; Goemare-Vanneste, J.; Antoine, J.-L.; Lauwerys, R.; Colin, I.; Vandeleene, B.; Lambert, A. Urinary proteins and red blood cell membrane negative charges in diabetes mellitus. Clin. Chim. Acta 1990, 190, 249–262. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lu, Y.-C.; Chen, Y.-W.; Lee, W.-L.; Lu, C.-H.; Chen, Y.-H.; Lee, Y.-C.; Lin, S.-T.; Timms, J.; Lee, Y.-R.; et al. Hemopexin is up-regulated in plasma from type 1 diabetes mellitus patients: Role of glucose-induced ROS. J. Proteom. 2012, 75, 3760–3777. [Google Scholar] [CrossRef]
- Maes, M.; Delange, J.; Ranjan, R.; Meltzer, H.Y.; Desnyder, R.; Cooremans, W.; Scharpé, S. Acute phase proteins in schizophrenia, mania and major depression: Modulation by psychotropic drugs. Psychiatry Res. 1997, 66, 1–11. [Google Scholar] [CrossRef]
- Manuel, Y.; Defontaine, M.; Bourgoin, J.; Dargent, M.; Sonneck, J. Serum haemopexin levels in patients with malignant melanoma. Clin. Chim. Acta 1971, 31, 485–486. [Google Scholar] [CrossRef]
- Percy, M.E.; Pichora, G.A.; Chang, L.S.; Manchester, K.E.; Andrews, D.F.; Opitz, J.M. Serum myoglobin in Duchenne muscular dystrophy carrier detection: A comparison with creatine kinase and hemopexin using logistic discrimination. Am. J. Med. Genet. 1984, 18, 279–287. [Google Scholar] [CrossRef]
- International Study of Kidney Disease in Children. Primary nephrotic syndrome in children: Clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int. 1981, 20, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New Equations to Estimate GFR in Children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, P.K.; Boes, A.; Dijkhuis, F.W.J.; Klok, P.A.; Bakker, W.W. Enhanced glomerular permeability andminimal change disease like alterations of the rat kidney indced by a vasoactive human plasma factor. Kidney Int. 1995, 47, 1218. [Google Scholar]
- Cheung, P.K.; Klok, P.A.; Bakker, W.W. Induction of experimental proteinuria in vivo following infusion of a human stain factor associated with minimal change disease. Kidney Int. 1997, 52, 562. [Google Scholar]
- Cheung, P.K.; Klok, P.A.; Bakker, W.W. Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 1996, 74, 586–593. [Google Scholar] [CrossRef]
- Cheung, P.K.; Stulp, B.; Immenschuh, S.; Borghuis, T.; Baller, J.F.W.; Bakker, W.W. Is 100KF an Isoform of Hemopexin? Immunochemical Characterization of the Vasoactive Plasma Factor 100KF. J. Am. Soc. Nephrol. 1999, 10, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Bakker, W.W.; Borghuis, T.; Harmsen, M.; Berg, A.V.D.; Kema, I.P.; Niezen, K.E.; Kapojos, J.J. Protease activity of plasma hemopexin. Kidney Int. 2005, 68, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Lennon, R.; Singh, A.; Welsh, G.I.; Coward, R.; Satchell, S.; Ni, L.; Mathieson, P.W.; Bakker, W.W.; Saleem, M.A. Hemopexin Induces Nephrin-Dependent Reorganization of the Actin Cytoskeleton in Podocytes. J. Am. Soc. Nephrol. 2008, 19, 2140–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, W.W.; Van Dael, C.M.L.; Pierik, L.J.W.M.; Van Wijk, J.A.E.; Nauta, J.; Borghuis, T.; Kapojos, J.J. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr. Nephrol. 2005, 20, 1410–1415. [Google Scholar] [CrossRef]
- Thomas, L. Haptoglobin/Hemopexin. In Clinical Laboratory Diagnostics; Thomas, L., Ed.; TH-Books: Frankfurt/Main, Germany, 1998; pp. 663–667. [Google Scholar]
- Kanakoudi, F.; Drossou, V.; Tzimouli, V.; Diamanti, E.; Konstantinidis, T.; Germenis, A.; Kremenopoulos, G. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin. Chem. 1995, 41, 605–608. [Google Scholar] [CrossRef]
- Weeke, B.; Krasilnikoff, P.A. The concentration of 21 serum proteins in normal children and adults. Acta Med. Scand. 2009, 192, 149–155. [Google Scholar] [CrossRef]
- Tolosano, E.; Altruda, F. Hemopexin: Structure, Function, and Regulation. DNA Cell Biol. 2002, 21, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, J.; Beldi-Ferchiou, A.; Audureau, E.; Azzaoui, I.; Molinier-Frenkel, V.; Frontera, V.; Karras, A.; Moktefi, A.; Pillebout, E.; Zaidan, M.; et al. Circulating plasmablasts and high level of BAFF are hallmarks of minimal change nephrotic syndrome in adults. Nephrol. Dial. Transplant. 2021, 36, 609–617. [Google Scholar] [CrossRef]
- Nickavar, A.; Valavi, E.; Safaeian, B.; Amoori, P.; Moosavian, M. Predictive Value of Serum Interleukins in Children with Idiopathic Nephrotic Syndrome. Iran. J. Allergy Asthma Immunol. 2020, 19, 632–639. [Google Scholar] [CrossRef]
- Kapojos, J.J.; Berg, A.V.D.; van Goor, H.; Loo, M.W.T.; Poelstra, K.; Borghuis, T.; Bakker, W.W. Production of hemopexin by TNF-α stimulated human mesangial cells. Kidney Int. 2003, 63, 1681–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krikken, J.A.; Van Ree, R.M.; Klooster, A.; Seelen, M.A.; Borghuis, T.; Lems, S.P.M.; Schouten, J.P.; Bakker, W.W.; Gans, R.; Navis, G.; et al. High plasma hemopexin activity is an independent risk factor for late graft failure in renal transplant recipients. Transpl. Int. 2010, 23, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Pukajło-Marczyk, A.; Zwolińska, D. The role of IL-13 in the pathogenesis of idiopathic nephrotic syndrome (INS) in children. Fam. Med. Prim. Care Rev. 2016, 2, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Lin, T.; Sun, G.; Beasley-Topliffe, L.; Cavaillon, J.-M.; Warren, H.S. Hemopexin down-regulates LPS-induced proinflammatory cytokines from macrophages. J. Leukoc. Biol. 2009, 86, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Kwak, Y.H.; Sammy, F.; He, P.; Thundivalappil, S.; Sun, G.; Chao, W.; Warren, H.S. Synergistic Inflammation Is Induced by Blood Degradation Products with Microbial Toll-Like Receptor Agonists and Is Blocked by Hemopexin. J. Infect. Dis. 2010, 202, 624–632. [Google Scholar] [CrossRef] [Green Version]
Parameter Group | Serum Albumin [g/dL] | Total Cholesterol [mg/dL] | Protein/Creatinine Ratio [g Protein/g Creatinine] | CRP [mg/L] |
---|---|---|---|---|
Total INS N = 51 | 1.90 (1.05–2.55) | 363.0 (268.0–475.0) | 6.2 (3.0–10.6) | 2.90 (0.80–3.60) |
Group IA N = 20 | 1.70 (1.40–2.20) | 372.0 (297.0–464.0) | 4.85 (2.40–7.90) | 1.75 (0.40–3.60) |
Group IB N = 31 | 2.40 (1.00–3.10) | 329.5 (238.0–601.0) | 7.0 (3.9–10.7) | 3.10 (1.65–3.69) |
Group IIA N = 26 | 1.90 (1.10–2.50) | 366.5 (286.5–442.5) | 4.71 (2.5–7.76) a | 3.30 (1.40–3.60) |
Group IIB N = 22 | 2.0 (1.00–2.50) | 329.5 (264.0–636.0) | 9.6 (6.2–19.2) | 2.56 (1.60–4.20) |
Group Parameter | Relapse | Remission | Control |
---|---|---|---|
sHpx [ng/mL] | 107.6 (97.2–114.0) a,b | 51.2 (46.4–55.6) a | 32.2 (30.8–33.6) |
uHpx [ng/mL] | 62.8 (55.3–128.0) a,b | 27.5 (22.9–31.1) a | 15.8 (14.4–17.5) |
Group Parameter | IA Relapse N = 20 | IB Relapse N = 31 | IA Remission N = 9 | IB Remission N = 26 |
---|---|---|---|---|
sHpx [ng/mL] | 108.8 (104.0–115.8) | 105.2 (96.0–114.0) | 46.4 (42.0–58.0) | 51.2 (49.2–53.6) |
uHpx [ng/mL] | 61.8 (57.1–148.0) | 71.4 (55.2–121.4) | 24.2 (21.7–26.0) a | 28.2 (24.8–33.2) |
Group Parameter | IIA Relapse N = 26 | IIB Relapse N = 22 | IIA Remission N = 17 | IIB Remission N = 17 |
---|---|---|---|---|
sHpx [ng/mL] | 108.2 (97.2–123.6) | 103.4 (95.6–108.8) | 51.2 (42.0–55.6) | 51.2 (49.2–53.6) |
uHpx [ng/mL] | 103.0 (57.2–158.0) a | 61.1 (55.2–81.4) | 24.8 (22.1–27.5) b | 31.1 (27.5–35.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pukajło-Marczyk, A.; Zwolińska, D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. J. Clin. Med. 2021, 10, 3160. https://doi.org/10.3390/jcm10143160
Pukajło-Marczyk A, Zwolińska D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. Journal of Clinical Medicine. 2021; 10(14):3160. https://doi.org/10.3390/jcm10143160
Chicago/Turabian StylePukajło-Marczyk, Agnieszka, and Danuta Zwolińska. 2021. "Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome" Journal of Clinical Medicine 10, no. 14: 3160. https://doi.org/10.3390/jcm10143160
APA StylePukajło-Marczyk, A., & Zwolińska, D. (2021). Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. Journal of Clinical Medicine, 10(14), 3160. https://doi.org/10.3390/jcm10143160