An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of Tympanic Membrane Images
2.2. Data Preprocessing and Augmentation
2.3. Tympanic Membrane Diagnosis by Image Classification
2.4. Efficient Attention via the Space to Depth Approach
2.5. Network Performance and Validation
2.6. Visual Verification via Grad-CAM
2.7. Assistive Role for Otitis Media Diagnosis
2.8. Ethical Issues
3. Results
3.1. Tympanic Membrane Images
3.2. Selection of Best Performance Algorithm
3.3. Network Verification with k-Fold Cross Validation
3.4. Regions of Interest for Tympanic Membrane Diagnosis
3.5. Performance of the Machine Learning Model for the Representative Data Set
3.6. Assistive Role of the Machine Learning Model for Determining Tympanic Membrane Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, D.D.; Brown, E.W. Artificial Intelligence in Medical Practice: The Question to the Answer? Am. J. Med. 2018, 131, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, G.; Vakalopoulou, M.; Paragios, N.; Revel, M.P. Artificial intelligence applications for thoracic imaging. Eur. J. Radiol. 2020, 123, 108774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, Y.; Lee, K.; Sunwoo, L.; Choi, D.; Oh, D.Y.; Lee, K.J.; Kim, Y.; Kim, J.W.; Cho, S.J.; Baik, S.H.; et al. Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs. Diagnostics 2021, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, S.; Zhou, Z.; Liu, J.; Jiang, X.; Chen, X. Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. Is Artificial Intelligence Better Than Human Clinicians in Predicting Patient Outcomes? J. Med. Internet Res. 2020, 22, e19918. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Park, H.Y.; Kho, B.G.; Park, C.K.; Oh, I.J.; Kim, Y.C.; Kim, S.; Yun, J.S.; Song, S.Y.; Na, K.J.; et al. Artificial intelligence and lung cancer treatment decision: Agreement with recommendation of multidisciplinary tumor board. Transl. Lung Cancer Res. 2020, 9, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Guys, N.; Ramsey, T.; Kandinov, A.; Svider, P.F.; Jyung, R.W.; Hong, R.; Sheyn, A. Interplay between Socioeconomic Status and Otitis Media Disease Burden in Resource-rich and Resource-Poor Nations. Otol. Neurotol. 2018, 39, e817–e824. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.; Pae, C.; Seong, S.B.; Choi, J.Y.; Park, H.J. Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine 2019, 45, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, A.R.; Wong, E.; Sacks, R.; Singh, N. Artificial intelligence to detect tympanic membrane perforations. J. Laryngol. Otol. 2020, 134, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kwon, S.; Choo, J.; Hong, S.M.; Kang, S.H.; Park, I.H.; Kim, S.K.; Hong, S.J. Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks. Neural Netw. 2020, 126, 384–394. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.-S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vision 2019, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Schilder, A.G.; Chonmaitree, T.; Cripps, A.W.; Rosenfeld, R.M.; Casselbrant, M.L.; Haggard, M.P.; Venekamp, R.P. Otitis media. Nat. Rev. Dis. Primers 2016, 2, 16063. [Google Scholar] [CrossRef] [PubMed]
- Monasta, L.; Ronfani, L.; Marchetti, F.; Montico, M.; Vecchi Brumatti, L.; Bavcar, A.; Grasso, D.; Barbiero, C.; Tamburlini, G. Burden of disease caused by otitis media: Systematic review and global estimates. PLoS ONE 2012, 7, e36226. [Google Scholar] [CrossRef] [PubMed]
- Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Viscaino, M.; Maass, J.C.; Delano, P.H.; Torrente, M.; Stott, C.; Auat Cheein, F. Computer-aided diagnosis of external and middle ear conditions: A machine learning approach. PLoS ONE 2020, 15, e0229226. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, Z.; Li, L.; Pan, H.; Chen, G.; Fu, Y.; Qiu, Q. Deep Learning for Classification of Pediatric Otitis Media. Laryngoscope 2020. [Google Scholar] [CrossRef]
- Crowson, M.G.; Hartnick, C.J.; Diercks, G.R.; Gallagher, T.Q.; Fracchia, M.S.; Setlur, J.; Cohen, M.S. Machine Learning for Accurate Intraoperative Pediatric Middle Ear Effusion Diagnosis. Pediatrics 2021. [Google Scholar] [CrossRef]
ResNet18 + Shuffle | ResNet 18 | ResNet18 + CBAM | ResNet50 | ResNet50 + CBAM | |
---|---|---|---|---|---|
Accuracy | 97.183 | 94.366 | 92.958 | 94.366 | 91.549 |
Parameters | 13 M | 11 M | 11 M | 23 M | 26 M |
K-Fold | K-1 | K-2 | K-3 | K-4 | K-5 | Average |
---|---|---|---|---|---|---|
Number | 473 | 473 | 473 | 473 | 473 | |
Validation (accuracy, %) | 93.446 | 93.446 | 92.389 | 93.658 | 95.56 | 93.69 ± 1.152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byun, H.; Yu, S.; Oh, J.; Bae, J.; Yoon, M.S.; Lee, S.H.; Chung, J.H.; Kim, T.H. An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. J. Clin. Med. 2021, 10, 3198. https://doi.org/10.3390/jcm10153198
Byun H, Yu S, Oh J, Bae J, Yoon MS, Lee SH, Chung JH, Kim TH. An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. Journal of Clinical Medicine. 2021; 10(15):3198. https://doi.org/10.3390/jcm10153198
Chicago/Turabian StyleByun, Hayoung, Sangjoon Yu, Jaehoon Oh, Junwon Bae, Myeong Seong Yoon, Seung Hwan Lee, Jae Ho Chung, and Tae Hyun Kim. 2021. "An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases" Journal of Clinical Medicine 10, no. 15: 3198. https://doi.org/10.3390/jcm10153198
APA StyleByun, H., Yu, S., Oh, J., Bae, J., Yoon, M. S., Lee, S. H., Chung, J. H., & Kim, T. H. (2021). An Assistive Role of a Machine Learning Network in Diagnosis of Middle Ear Diseases. Journal of Clinical Medicine, 10(15), 3198. https://doi.org/10.3390/jcm10153198