Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Interventions
2.3. Functional and Motor Strength Assesment of the Healthy Participants
2.3.1. Box and Block Test (BBT)
2.3.2. Maximum Voluntary Contraction (MVC) during Hand Grip
2.4. Neurophysiological Assesment
2.4.1. F Wave Persistency and F/M Wave Ratio
2.4.2. Spinal MEP
2.4.3. Transcranial Magnetic Stimulation (TMS)
2.4.4. Neurophysiological Parameters
2.5. Data Analysis and Statistics
3. Results
3.1. Effects of eEmc Intensity
3.1.1. Functional and Motor Strength Assessment
3.1.2. Neurophysiological Assessment
3.2. Effects of Hand Grip Force during Training
3.2.1. Functional and Motor Strength Assessment
3.2.2. Neurophysiological Assessment
4. Discussion
4.1. Effects of eEmc Intensity
4.2. Effects of Handgrip Strength during Training
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.R.; Roy, R.R.; et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megía García, A.; Serrano-Muñoz, D.; Taylor, J.; Avendaño-Coy, J.; Gómez-Soriano, J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil. Neural Repair 2020, 34, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Calvert, J.S.; Manson, G.A.; Grahn, P.J.; Sayenko, D.G. Preferential activation of spinal sensorimotor networks via lateralized transcutaneous spinal stimulation in neurologically intact humans. J. Neurophysiol. 2019, 122, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Edgerton, V.R. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Benavides, F.D.; Jo, H.J.; Lundell, H.; Edgerton, V.R.; Gerasimenko, Y.; Perez, M.A. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J. Neurosci. 2020, 40, 2633–2643. [Google Scholar] [CrossRef] [PubMed]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Freyvert, Y.; Yong, N.A.; Morikawa, E.; Zdunowski, S.; Sarino, M.E.; Gerasimenko, Y.; Edgerton, V.R.; Lu, D.C. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci. Rep. 2018, 8, 15546. [Google Scholar] [CrossRef]
- Inanici, F.; Samejima, S.; Gad, P.; Edgerton, V.R.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous Electrical Spinal Stimulation Promotes Long-Term Recovery of Upper Extremity Function in Chronic Tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Momeni, K.; Ramanujam, A.; Ravi, M.; Carnahan, J.; Kirshblum, S.; Forrest, G.F. Cervical Spinal Cord Transcutaneous Stimulation Improves Upper Extremity and Hand Function in People with Complete Tetraplegia: A Case Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3167–3174. [Google Scholar] [CrossRef] [PubMed]
- Kumru, H.; Flores, Á.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Benito-Penalva, J.; Navarro, X.; Gerasimenko, Y.; García-Alías, G.; Vidal, J. Cervical Electrical Neuromodulation Effectively Enhances Hand Motor Output in Healthy Subjects by Engaging a Use-Dependent Intervention. J. Clin. Med. 2021, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Guiho, T.; Baker, S.N.; Jackson, A. Epidural and transcutaneous spinal cord stimulation facilitates descending inputs to upper-limb motoneurons in monkeys. J. Neural. Eng. 2021, 18, 046011. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Binder, H.; Minassian, K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE 2018, 13, e0192013. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.B.; Gossen, E.R.; Jones, K.E. Neuronal variability: Noise or part of the signal? Nat. Rev. Neurosci. 2005, 6, 389–397. [Google Scholar] [CrossRef]
- Gomes-Osman, J.; Field-Fote, E.C. Cortical vs. afferent stimulation as an adjunct to functional task practice training: A randomized, comparative pilot study in people with cervical spinal cord injury. Clin. Rehabil. 2015, 29, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Osman, J.; Tibbett, J.A.; Poe, B.P.; Field-Fote, E.C. Priming for Improved Hand Strength in Persons with Chronic Tetraplegia: A Comparison of Priming-Augmented Functional Task Practice, Priming Alone, and Conventional Exercise Training. Front. Neurol. 2017, 7, 7–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujirai, T.; Caramia, M.D.; Rothwell, J.C.; Day, B.L.; Thompson, P.D.; Ferbert, A.; Wroe, S.; Asselman, P.; Marsden, C.D. Corticocortical inhibition in human motor cortex. J. Physiol. 1993, 471, 501–519. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Knikou, M. Remodeling Brain Activity by Repetitive Cervicothoracic Transspinal Stimulation after Human Spinal Cord Injury. Front. Neurol. 2017, 20, 8–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taccola, G.; Sayenko, D.; Gad, P.; Gerasimenko, Y.; Edgerton, V.R. And yet it moves: Recovery of volitional control after spinal cord injury. Prog. Neurobiol. 2018, 160, 64–81. [Google Scholar] [CrossRef] [Green Version]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.C.; Knikou, M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Knikou, M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin. Neurophysiol. 2010, 121, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
eEmc Intensity Applied during Stimulation (mA) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C3-C4 | C6-C7 | ||||||||||
% eEmc + 100% MVC | 90%eEmc + 50% MVC | %eEmc + 100%MVC | 90%eEmc + 50% MVC | ||||||||
Subject | Sex | Age | Hand | 80% | 90% | 110% | 80% | 90% | 110% | ||
1 | M | 44 | R | 32 | 29 | 40 | 29 | 34 | 38 | 44 | 38 |
2 | M | 60 | R | 69 | 59 | 77 | 63 | 72 | 72 | 90 | 72 |
3 | F | 25 | R | 27 | 30 | 33 | 29 | 32 | 30 | 40 | 32 |
4 | F | 27 | L | 32 | 34 | 44 | 34 | 36 | 36 | 46 | 41 |
5 | F | 33 | R | 37 | 54 | 53 | 47 | 48 | 63 | 62 | 58 |
6 | M | 41 | R | 27 | 36 | 37 | 31 | 38 | 45 | 42 | 34 |
7 | M | 51 | R | 51 | 52 | 75 | 63 | 61 | 63 | 90 | 81 |
8 | M | 39 | R | 48 | 59 | 77 | 49 | 56 | 72 | 88 | 59 |
9 | M | 38 | B | 45 | 67 | 73 | 61 | 53 | 77 | 75 | 85 |
Time | 80% | 90% | 110% | F (DFn, DFd) | p Value | η2 | |
---|---|---|---|---|---|---|---|
BBT (blocks number) | Pre | 74.1 ± 3.0 | 72.8 ± 3.1 | 71.2 ± 2.7 | Ftime (2, 16) = 17.32 | <0.0001 | 0.033 |
Post | 74.6 ± 3.1 | 75.7 ± 3.5 | 74.4 ± 2.9 | Finterven. (2, 16) = 0.16 | 0.855 | 0.002 | |
Foll. | 74.6 ± 3.2 | 77.4 ± 3.4 | 78.0 ± 2.7 | Finterac. (4, 32) = 3.49 | 0.018 | 0.014 | |
MVC Grip Force (kg) | Pre | 37.8 ± 8.3 | 31.3 ± 11.3 | 36.9 ± 7.6 | Ftime (2, 16) = 5.87 | 0.012 | 0.002 |
Post | 35.1 ± 7.6 | 32.7 ± 11.0 | 35.5 ± 8.7 | Finterven. (2, 16) = 3.59 | 0.052 | 0.040 | |
Foll. | 35.8 ± 9.2 | 33.6 ± 9.8 | 36.4 ± 7.5 | Finterac. (4, 32) = 2.71 | 0.048 | 0.009 | |
F wave Persistency | Pre | 65.4 ± 7.9 | 48.8 ± 9.1 | 71.5 ± 6.5 | Ftime (2, 16) = 0.33 | 0.725 | 0.002 |
Post | 59.3 ± 8.5 | 60.2 ± 8.2 | 59.7 ± 8.0 | Finterven. (2, 16) = 3.33 | 0.062 | 0.019 | |
Foll. | 59.9 ± 9.5 | 57.9 ± 9.2 | 60.2 ± 10.1 | Finterac. (4, 32) = 2.92 | 0.031 | 0.031 | |
Mmax wave (microV) | Pre | 13,296.3 ± 1754.9 | 16,829.0 ± 1863.2 | 16,844.5 ± 1204.9 | Ftime (2, 16) = 1.77 | 0.202 | 0.018 |
Post | 12,752.8 ± 1427.5 | 15,485.3 ± 1937.6 | 16,234.6 ± 1579.3 | Finterven. (2, 16) = 4.85 | 0.023 | 0.119 | |
Foll. | 13,697.6 ± 1726.9 | 17,153.6 ± 1889.8 | 18,452.1 ± 970.3 | Finterac. (4, 32) = 0.29 | 0.882 | 0.003 | |
Ratio Fmax/Mmax | Pre | 5.5 ± 0.8 | 3.7 ± 0.8 | 4.2 ± 0.6 | Ftime (1.92, 15.33) = 0.15 | 0.851 | 0.001 |
Post | 4.6 ± 0.7 | 5.0 ± 0.8 | 4.5 ± 0.5 | Finterven. (1.38, 11.03) = 0.55 | 0.530 | 0.008 | |
Foll. | 4.2 ± 0.6 | 4.3 ± 0.7 | 5.4 ± 0.6 | Finterac. (1.83, 14.64) = 1.93 | 0.082 | 0.069 | |
RMT TMS | Pre | 38.7 ± 2.3 | 39.1 ± 2.6 | 39.1 ± 2.0 | Ftime (1.85, 14.81) = 1.46 | 0.263 | 0.002 |
Post | 37.8 ± 2.4 | 37.8 ± 2.4 | 39.3 ± 2.5 | Finterven. (1.89, 15.14) = 0.21 | 0.805 | 0.002 | |
Foll. | 38.2 ± 2.4 | 39.1 ± 2.6 | 38.4 ± 2.0 | Finterac. (1.91,15.31) = 1.46 | 0.263 | 0.003 | |
SICI in APB (%) | Pre | 13.1 ± 3.7 | 13.8 ± 2.9 | 8.3 ± 1.2 | Ftime (1.13, 9.05) = 0.93 | 0.374 | 0.021 |
Post | 10.8 ± 2.6 | 12.4 ± 4.2 | 7.1 ± 2.6 | Finterven. (1.51, 12.07) = 0.14 | 0.816 | 0.003 | |
Follow | 13.2 ± 4.2 | 16.7 ± 4.7 | 11.2 ± 4.1 | Finterac. (1.90, 15.21) = 0.34 | 0.708 | 0.010 | |
Cortical MEP at 120% RMT in APB (mV) | Pre | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | Ftime (2, 16) = 3.43 | 0.058 | 0.091 |
Post | 1.1 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.2 | Finterven. (2, 16) = 5.25 | 0.018 | 0.056 | |
Foll. | 0.8 ± 0.1 | 0.7 ± 0.1 | 1.6 ± 0.3 | Finterac. (4, 32) = 4.99 | 0.003 | 0.113 | |
Stimulus Intensity | 80% | 90% | 110% | ||||
TMS recruitment: diff post-pre (mV) | 0.9 | −0.002 ± 0.08 | 0.08 ± 0.11 | 0.04 ± 0.08 | Fintensity (6, 48) = 10.69 Finterven. (2, 16) = 0.74 Finterac. (12, 96) = 2.17 | <0.001 0.491 0.019 | 0.121 0.030 0.079 |
1 | 0.06 ± 0.20 | 0.13 ± 0.37 | −0.04 ± 0.47 | ||||
1.1 | −0.08 ± 0.68 | 0.14 ± 0.80 | 0.16 ± 0.77 | ||||
1.2 | 0.004 ± 0.71 | 0.37 ± 1.20 | 0.68 ± 1.14 | ||||
1.3 | 0.62 ± 0.96 | 0.07 ± 1.02 | 0.12 ± 1.00 | ||||
1.4 | 0.124 ± 0.90 | 0.91 ± 1.21 | 1.03 ± 0.71 | ||||
1.5 | 0.14 ± 0.77 | 1.17 ± 1.48 | 1.34 ± 0.64 | ||||
TMS recruitment: diff foll-pre (mV) | 0.9 | −0.01 ± 0.06 | −0.02 ± 0.03 | 0.03 ± 0.09 | Fintensity (6, 48) = 4.09 Finterven. (2, 16) = 3.61 Finterac. (12, 96) = 3.73 | 0.002 0.051 <0.001 | 0.078 0.102 0.109 |
1 | 0.05 ± 0.28 | −0.01 ± 0.25 | 0.17 ± 0.80 | ||||
1.1 | −0.16 ± 0.46 | −0.10 ± 0.43 | 0.43 ± 1.18 | ||||
1.2 | 0.17 ± 0.61 | 0.20 ± 0.59 | 0.88 ± 1.15 | ||||
1.3 | −0.20 ± 0.66 | 0.39 ± 0.65 | −0.01 ± 1.03 | ||||
1.4 | 0.13 ± 1.14 | 0.34 ± 0.72 | 1.24 ± 0.70 | ||||
1.5 | −0.47 ± 0.88 | 0.76 ± 0.63 | 1.05 ± 0.57 | ||||
C3-C4 recruitment: diff post-pre (mV) | 0.9 | 0.02 ± 0.07 | −0.004 ± 0.01 | 0.01 ± 0.02 | Fintensity (6, 48) = 0.96 Finterven. (2, 16) = 0.99 Finterac. (12, 96) = 1.69 | 0.460 0.395 0.081 | 0.023 0.057 0.037 |
1 | 0.01 ± 0.09 | −0.01 ± 0.02 | 0.02 ± 0.05 | ||||
1.1 | 0.01 ± 0.04 | −0.03 ± 0.11 | 0.001 ± 0.03 | ||||
1.2 | 0.01 ± 0.03 | −0.04 ± 0.11 | 0.004 ± 0.02 | ||||
1.3 | −0.03 ± 0.09 | −0.04 ± 0.11 | −0.01 ± 0.03 | ||||
1.4 | 0.03 ± 0.09 | −0.06 ± 0.11 | 0.01 ± 0.04 | ||||
1.5 | 0.04 ± 0.10 | −0.003 ± 0.09 | −0.02 ± 0.04 | ||||
C3-C4 recruitment: diff foll-pre (mV) | 0.9 | 0.03 ± 0.09 | 0.02 ± 0.05 | 0.01 ± 0.02 | Fintensity (6, 48) = 0.31 Finterven. (2, 16) = 0.78 Finterac. (12, 96) = 1.10 | 0.929 0.474 0.373 | 0.008 0.036 0.035 |
1 | 0.02 ± 0.09 | −0.01 ± 0.03 | 0.04 ± 0.10 | ||||
1.1 | 0.01 ± 0.05 | −0.002 ± 0.11 | 0.01 ± 0.02 | ||||
1.2 | 0.02 ± 0.05 | 0.004 ± 0.02 | 0.02 ± 0.03 | ||||
1.3 | 0.03 ± 0.04 | 0.01 ± 0.02 | 0.001 ± 0.03 | ||||
1.4 | 0.04 ± 0.08 | −0.01 ± 0.05 | 0.01 ± 0.03 | ||||
1.5 | 0.06 ± 0.08 | 0.001 ± 0.04 | 0.01 ± 0.03 | ||||
C6-C7 recruitment: diff post-pre (mV) | 0.9 | 0.003 ± 0.03 | −0.001 ± 0.03 | 0.01 ± 0.02 | Fintensity (6, 48) = 2.14 Finterven. (2, 16) = 0.67 Finterac. (12, 96) = 0.51 | 0.066 0.525 0.906 | 0.041 0.023 0.023 |
1 | −0.001 ± 0.03 | 0.04 ± 0.10 | 0.01 ± 0.03 | ||||
1.1 | 0.004 ± 0.02 | −0.01 ± 0.05 | 0.01 ± 0.03 | ||||
1.2 | −0.03 ± 0.09 | −0.01 ± 0.06 | −0.01 ± 0.03 | ||||
1.3 | −0.04 ± 0.11 | −0.02 ± 0.04 | 0.001 ± 0.05 | ||||
1.4 | −0.03 ± 0.08 | −0.01 ± 0.05 | −0.004 ± 0.05 | ||||
1.5 | −0.02 ± 0.12 | 0.01 ± 0.04 | 0.01 ± 0.06 | ||||
C6-C7 recruitment: diff foll-pre (mV) | 0.9 | 0.01 ± 0.02 | −0.004 ± 0.03 | 0.02 ± 0.02 | Fintensity (6, 48) = 0.40 Finterven. (2, 16) = 0.16 Finterac. (12, 96) = 0.72 | 0.878 0.850 0.725 | 0.010 0.005 0.039 |
1 | −0.0004 ± 0.03 | 0.03 ± 0.09 | 0.02 ± 0.02 | ||||
1.1 | 0.01 ± 0.02 | −0.001 ± 0.04 | 0.02 ± 0.04 | ||||
1.2 | −0.02 ± 0.10 | 0.01 ± 0.02 | 0.003 ± 0.03 | ||||
1.3 | 0.02 ± 0.04 | 0.01 ± 0.02 | −0.02 ± 0.08 | ||||
1.4 | 0.01 ± 0.09 | 0.004 ± 0.03 | 0.004 ± 0.04 | ||||
1.5 | −0.01 ± 0.14 | 0.002 ± 0.02 | 0.03 ± 0.06 |
Time | 80% | 90% | 110% | F (DFn, DFd) | p Value | η2 | |
---|---|---|---|---|---|---|---|
BBT (blocks number) | Pre | 74.1 ± 3.0 | 72.8 ± 3.1 | 71.2 ± 2.7 | Ftime (2, 16) = 17.32 | <0.0001 | 0.033 |
Post | 74.6 ± 3.1 | 75.7 ± 3.5 | 74.4 ± 2.9 | Finterven. (2, 16) = 0.16 | 0.855 | 0.002 | |
Foll. | 74.6 ± 3.2 | 77.4 ± 3.4 | 78.0 ± 2.7 | Finterac. (4, 32) = 3.49 | 0.018 | 0.014 | |
MVC Grip Force (kg) | Pre | 37.8 ± 8.3 | 31.3 ± 11.3 | 36.9 ± 7.6 | Ftime (2, 16) = 5.87 | 0.012 | 0.002 |
Post | 35.1 ± 7.6 | 32.7 ± 11.0 | 35.5 ± 8.7 | Finterven. (2, 16) = 3.59 | 0.052 | 0.040 | |
Foll. | 35.8 ± 9.2 | 33.6 ± 9.8 | 36.4 ± 7.5 | Finterac. (4, 32) = 2.71 | 0.048 | 0.009 | |
F wave Persistency | Pre | 65.4 ± 7.9 | 48.8 ± 9.1 | 71.5 ± 6.5 | Ftime (2, 16) = 0.33 | 0.725 | 0.002 |
Post | 59.3 ± 8.5 | 60.2 ± 8.2 | 59.7 ± 8.0 | Finterven. (2, 16) = 3.33 | 0.062 | 0.019 | |
Foll. | 59.9 ± 9.5 | 57.9 ± 9.2 | 60.2 ± 10.1 | Finterac. (4, 32) = 2.92 | 0.031 | 0.031 | |
Mmax wave (microV) | Pre | 13,296.3 ± 1754.9 | 16,829.0 ± 1863.2 | 16,844.5 ± 1204.9 | Ftime (2, 16) = 1.77 | 0.202 | 0.018 |
Post | 12,752.8 ± 1427.5 | 15,485.3 ± 1937.6 | 16,234.6 ± 1579.3 | Finterven. (2, 16) = 4.85 | 0.023 | 0.119 | |
Foll. | 13,697.6 ± 1726.9 | 17,153.6 ± 1889.8 | 18,452.1 ± 970.3 | Finterac. (4, 32) = 0.29 | 0.882 | 0.003 | |
Ratio Fmax/Mmax | Pre | 5.5 ± 0.8 | 3.7 ± 0.8 | 4.2 ± 0.6 | Ftime (1.92, 15.33) = 0.15 | 0.851 | 0.001 |
Post | 4.6 ± 0.7 | 5.0 ± 0.8 | 4.5 ± 0.5 | Finterven. (1.38, 11.03) = 0.55 | 0.530 | 0.008 | |
Foll. | 4.2 ± 0.6 | 4.3 ± 0.7 | 5.4 ± 0.6 | Finterac. (1.83, 14.64) = 1.93 | 0.082 | 0.069 | |
RMT TMS | Pre | 38.7 ± 2.3 | 39.1 ± 2.6 | 39.1 ± 2.0 | Ftime (1.85, 14.81) = 1.46 | 0.263 | 0.002 |
Post | 37.8 ± 2.4 | 37.8 ± 2.4 | 39.3 ± 2.5 | Finterven. (1.89, 15.14) = 0.21 | 0.805 | 0.002 | |
Foll. | 38.2 ± 2.4 | 39.1 ± 2.6 | 38.4 ± 2.0 | Finterac. (1.91, 15.31) = 1.46 | 0.263 | 0.003 | |
SICI in APB (%) | Pre | 13.1 ± 3.7 | 13.8 ± 2.9 | 8.3 ± 1.2 | Ftime (1.13, 9.05) = 0.93 | 0.374 | 0.021 |
Post | 10.8 ± 2.6 | 12.4 ± 4.2 | 7.1 ± 2.6 | Finterven. (1.51, 12.07) = 0.14 | 0.816 | 0.003 | |
Follow | 13.2 ± 4.2 | 16.7 ± 4.7 | 11.2 ± 4.1 | Finterac. (1.90, 15.21) = 0.34 | 0.708 | 0.010 | |
Cortical MEP at 120% RMT in APB (mV) | Pre | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | Ftime (2, 16) = 3.43 | 0.058 | 0.091 |
Post | 1.1 ± 0.2 | 0.9 ± 0.1 | 1.1 ± 0.2 | Finterven. (2, 16) = 5.25 | 0.018 | 0.056 | |
Foll. | 0.8 ± 0.1 | 0.7 ± 0.1 | 1.6 ± 0.3 | Finterac. (4, 32) = 4.99 | 0.003 | 0.113 | |
Stimulus Intensity | 80% | 90% | 110% | ||||
TMS recruitment: diff post-pre (mV) | 0.9 | −0.002 ± 0.08 | 0.08 ± 0.11 | 0.04 ± 0.08 | Fintensity (6, 48) = 10.69 Finterven. (2, 16) = 0.74 Finterac. (12, 96) = 2.17 | <0.001 0.491 0.019 | 0.121 0.030 0.079 |
1 | 0.06 ± 0.20 | 0.13 ± 0.37 | −0.04 ± 0.47 | ||||
1.1 | −0.08 ± 0.68 | 0.14 ± 0.80 | 0.16 ± 0.77 | ||||
1.2 | 0.004 ± 0.71 | 0.37 ± 1.20 | 0.68 ± 1.14 | ||||
1.3 | 0.62 ± 0.96 | 0.07 ± 1.02 | 0.12 ± 1.00 | ||||
1.4 | 0.124 ± 0.90 | 0.91 ± 1.21 | 1.03 ± 0.71 | ||||
1.5 | 0.14 ± 0.77 | 1.17 ± 1.48 | 1.34 ± 0.64 | ||||
TMS recruitment: diff foll-pre (mV) | 0.9 | −0.01 ± 0.06 | −0.02 ± 0.03 | 0.03 ± 0.09 | Fintensity (6, 48) = 4.09 Finterven. (2, 16) = 3.61 Finterac. (12, 96) = 3.73 | 0.002 0.051 <0.001 | 0.078 0.102 0.109 |
1 | 0.05 ± 0.28 | −0.01 ± 0.25 | 0.17 ± 0.80 | ||||
1.1 | −0.16 ± 0.46 | −0.10 ± 0.43 | 0.43 ± 1.18 | ||||
1.2 | 0.17 ± 0.61 | 0.20 ± 0.59 | 0.88 ± 1.15 | ||||
1.3 | −0.20 ± 0.66 | 0.39 ± 0.65 | −0.01 ± 1.03 | ||||
1.4 | 0.13 ± 1.14 | 0.34 ± 0.72 | 1.24 ± 0.70 | ||||
1.5 | −0.47 ± 0.88 | 0.76 ± 0.63 | 1.05 ± 0.57 | ||||
C3-C4 recruitment: diff post-pre (mV) | 0.9 | 0.02 ± 0.07 | −0.004 ± 0.01 | 0.01 ± 0.02 | Fintensity (6, 48) = 0.96 Finterven. (2, 16) = 0.99 Finterac. (12, 96) = 1.69 | 0.460 0.395 0.081 | 0.023 0.057 0.037 |
1 | 0.01 ± 0.09 | −0.01 ± 0.02 | 0.02 ± 0.05 | ||||
1.1 | 0.01 ± 0.04 | −0.03 ± 0.11 | 0.001 ± 0.03 | ||||
1.2 | 0.01 ± 0.03 | −0.04 ± 0.11 | 0.004 ± 0.02 | ||||
1.3 | −0.03 ± 0.09 | −0.04 ± 0.11 | −0.01 ± 0.03 | ||||
1.4 | 0.03 ± 0.09 | −0.06 ± 0.11 | 0.01 ± 0.04 | ||||
1.5 | 0.04 ± 0.10 | −0.003 ± 0.09 | −0.02 ± 0.04 | ||||
C3-C4 recruitment: diff foll-pre (mV) | 0.9 | 0.03 ± 0.09 | 0.02 ± 0.05 | 0.01 ± 0.02 | Fintensity (6, 48) = 0.31 Finterven. (2, 16) = 0.78 Finterac. (12, 96) = 1.10 | 0.929 0.474 0.373 | 0.008 0.036 0.035 |
1 | 0.02 ± 0.09 | −0.01 ± 0.03 | 0.04 ± 0.10 | ||||
1.1 | 0.01 ± 0.05 | −0.002 ± 0.11 | 0.01 ± 0.02 | ||||
1.2 | 0.02 ± 0.05 | 0.004 ± 0.02 | 0.02 ± 0.03 | ||||
1.3 | 0.03 ± 0.04 | 0.01 ± 0.02 | 0.001 ± 0.03 | ||||
1.4 | 0.04 ± 0.08 | −0.01 ± 0.05 | 0.01 ± 0.03 | ||||
1.5 | 0.06 ± 0.08 | 0.001 ± 0.04 | 0.01 ± 0.03 | ||||
C6-C7 recruitment: diff post-pre (mV) | 0.9 | 0.003 ± 0.03 | −0.001 ± 0.03 | 0.01 ± 0.02 | Fintensity (6, 48) = 2.14 Finterven. (2, 16) = 0.67 Finterac. (12, 96) = 0.51 | 0.066 0.525 0.906 | 0.041 0.023 0.023 |
1 | −0.001 ± 0.03 | 0.04 ± 0.10 | 0.01 ± 0.03 | ||||
1.1 | 0.004 ± 0.02 | −0.01 ± 0.05 | 0.01 ± 0.03 | ||||
1.2 | −0.03 ± 0.09 | −0.01 ± 0.06 | −0.01 ± 0.03 | ||||
1.3 | −0.04 ± 0.11 | −0.02 ± 0.04 | 0.001 ± 0.05 | ||||
1.4 | −0.03 ± 0.08 | −0.01 ± 0.05 | −0.004 ± 0.05 | ||||
1.5 | −0.02 ± 0.12 | 0.01 ± 0.04 | 0.01 ± 0.06 | ||||
C6-C7 recruitment: diff foll-pre (mV) | 0.9 | 0.01 ± 0.02 | −0.004 ± 0.03 | 0.02 ± 0.02 | Fintensity (6, 48) = 0.40 Finterven. (2, 16) = 0.16 Finterac. (12, 96) = 0.72 | 0.878 0.850 0.725 | 0.010 0.005 0.039 |
1 | −0.0004 ± 0.03 | 0.03 ± 0.09 | 0.02 ± 0.02 | ||||
1.1 | 0.01 ± 0.02 | −0.001 ± 0.04 | 0.02 ± 0.04 | ||||
1.2 | −0.02 ± 0.10 | 0.01 ± 0.02 | 0.003 ± 0.03 | ||||
1.3 | 0.02 ± 0.04 | 0.01 ± 0.02 | −0.02 ± 0.08 | ||||
1.4 | 0.01 ± 0.09 | 0.004 ± 0.03 | 0.004 ± 0.04 | ||||
1.5 | −0.01 ± 0.14 | 0.002 ± 0.02 | 0.03 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumru, H.; Rodríguez-Cañón, M.; Edgerton, V.R.; García, L.; Flores, Á.; Soriano, I.; Opisso, E.; Gerasimenko, Y.; Navarro, X.; García-Alías, G.; et al. Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. J. Clin. Med. 2021, 10, 3278. https://doi.org/10.3390/jcm10153278
Kumru H, Rodríguez-Cañón M, Edgerton VR, García L, Flores Á, Soriano I, Opisso E, Gerasimenko Y, Navarro X, García-Alías G, et al. Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. Journal of Clinical Medicine. 2021; 10(15):3278. https://doi.org/10.3390/jcm10153278
Chicago/Turabian StyleKumru, Hatice, María Rodríguez-Cañón, Victor R. Edgerton, Loreto García, África Flores, Ignasi Soriano, Eloy Opisso, Yury Gerasimenko, Xavier Navarro, Guillermo García-Alías, and et al. 2021. "Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study" Journal of Clinical Medicine 10, no. 15: 3278. https://doi.org/10.3390/jcm10153278
APA StyleKumru, H., Rodríguez-Cañón, M., Edgerton, V. R., García, L., Flores, Á., Soriano, I., Opisso, E., Gerasimenko, Y., Navarro, X., García-Alías, G., & Vidal, J. (2021). Transcutaneous Electrical Neuromodulation of the Cervical Spinal Cord Depends Both on the Stimulation Intensity and the Degree of Voluntary Activity for Training. A Pilot Study. Journal of Clinical Medicine, 10(15), 3278. https://doi.org/10.3390/jcm10153278