Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Intervention
2.3.1. TSS
2.3.2. WBV
2.4. Spasticity Measurement
2.5. Data Analysis
3. Results
3.1. Effect of TSS on Quadriceps Spasticity
3.2. Effect of WBV on Quadriceps Spasticity
3.3. Differences between TSS and WBV
3.4. Influence of Baseline Spasticity on Change in Quadriceps Spasticity
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holtz, K.A.; Lipson, R.; Noonan, V.K.; Kwon, B.K.; Mills, P.B. Prevalence and Effect of Problematic Spasticity After Traumatic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2017, 98, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Sköld, C. Spasticity in spinal cord injury: Self- and clinically rated intrinsic fluctuations and intervention-induced changes. Arch. Phys. Med. Rehabil. 2000, 81, 144–149. [Google Scholar] [CrossRef]
- Taricco, M.; Adone, R.; Pagliacci, C.; Telaro, E. Pharmacological interventions for spasticity following spinal cord injury. Cochrane Database Syst. Rev. 2000, CD001131. [Google Scholar] [CrossRef]
- Field-Fote, E.C.; Furbish, C.L.; Tripp, N.E.; Zanca, J.; Dyson-Hudson, T.; Kirshblum, S.; Heinemann, A.; Chen, D.; Felix, E.; Worobey, L.; et al. Characterizing the Experience of Spasticity after Spinal Cord Injury: A National Survey Project of the Spinal Cord Injury Model Systems Centers. Arch. Phys. Med. Rehabil. 2021. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Persy, I.; Rattay, F.; Pinter, M.M.; Kern, H.; Dimitrijevic, M.R. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 2007, 26, 275–295. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; McKay, W.B.; Tansey, K.E.; Mayr, W.; Kern, H.; Minassian, K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord Med. 2014, 37, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Pierrot-Deseilligny, E. Assessing changes in presynaptic inhibition of Ia afferents during movement in humans. J. Neurosci. Methods 1997, 74, 189–199. [Google Scholar] [CrossRef]
- Butler, J.E.; Godfrey, S.; Thomas, C.K. Depression of involuntary activity in muscle paralyzed by spinal cord injury. Muscle Nerve 2006, 33, 637–644. [Google Scholar] [CrossRef]
- Jankowska, E. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 1992, 38, 335–378. [Google Scholar] [CrossRef]
- Bajd, T.; Gregoric, M.; Vodovnik, L.; Benko, H. Electrical stimulation in treating spasticity resulting from spinal cord injury. Arch. Phys. Med. Rehabil. 1985, 66, 515–517. [Google Scholar] [PubMed]
- Seib, T.P.; Price, R.; Reyes, M.R.; Lehmann, J.F. The quantitative measurement of spasticity: Effect of cutaneous electrical stimulation. Arch. Phys. Med. Rehabil. 1994, 75, 746–750. [Google Scholar] [CrossRef]
- DeForest, B.A.; Bohorquez, J.; Perez, M.A. Vibration attenuates spasm-like activity in humans with spinal cord injury. J. Physiol. 2020, 598, 2703–2717. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Soriano, J.; Serrano-Muñoz, D.; Bravo-Esteban, E.; Avendaño-Coy, J.; Ávila-Martin, G.; Galán-Arriero, I.; Taylor, J. Afferent stimulation inhibits abnormal cutaneous reflex activity in patients with spinal cord injury spasticity syndrome. NeuroRehabilitation 2018, 43, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Estes, S.P.; Iddings, J.A.; Field-Fote, E.C. Priming Neural Circuits to Modulate Spinal Reflex Excitability. Front. Neurol. 2017, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, S.; Iddings, J.A.; Ray, S.; Kirk-Sanchez, N.J.; Field-Fote, E.C. Comparison of Single-Session Dose Response Effects of Whole Body Vibration on Spasticity and Walking Speed in Persons with Spinal Cord Injury. Neurotherapeutics 2018, 15, 684–696. [Google Scholar] [CrossRef] [Green Version]
- Ness, L.L.; Field-Fote, E.C. Effect of whole-body vibration on quadriceps spasticity in individuals with spastic hypertonia due to spinal cord injury. Restor. Neurol. Neurosci. 2009, 27, 621–631. [Google Scholar] [CrossRef]
- Danner, S.M.; Hofstoetter, U.S.; Ladenbauer, J.; Rattay, F.; Minassian, K. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif. Organs 2011, 35, 257–262. [Google Scholar] [CrossRef]
- Holsheimer, J. Computer modelling of spinal cord stimulation and its contribution to therapeutic efficacy. Spinal Cord 1998, 36, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, R.; Kramer, A.; Gollhofer, A.; Taube, W. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand. J. Med. Sci. Sports 2013, 23, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Elbasiouny, S.M.; Moroz, D.; Bakr, M.M.; Mushahwar, V.K. Management of spasticity after spinal cord injury: Current techniques and future directions. Neurorehabil. Neural Repair 2010, 24, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofstoetter, U.S.; Freundl, B.; Danner, S.M.; Krenn, M.J.; Mayr, W.; Binder, H.; Minassian, K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J. Neurotrauma 2020, 37, 481–493. [Google Scholar] [CrossRef]
- Karacan, I.; Cidem, M.; Cidem, M.; Türker, K.S. Whole-body vibration induces distinct reflex patterns in human soleus muscle. J. Electromyogr. Kinesiol. 2017, 34, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Stillman, B.; McMeeken, J. A video-based version of the pendulum test: Technique and normal response. Arch. Phys. Med. Rehabil. 1995, 76, 166–176. [Google Scholar] [CrossRef]
- Fowler, E.G.; Nwigwe, A.I.; Ho, T.W. Sensitivity of the pendulum test for assessing spasticity in persons with cerebral palsy. Dev. Med. Child Neurol. 2000, 42, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kinney, A.R.; Eakman, A.M.; Graham, J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020, 101, 2219–2226. [Google Scholar] [CrossRef]
- Danner, S.M.; Krenn, M.; Hofstoetter, U.S.; Toth, A.; Mayr, W.; Minassian, K. Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS ONE 2016, 11, e0147479. [Google Scholar] [CrossRef] [Green Version]
- Pollock, R.D.; Woledge, R.C.; Martin, F.C.; Newham, D.J. Effects of whole body vibration on motor unit recruitment and threshold. J. Appl. Physiol. 2012, 112, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, M.; Lim, J. Electromyography activity of vastus lateralis muscle during whole-body vibrations of different frequencies. J. Strength Cond. Res. 2003, 17, 621–624. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Binder, H.; Minassian, K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE 2018, 13, e0192013. [Google Scholar] [CrossRef] [Green Version]
- Pinter, M.M.; Gerstenbrand, F.; Dimitrijevic, M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 2000, 38, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Holsheimer, J. Which Neuronal Elements are Activated Directly by Spinal Cord Stimulation. Neuromodulation 2002, 5, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V.; Sinkjaer, T. Spastic movement disorder: Impaired reflex function and altered muscle mechanics. Lancet. Neurol. 2007, 6, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Mense, S. Nociception from skeletal muscle in relation to clinical muscle pain. Pain 1993, 54, 241–289. [Google Scholar] [CrossRef]
- Lima, C.R.; Sahu, P.K.; Martins, D.F.; Reed, W.R. The Neurophysiological Impact of Experimentally-Induced Pain on Direct Muscle Spindle Afferent Response: A Scoping Review. Front. Cell. Neurosci. 2021, 15, 649529. [Google Scholar] [CrossRef]
- ALNAES, E.; JANSEN, J.K.; RUDJORD, T. FUSIMOTOR ACTIVITY IN THE SPINAL CAT. Acta Physiol. Scand. 1965, 63, 197–212. [Google Scholar] [CrossRef]
- Macefield, V.G. Discharge rates and discharge variability of muscle spindle afferents in human chronic spinal cord injury. Clin. Neurophysiol. 2013, 124, 114–119. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Atkinson, D.A.; Floyd, T.C.; Gorodnichev, R.M.; Moshonkina, T.R.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Effects of paired transcutaneous electrical stimulation delivered at single and dual sites over lumbosacral spinal cord. Neurosci. Lett. 2015, 609, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayenko, D.G.; Atkinson, D.A.; Dy, C.J.; Gurley, K.M.; Smith, V.L.; Angeli, C.; Harkema, S.J.; Edgerton, V.R.; Gerasimenko, Y.P. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J. Appl. Physiol. 2015, 118, 1364–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayenko, D.G.; Masani, K.; Alizadeh-Meghrazi, M.; Popovic, M.R.; Craven, B.C. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury. Neurosci. Lett. 2010, 482, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Bergmans, J.; Delwaide, P.J.; Gadea-Ciria, M. Short-latency effects of low-threshold muscular afferent fibers on different motoneuronal pools of the lower limb in man. Exp. Neurol. 1978, 60, 380–385. [Google Scholar] [CrossRef]
- Hultborn, H.; Meunier, S.; Pierrot-Deseilligny, E.; Shindo, M. Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J. Physiol. 1987, 389, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crone, C.; Hultborn, H.; Mazières, L.; Morin, C.; Nielsen, J.; Pierrot-Deseilligny, E. Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: A study in man and the cat. Exp. Brain Res. 1990, 81, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Sasaki, A.; Kaneko, N.; Nakazawa, K. Remote muscle contraction enhances spinal reflexes in multiple lower-limb muscles elicited by transcutaneous spinal cord stimulation. Exp. Brain Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bekhet, A.H.; Bochkezanian, V.; Saab, I.M.; Gorgey, A.S. The Effects of Electrical Stimulation Parameters in Managing Spasticity After Spinal Cord Injury: A Systematic Review. Am. J. Phys. Med. Rehabil. 2019, 98, 484–499. [Google Scholar] [CrossRef] [PubMed]
- McCormick, Z.L.; Chu, S.K.; Binler, D.; Neudorf, D.; Mathur, S.N.; Lee, J.; Marciniak, C. Intrathecal Versus Oral Baclofen: A Matched Cohort Study of Spasticity, Pain, Sleep, Fatigue, and Quality of Life. PM R 2016, 8, 553–562. [Google Scholar] [CrossRef]
- Thomas, C.K.; Häger-Ross, C.K.; Klein, C.S. Effects of baclofen on motor units paralysed by chronic cervical spinal cord injury. Brain 2010, 133, 117–125. [Google Scholar] [CrossRef] [Green Version]
Whole Group FSE | ||||
Baseline | Immediate | 15-min Post-Intervention | 45-min Post-Intervention | |
TSS (n = 32) | 44.78 ± 16.70 | 46.64 ± 15.91 (0.11) | 45.97 ± 16.65 (0.07) | 46.46 ± 15.72 (0.10) |
WBV (n = 32) | 50.34 ± 20.75 | 51.96 ± 20.85 (0.05) | 49.69 ± 17.48 (−0.03) | 49.86 ± 17.10 (−0.03) |
High Spasticity Group FSE | ||||
Baseline | Immediate | 15-min Post-Intervention | 45-min Post-Intervention | |
TSS (n = 18) | 32.69 ± 9.50 | 37.33 ± 9.80 * (0.48) | 35.85 ± 10.31 (0.32) | 38.24 ± 10.60 * (0.55) |
WBV (n = 13) | 29.36 ± 8.03 | 32.10 ± 8.51 (0.33) | 37.91 ± 10.81 * (0.90) | 37.13 ± 12.60 (0.74) |
Low Spasticity Group FSE | ||||
Baseline | Immediate | 15-min Post-Intervention | 45-min Post-Intervention | |
TSS (n = 14) | 60.33 ± 9.17 | 58.60 ± 14.28 (−0.14) | 58.97 ± 14.09 (−0.11) | 57.04 ± 15.11 (−0.26) |
WBV (n = 19) | 64.62 ± 13.10 | 64.51 ± 15.85 (−0.01) | 57.76 ± 16.71 * (−0.46) | 58.58 ± 14.15 * (-0.44) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandler, E.B.; Condon, K.; Field-Fote, E.C. Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury. J. Clin. Med. 2021, 10, 3267. https://doi.org/10.3390/jcm10153267
Sandler EB, Condon K, Field-Fote EC. Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury. Journal of Clinical Medicine. 2021; 10(15):3267. https://doi.org/10.3390/jcm10153267
Chicago/Turabian StyleSandler, Evan B., Kyle Condon, and Edelle C. Field-Fote. 2021. "Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury" Journal of Clinical Medicine 10, no. 15: 3267. https://doi.org/10.3390/jcm10153267
APA StyleSandler, E. B., Condon, K., & Field-Fote, E. C. (2021). Efficacy of Transcutaneous Spinal Stimulation versus Whole Body Vibration for Spasticity Reduction in Persons with Spinal Cord Injury. Journal of Clinical Medicine, 10(15), 3267. https://doi.org/10.3390/jcm10153267