Fibromyalgia Detection Based on EEG Connectivity Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.2.1. Data Preprocessing
2.2.2. Data Analysis
2.3. Statistical Analysis
3. Results
3.1. Frequency Analysis
3.2. Sources by LORETAs
3.3. Analysis of Coherence
3.4. Discriminatory Index
4. Discussion
Test Accuracy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Queiroz, L.P. Worldwide Epidemiology of Fibromyalgia. Curr. Pain Headache Rep. 2013, 17, 356. [Google Scholar] [CrossRef]
- Goldenberg, D.L. Diagnosing Fibromyalgia as a Disease, an Illness, a State, or a Trait? Arthritis Care Res. 2019, 71, 334–336. [Google Scholar] [CrossRef]
- Ghavidel-Parsa, B.; Bidari, A.; Amir Maafi, A.; Ghalebaghi, B. The Iceberg Nature of Fibromyalgia Burden: The Clinical and Economic Aspects. Korean J. Pain 2015, 28, 169–176. [Google Scholar] [CrossRef]
- Melzack, R. Pain and the Neuromatrix in the Brain. J. Dent. Educ. 2001, 65, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Tanasescu, R.; Cottam, W.J.; Condon, L.; Tench, C.R.; Auer, D.P. Functional reorganisation in chronic pain and neural correlates of pain sensitisation: A coordinate based meta-analysis of 266 cutaneous pain fMRI studies. Neurosci. Biobehav. Rev. 2016, 68, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Rainville, P.; Bushnell, M.C.; Duncan, G.H. Representation of Acute and Persistent Pain in the Human CNS: Potential Implications for Chemical Intolerance. Ann. N. Y. Acad. Sci. 2006, 933, 130–141. [Google Scholar] [CrossRef] [PubMed]
- May, A. Chronic pain may change the structure of the brain. Pain 2008, 137, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, V.A.; Hashmi, J.A.; Baliki, M.N. Pain and the brain: Specificity and plasticity of the brain in clinical chronic pain. Pain 2011, 152, S49–S64. [Google Scholar] [CrossRef]
- Smallwood, R.F.; Laird, A.R.; Ramage, A.E.; Parkinson, A.L.; Lewis, J.; Clauw, D.J.; Williams, D.A.; Schmidt-Wilcke, T.; Farrell, M.J.; Eickhoff, S.B.; et al. Structural Brain Anomalies and Chronic Pain: A Quantitative Meta-Analysis of Gray Matter Volume. J. Pain 2013, 14, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Wang, Y.; Chen, Z.; Li, J.; Xu, F.; Liu, X.; Hou, F. Deep Learning in Automatic Sleep Staging With a Single Channel Electroencephalography. Front. Physiol. 2021, 12, 179. [Google Scholar] [CrossRef]
- Baliki, M.N.; Schnitzer, T.J.; Bauer, W.R.; Apkarian, A.V. Brain Morphological Signatures for Chronic Pain. PLoS ONE 2011, 6, e26010. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Loggia, M.L.; Zyloney, C.; Tu, P.; LaViolette, P.; Gollub, R.L. Exploring the brain in pain: Activations, deactivations and their relation. Pain 2010, 148, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ploner, M.; Sorg, C.; Gross, J. Brain Rhythms of Pain. Trends Cogn. Sci. 2017, 21, 100–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, E.S.D.S.; Queirós, F.C.D.; Montoya, P.; Santos, C.L.; Nascimento, M.A.D.; Ito, C.H.; Baptista, A.F. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS ONE 2016, 11, e0149085. [Google Scholar] [CrossRef] [Green Version]
- Prichep, L.S.; John, E.R.; Howard, B.; Merkin, H.; Hiesiger, E.M. Evaluation of the Pain Matrix Using EEG Source Localization: A Feasibility Study. Pain Med. 2011, 12, 1241–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.P.; Sherlin, L.H.; Gertz, K.J.; Braden, A.L.; Kupper, A.E.; Gianas, A.; Hakimian, S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: Clinical implications. Spinal Cord 2013, 51, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Vuckovic, A.; Gallardo, V.J.F.; Jarjees, M.; Fraser, M.; Purcell, M. Prediction of central neuropathic pain in spinal cord injury based on EEG classifier. Clin. Neurophysiol. 2018, 129, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- Sluka, K.A.; Clauw, D.J. Neurobiology of fibromyalgia and chronic widespread. Pain Neurosci. 2016, 338, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Price, D.D.; Staud, R. Neurobiology of fibromyalgia syndrome. J. Rheumatol. Suppl. 2005, 75, 22–28. [Google Scholar]
- Desmeules, J.A.; Cedraschi, C.; Rapiti, E.; Baumgartner, E.; Finckh, A.; Cohen, P.; Vischer, T.L. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 2003, 48, 1420–1429. [Google Scholar] [CrossRef]
- Teng, H.-W.; Tani, J.; Chang, T.-S.; Chen, H.-J.; Lin, Y.-C.; Lin, C.S.-Y.; Sung, J.Y. Altered sensory nerve excitability in fibromyalgia. J. Formos. Med. Assoc. 2021. [Google Scholar] [CrossRef]
- Stern, J.; Jeanmonod, D.; Sarnthein, J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 2006, 31, 721–731. [Google Scholar] [CrossRef]
- Hubbard, C.S.; Lazaridou, A.; Cahalan, C.M.; Kim, J.; Edwards, R.R.; Napadow, V.; Loggia, M.L. Aberrant Salience? Brain Hyperactivation in Response to Pain Onset and Offset in Fibromyalgia. Arthritis Rheumatol. 2020, 72, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, S.; Ost, J.; Van Havenbergh, T.; De Ridder, D. Resting state electrical brain activity and connectivity in fibromyalgia. PLoS ONE 2017, 12, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Villafaina, S.; Collado-Mateo, D.; Fuentes-García, J.P.; Cano-Plasencia, R.; Gusi, N. Impact of Fibromyalgia on Alpha-2 EEG Power Spectrum in the Resting Condition: A Descriptive Correlational Study. BioMed Res. Int. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Napadow, V.; LaCount, L.; Park, K.; As-Sanie, S.; Clauw, D.J.; Harris, R.E. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010, 62, 2545–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, M.K.; Lim, M.; Kim, J.S.; Lee, D.S.; Chung, C.K. Disrupted Resting State Network of Fibromyalgia in Theta frequency. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central sensitization in fibromyalgia? {A} systematic review on structural and functional brain. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef]
- López-Solà, M.; Woo, C.-W.; Pujol, J.; Deus, J.; Harrison, B.J.; Monfort, J.; Wager, T.D. Towards a neurophysiological signature for fibromyalgia. Pain 2017, 158, 34–47. [Google Scholar] [CrossRef]
- Mayer, E.A.; Gupta, A.; Kilpatrick, L.A.; Hong, J.-Y. Imaging brain mechanisms in chronic visceral Pain. Pain 2015, 156 (Suppl. 1), S50–S63. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Čeko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef] [Green Version]
- González-Roldán, A.M.; Muñoz, M.A.; Cifre, I.; Sitges, C.; Montoya, P. Altered psychophysiological responses to the view of others’ pain and anger faces in fibromyalgia patients. J. Pain. J. Am. Pain Soc. 2013, 14, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Napadow, V.; Kim, J.; Clauw, D.J.; Harris, R.E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 2012, 64, 2398–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberger, A.L.; Amaral, L.; Glass, L.; Hausdorff Jeffrey, M.; Ivanov Plamen, C.; Mark, R.G.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedermeyer, E. The normal EEG of the waking adult. Electroencephalogr. Basic. Princ. Clin. Appl. Relat. Fields. 1999, 20, 149–173. [Google Scholar]
- Jobert, M.; Wilson, F.J.; Ruigt, G.S.F.; Brunovsky, M.; Prichep, L.S.; Drinkenburg, W.H.I.M. Guidelines for the Recording and Evaluation of Pharmaco-EEG Data in Man: The International Pharmaco-EEG Society (IPEG). Neuropsychobiology 2012, 66, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Tatum, W.O.; Olga, S.; Ochoa, J.G.; Munger Clary, H.; Cheek, J.; Drislane, F.; Tsuchida, T.N. American Clinical Neurophysiology Society Guideline 7. J. Clin. Neurophysiol. 2016, 33, 328–332. [Google Scholar] [CrossRef]
- Feraco, P.; Nigro, S.; Passamonti, L.; Grecucci, A.; Caligiuri, M.E.; Gagliardo, C.; Bacci, A. Neurochemical correlates of brain atrophy in fibromyalgia syndrome: A magnetic resonance spectroscopy and cortical thickness study. Brain Sci. 2020, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Lee, S.-H.; Weng, H.-H. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies. BioMed Res. Int. 2016, 2016, 7296125. [Google Scholar] [CrossRef]
- McCrae, C.S.; O’Shea, A.M.; Boissoneault, J.; Vatthauer, K.E.; Robinson, M.E.; Staud, R.; Craggs, J.G. Fibromyalgia patients have reduced hippocampal volume compared with healthy controls. J. Pain Res. 2015, 8, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Duschek, S.; Mannhart, T.; Winkelmann, A.; Merzoug, K.; Werner, N.S.; Schuepbach, D.; Montoya, P. Cerebral blood flow dynamics during pain processing in patients with fibromyalgia syndrome. Psychosom. Med. 2012, 74, 802–809. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 8. [Google Scholar] [CrossRef]
- de Oliveira, A.P.S.; de Santana, M.A.; Andrade, M.K.S.; Gomes, J.C.; Rodrigues, M.C.A.; dos Santos, W.P. Early diagnosis of Parkinson’s disease using EEG, machine learning and partial directed coherence. Res. Biomed. Eng. 2020, 36, 311–331. [Google Scholar] [CrossRef]
- Gentile, E.; Ricci, K.; Vecchio, E.; Libro, G.; Delussi, M.; Casas-Barragàn, A.; de Tommaso, M. A simple pattern of movement is not able to inhibit experimental pain in fm patients and controls: An sloreta study. Brain Sci. 2020, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M. The Statistical Evaluation of Medical Tests for Classification and Prediction; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Benbadis, S.R. A spell in the epilepsy clinic and a history of “chronic pain” or “fibromyalgia” independently predict a diagnosis of psychogenic seizures. Epilepsy Behav. 2005, 6, 264–265. [Google Scholar] [CrossRef]
- Dixit, R.; Popescu, A.; Bagić, A.; Ghearing, G.; Hendrickson, R. Medical comorbidities in patients with psychogenic nonepileptic spells (PNES) referred for video-EEG monitoring. Epilepsy Behav. 2013, 28, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Rasker, J.J.; Wolfe, F.; Klaver-Krol, E.G.; Zwarts, M.J.; ten Klooster, P.M. The relation of fibromyalgia and fibromyalgia symptoms to self-reported seizures. PLoS ONE 2021, 16, e0246051. [Google Scholar] [CrossRef]
- Kim, M.; Mawla, I.; Albrecht, D.S.; Admon, R.; Torrado-Carvajal, A.; Bergan, C.; Loggia, M.L. Striatal hypofunction as a neural correlate of mood alterations in chronic pain patients. Neuroimage 2020, 211, 116656. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.; Jäger, L.; de Quervain, D.; Krauseneck, T.; Padberg, F.; Wichnalek, M.; Schelling, G. White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis Rheum. J. Am. Coll. Rheumatol. 2008, 58, 3960–3969. [Google Scholar] [CrossRef]
- Kuchinad, A.; Schweinhardt, P.; Seminowicz, D.A.; Wood, P.B.; Chizh, B.A.; Bushnell, M.C. Accelerated brain gray matter loss in fibromyalgia patients: Premature aging of the brain? J. Neurosci. 2007, 27, 4004–4007. [Google Scholar] [CrossRef]
- Murga, I.; Guillen, V.; Lafuente, J.V. Cambios en la resonancia magnética cerebral asociados al síndrome de fibromialgia. Med. Clin. 2017, 148, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Amzica, F.; Massimini, M. Glial and Neuronal Interactions during Slow Wave and Paroxysmal Activities in the Neocortex. Cereb. Cortex. 2002, 12, 1101–1113. [Google Scholar] [CrossRef] [Green Version]
- González-Villar, A.J.; Triñanes, Y.; Gómez-Perretta, C.; Carrillo-de-la-Peña, M.T. Patients with fibromyalgia show increased beta connectivity across distant networks and microstates alterations in resting-state electroencephalogram. Neuroimage 2020, 223, 117266. [Google Scholar] [CrossRef] [PubMed]
- Kooi, K.A.; Tucker, R.P.; Marshall, R.E. Fundamentals of Electroencephalography; HarperCollins Publishers: New York, NY, USA, 1978. [Google Scholar]
- Puiu, T.; Kairys, A.E.; Pauer, L.; Schmidt-Wilcke, T.; Ichesco, E.; Hampson, J.P.; Harris, R.E. Association of Alterations in Gray Matter Volume With Reduced Evoked-Pain Connectivity Following Short-Term Administration of Pregabalin in Patients With Fibromyalgia. Arthritis Rheumatol. 2016, 68, 1511–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, U.; Kim, M.; Lee, K.; Kaplan, C.M.; Clauw, D.J.; Kim, S.; Harris, R.E. Functional Brain Network Mechanism of Hypersensitivity in Chronic Pain. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fallon, N.; Chiu, Y.; Nurmikko, T.; Stancak, A. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients. PLoS ONE 2016, 11, e0159198. [Google Scholar] [CrossRef] [PubMed]
- Fallon, N.; Chiu, Y.; Nurmikko, T.; Stancak, A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur. J. Pain 2018, 22, 49–57. [Google Scholar] [CrossRef] [Green Version]
- van Ettinger-Veenstra, H.; Boehme, R.; Ghafouri, B.; Olausson, H.; Wicksell, R.K.; Gerdle, B. Exploration of Functional Connectivity Changes Previously Reported in Fibromyalgia and Their Relation to Psychological Distress and Pain Measures. J. Clin. Med. 2020, 9, 3560. [Google Scholar] [CrossRef]
- Usui, C.; Kirino, E.; Tanaka, S.; Inami, R.; Nishioka, K.; Hatta, K.; Inoue, R. Music Intervention Reduces Persistent Fibromyalgia Pain and Alters Functional Connectivity Between the Insula and Default Mode Network. Pain Med. 2020, 21, 1546–1552. [Google Scholar] [CrossRef]
- Flodin, P.; Martinsen, S.; Mannerkorpi, K.; Lofgren, M.; Bileviciute-Ljungar, I.; Kosek, E.; Fransson, P. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy. NeuroImage Clin. 2015, 9, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Pujol, J.; Macia, D.; Garcia-Fontanals, A.; Blanco-Hinojo, L.; Lopez-Sola, M.; Garcia-Blanco, S.; Deus, J. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia. Pain 2014, 155, 1492–1503. [Google Scholar] [CrossRef]
- Jensen, K.B.; Loitoile, R.; Kosek, E.; Petzke, F.; Carville, S.; Fransson, P.; Kong, J. Patients with fibromyalgia display less functional connectivity in the brain’s pain inhibitory network. Mol. Pain 2012, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Ichesco, E.; Schmidt-Wilcke, T.; Bhavsar, R.; Clauw, D.J.; Peltier, S.J.; Kim, J.; Harris, R.E. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 2014, 15, 815–826.e1. [Google Scholar] [CrossRef] [Green Version]
- Schmukler, J.; Jamal, S.; Castrejon, I.; Block, J.A.; Pincus, T. Fibromyalgia Assessment Screening Tools (FAST) Based on Only Multidimensional Health Assessment Questionnaire (MDHAQ) Scores as Clues to Fibromyalgia. ACR Open Rheumatol. 2019, 1, 516–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, V.W.; Rutledge, D.N.; Stern, J.M. Polysomnography with quantitative EEG in patients with and without fibromyalgia. J. Clin. Neurophysiol. 2015, 32, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Elmas, O.; Yildiz, S.; Bilgin, S.; Demirci, S.; Comlekci, S.; Koyuncuoglu, H.R.; Bilgin, G. Physiological parameters as a tool in the diagnosis of fibromyalgia syndrome in females: A preliminary study. Life Sci. 2016, 15, 51–56. [Google Scholar] [CrossRef]
- Sundermann, B.; Burgmer, M.; Pogatzki-Zahn, E.; Gaubitz, M.; Stuber, C.; Wessolleck, E.; Pfleiderer, B. Diagnostic classification based on functional connectivity in chronic pain: Model optimization in fibromyalgia and rheumatoid arthritis. Acad Radiol. 2014, 21, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.; Gunkelman, J. Use of Databases in QEEG Evaluation. J. Neurother. 2003, 7, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Obeid, I.; Picone, J. The Temple University Hospital EEG Data Corpus. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.N. Comparison of QEEG Reference Databases in Basic Signal Analysis and in the Evaluation of Adult ADHD. J. Neurother. 2003, 7, 123–169. [Google Scholar] [CrossRef]
- Scheer, H.J.; Sander, T.; Trahms, L. The influence of amplifier, interface and biological noise on signal quality in high-resolution EEG recordings. Physiol. Meas. 2006, 27, 109–117. [Google Scholar] [CrossRef]
- Thatcher, R.W.; Walker, R.A.; Biver, C.J.; North, D.N.; Curtin, R. Quantitative EEG Normative Databases: Validation and Clinical Correlation. J. Neurother. 2003, 7, 87–121. [Google Scholar] [CrossRef] [Green Version]
- Chavez, M.; Grosselin, F.; Bussalb, A.; De Vico Fallani, F.; Navarro-Sune, X. Surrogate-Based Artifact Removal From Single-Channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barham, M.P.; Clark, G.M.; Hayden, M.J.; Enticott, P.G.; Conduit, R.; Lum, J.A.G. Acquiring research-grade ERPs on a shoestring budget: A comparison of a modified Emotiv and commercial SynAmps EEG system. Psychophysiology 2017, 54, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Ravan, M.; Begnaud, J. Investigating the Effect of Short Term Responsive VNS Therapy on Sleep Quality Using Automatic Sleep Staging. IEEE Trans. Biomed. Eng. 2019, 66, 3301–3309. [Google Scholar] [CrossRef]
- Jadhav, P.N.; Shanamugan, D.; Chourasia, A.; Ghole, A.R.; Acharyya, A.; Naik, G. Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1881–1884. [Google Scholar]
- Piangerelli, M.; Rucco, M.; Tesei, L.; Merelli, E. Topological classifier for detecting the emergence of epileptic seizures. BMC Res. Notes 2018, 11, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Tiwari, J.; Acharya, U.R. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals. Int. J. Environ. Res. Public Health 2021, 18, 3087. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.; Linden, D. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin. Neurophysiol. 2018, 129, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Bigdely-Shamlo, N.; Touryan, J.; Ojeda, A.; Kothe, C.; Mullen, T.; Robbins, K. Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies. NeuroImage 2020, 15, 116361. [Google Scholar] [CrossRef]
- Hargrove, J.B.; Bennett, R.M.; Simons, D.G.; Smith, S.J.; Nagpal, S.; Deering, D.E. Quantitative Electroencephalographic Abnormalities in Fibromyalgia Patients. Clin. EEG Neurosci. 2010, 41, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Cifre, I.; Sitges, C.; Fraiman, D.; Muñoz, M.Á.; Balenzuela, P.; González-Roldán, A.; Montoya, P. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom. Med. 2012, 74, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thatcher, R.; North, D.; Biver, C. Evaluation and Validity of a LORETA Normative EEG Database. Clin. EEG Neurosci. 2005, 36, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.; de Gracia, M.; Cladellas, R. Subtypes of patients with fibromyalgia, psychopathological characteristics and quality of life. Actas Esp Psiquiatr. 2011, 39, 273–279. [Google Scholar] [PubMed]
- Triñanes, Y.; González-Villar, A.; Gómez-Perretta, C.; Carrillo-de-la-Peña, M.T. Profiles in fibromyalgia: Algometry, auditory evoked potentials and clinical characterization of different subtypes. Rheumatol. Int. 2014, 34, 1571–1580. [Google Scholar] [CrossRef]
- Thorp, S.; Healthcare, C.R.; Thorp, S.L.; Suchy, T.; Vadivelu, N.; Helander, E.M.; Kaye, A.D. Functional Connectivity Alterations: Novel Therapy and Future Implications in Chronic Pain Management. Pain Physician 2018, 21, 207–214. [Google Scholar] [CrossRef]
FM (n = 23) | Control (n = 23) | ||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
ABSOLUTE | |||||
Delta | 5.59 | 0.42 | 21.22 | 2.69 | 0.000 * |
Theta | 6.32 | 0.50 | 27.88 | 3.75 | 0.000 * |
Alpha | 15.74 | 0.75 | 72.86 | 18.53 | 0.000 * |
Beta | 20.67 | 1.72 | 65.11 | 9.22 | 0.000* |
RELATIVE | |||||
Delta | 11.57 | 0.49 | 11.57 | 2.07 | 0.991 |
Theta | 13.08 | 0.65 | 15.02 | 1.55 | 0.000 * |
Alpha | 32.62 | 1.06 | 38.45 | 4.09 | 0.000 * |
Beta | 42.72 | 1.17 | 34.97 | 2.08 | 0.000 * |
FFT Amplitude | ROC (AUC) | Sensitivity/ 1 − Specificity | p [95% CI] |
---|---|---|---|
Delta (1–4 Hz) | 0.618 | 0.643/0.609 | 0.234 (0.417, 0.819) |
Theta (4–7 Hz) | 1 | 1/0 | 0.000 (1, 1) |
Alpha (7–14 Hz) | 0.975 | 1/0.217 | 0.000 (1, 1) |
Beta (15–32 Hz) | 0.988 | 1/0.174 | 0.000 (0.960, 1) |
Right Parieto-Occipital activity (P4) | 0.984 | 1/0.217 | 0.000 (0.951, 1) |
Frontotemporal functional connectivity | 0.913 | 0.913/0.214 | 0.000 (0.816, 1) |
Derivations | Delta | Theta | Alpha | Beta |
---|---|---|---|---|
Fp1-Fp2 | 0.390 | 0.467 | 0.294 | 0.238 |
Fp2-T4 | 0.843 ** | 0.907 ** | 0.875 ** | 0.846 ** |
Fp1-T3 | 0.843 ** | 0.849 ** | 0.884 ** | 0.746 * |
T3-T4 | 0.580 | 0.596 | 0.706 | 0.593 |
Fz-T3 | 0.712 * | 0.684 | 0.780 * | 0.765 * |
Fz-T4 | 0.799 * | 0.835 * | 0.774 * | 0.846 ** |
Fz-T3 + Fz-T4 | 0.877 ** | 0.794 * | 0.788 * | 0.822 * |
Fp1-T3 + Fp2-T4 | 0.765 * | 0.887 ** | 0.913 ** | 0.80 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Brufau, R.; Gómez, M.N.; Sanchez-Sanchez-Rojas, L.; Nombela, C. Fibromyalgia Detection Based on EEG Connectivity Patterns. J. Clin. Med. 2021, 10, 3277. https://doi.org/10.3390/jcm10153277
Martín-Brufau R, Gómez MN, Sanchez-Sanchez-Rojas L, Nombela C. Fibromyalgia Detection Based on EEG Connectivity Patterns. Journal of Clinical Medicine. 2021; 10(15):3277. https://doi.org/10.3390/jcm10153277
Chicago/Turabian StyleMartín-Brufau, Ramón, Manuel Nombela Gómez, Leyre Sanchez-Sanchez-Rojas, and Cristina Nombela. 2021. "Fibromyalgia Detection Based on EEG Connectivity Patterns" Journal of Clinical Medicine 10, no. 15: 3277. https://doi.org/10.3390/jcm10153277
APA StyleMartín-Brufau, R., Gómez, M. N., Sanchez-Sanchez-Rojas, L., & Nombela, C. (2021). Fibromyalgia Detection Based on EEG Connectivity Patterns. Journal of Clinical Medicine, 10(15), 3277. https://doi.org/10.3390/jcm10153277