Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Types of Lasers Used for LoS Treatment
3.1.1. Pulsed Dye Laser (PDL)
3.1.2. Excimer Laser
3.1.3. Carbon Dioxide (CO2) or Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Fractional Lasers
3.1.4. Alexandrite Laser
3.1.5. Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) 1064 nm Laser
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreuter, A.; Krieg, T.; Worm, M.; Wenzel, J.; Moinzadeh, P.; Kuhn, A.; Aberer, E.; Scharffetter-Kochanek, K.; Horneff, G.; Reil, E.; et al. German guidelines for the diagnosis and therapy of localized scleroderma. J. Dtsch. Dermatol. Ges. 2016, 14, 199–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunzler, E.; Florez-Pollack, S.; Teske, N.; O’Brien, J.; Prasad, S.; Jacobe, H. Linear morphea: Clinical characteristics, disease course, and treatment of the Morphea in Adults and Children cohort. J. Am. Acad. Dermatol. 2019, 80, 1664–1670.e1. [Google Scholar] [CrossRef] [Green Version]
- Knobler, R.; Moinzadeh, P.; Hunzelmann, N.; Kreuter, A.; Cozzio, A.; Mouthon, L.; Cutolo, M.; Rongioletti, F.; Denton, C.P.; Rudnicka, L.; et al. European Dermatology Forum S1-guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: Localized scleroderma, systemic sclerosis and overlap syndromes. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1401–1424. [Google Scholar] [CrossRef]
- Wolska-Gawron, K.; Bartosińska, J.; Krasowska, D. MicroRNA in localized scleroderma: A review of literature. Arch. Dermatol. Res. 2020, 312, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Mertens, J.S.; Seyger, M.M.B.; Thurlings, R.M.; Radstake, T.R.D.J.; de Jong, E.M.G.J. Morphea and Eosinophilic Fasciitis: An Update. Am. J. Clin. Dermatol. 2017, 18, 491–512. [Google Scholar] [CrossRef] [Green Version]
- Krasowska, D.; Rudnicka, L.; Dańczak-Pazdrowska, A.; Chodorowska, G.; Woźniacka, A.; Lis-Święty, A.; Czuwara, J.; Maj, J.; Majewski, S.; Sysa-Jędrzejowska, A.; et al. Localized scleroderma (morphea). Diagnostic and therapeutic recommendations of the Polish Dermatological Society. Dermatol. Rev. Przegląd Dermatol. 2019, 106, 333–353. [Google Scholar] [CrossRef]
- Arkachaisri, T.; Vilaiyuk, S.; Torok, K.S.; Medsger, T.A. Development and initial validation of the Localized Scleroderma Skin Damage Index and Physician Global Assessment of disease Damage: A proof-of-concept study. Rheumatology 2010, 49, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypek-Salamon, A.; Lis-Świȩty, A.; Ranosz-Janicka, I.; Brzezińska-Wcisło, L. Localized Scleroderma Cutaneous Assessment Tool (LoSCAT) adapted for use in adult patients: Report from an initial validation study. Health Qual. Life Outcomes 2018, 16, 1–7. [Google Scholar] [CrossRef]
- Szczȩch, J.; Samotij, D.; Jaworecka, K.; Tobiasz, A.; Reich, A. Quality of Life in Patients with Morphea: A Cross-Sectional Study and a Review of the Current Literature. Biomed. Res. Int. 2020, 2020, 9186274. [Google Scholar] [CrossRef] [Green Version]
- Aksu Arica, D. Cosmetical treatments of connective tissue disorders. Dermatol. Ther. 2019, 32, 10–12. [Google Scholar] [CrossRef]
- Creadore, A.; Watchmaker, J.; Maymone, M.B.C.; Pappas, L.; Lam, C.; Vashi, N.A. Cosmetic treatment in patients with autoimmune connective tissue diseases: Best practices for patients with morphea/systemic sclerosis. J. Am. Acad. Dermatol. 2020, 83, 315–341. [Google Scholar] [CrossRef]
- Forbat, E.; Al-Niaimi, F. Nonvascular uses of pulsed dye laser in clinical dermatology. J. Cosmet. Dermatol. 2019, 18, 1186–1201. [Google Scholar] [CrossRef]
- Erceg, A.; de Jong, E.M.J.G.; van de Kerkhof, P.C.M.; Seyger, M.M.B. The efficacy of pulsed dye laser treatment for inflammatory skin diseases: A systematic review. J. Am. Acad. Dermatol. 2013, 69, 609–615.e8. [Google Scholar] [CrossRef]
- Brewin, M.P.; Lister, T.S. Prevention or treatment of hypertrophic burn scarring: A review of when and how to treat with the pulsed dye laser. Burns 2014, 40, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Oosterhoff, T.C.H.; Beekman, V.K.; van der List, J.P.; Niessen, F.B. Laser treatment of specific scar characteristics in hypertrophic scars and keloid: A systematic review. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 48–64. [Google Scholar] [CrossRef]
- Deng, H.; Tan, T.; Luo, G.; Tan, J.; Li-Tsang, C.W.P. Vascularity and Thickness Changes in Immature Hypertrophic Scars Treated with a Pulsed Dye Laser. Lasers Surg. Med. 2020, 1. [Google Scholar] [CrossRef]
- Alster, T.S.; Williams, C.M. Treatment of keloid sternotomy scars with 585 nm flashlamp-pumped pulsed-dye laser. Lancet 1995, 345, 1198–1200. [Google Scholar] [CrossRef]
- Alster, T.S.; McMeekin, T.O. Improvement of facial acne scars by the 585 nm flashlamp-pumped pulsed dye laser. J. Am. Acad. Dermatol. 1996, 35, 79–87. [Google Scholar] [CrossRef]
- Anderson, R.R.; Parrish, J.A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science 1983, 220, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, D.; Alster, T.S. Use of a 585 nm pulsed dye laser for the treatment of morphea. Dermatol. Surg. 2002, 28, 615–616. [Google Scholar] [CrossRef]
- Tawfik, A.A.; Shokir, H.; Soliman, M.; Salah, L.; Fathy, S. Pulsed dye laser in the treatment of localized scleroderma and its effects on CD34+ and factor XIIIa+ Cells: An immunohistochemical study. Am. J. Clin. Dermatol. 2013, 14, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kakimoto, C.V.; Victor Ross, E.; Uebelhoer, N.S. En coup de sabre presenting as a port-wine stain previously treated with pulsed dye laser. Dermatol. Surg. 2009, 35, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, J.Y.; Kim, H.O.; Park, Y.M. En coup de sabre presenting as a port-wine stain initially treated with a pulsed dye laser. J. Dermatol. 2011, 38, 209–210. [Google Scholar] [CrossRef]
- Pickert, A.J.; Carpentieri, D.; Price, H.; Hansen, R.C. Early morphea mimicking acquired port-wine stain. Pediatr. Dermatol. 2014, 31, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, R.I.; Bard, S.; Blyumin, M.; Smidt, A.C.; Chamlin, S.L.; Connelly, E.A. Early localized morphea mimicking an acquired port-wine stain. J. Am. Acad. Dermatol. 2011, 64, 779–782. [Google Scholar] [CrossRef]
- Ng, S.S.Y.; Tay, Y.K. Inflammatory morphea mimicking an acquired port-wine stain initially treated with pulsed-dye laser. J. Cosmet. Laser Ther. 2015, 17, 277–280. [Google Scholar] [CrossRef]
- Miura, T.; Yamamoto, T. Pediatric linear scleroderma initially developed with angioma serpiginosum-like appearances. J. Dermatol. 2015, 42, 750–751. [Google Scholar] [CrossRef]
- Ly, K.; Smith, M.P.; Thibodeaux, Q.G.; Beck, K.M.; Liao, W.; Bhutani, T. Beyond the Booth: Excimer Laser for Cutaneous Conditions. Dermatol. Clin. 2020, 38, 157–163. [Google Scholar] [CrossRef]
- Beggs, S.; Short, J.; Rengifo-Pardo, M.; Ehrlich, A. Applications of the Excimer Laser: A Review. Dermatol. Surg. 2015, 41, 1201–1211. [Google Scholar] [CrossRef]
- Mehraban, S.; Feily, A. 308nm excimer laser in dermatology. J. Lasers Med. Sci. 2014, 5, 8–12. [Google Scholar] [CrossRef]
- Nisticò, S.P.; Saraceno, R.; Schipani, C.; Costanzo, A.; Chimenti, S. Different applications of monochromatic excimer light in skin diseases. Photomed. Laser Surg. 2009, 27, 647–654. [Google Scholar] [CrossRef] [Green Version]
- Hanson, A.H.; Fivenson, D.P.; Schapiro, B. Linear scleroderma in an adolescent woman treated with methotrexate and excimer laser. Dermatol. Ther. 2014, 27, 203–205. [Google Scholar] [CrossRef]
- Use of Excimer Laser for Morphea. Available online: https://hsrc.himmelfarb.gwu.edu/researchdays_2014/11/ (accessed on 17 February 2021).
- Tatu, A.; Radaschin, D.; Constantin, V.; Stana, P.; Ardeleanu, V. Laser therapy in superficial morphea lesions—Indications, limitations and therapeutic alternatives. J. Mind Med. Sci. 2020, 7, 46–51. [Google Scholar] [CrossRef]
- Prignano, F.; Campolmi, P.; Bonan, P.; Ricceri, F.; Cannarozzo, G.; Troiano, M.; Lotti, T. Fractional CO2 laser: A novel therapeutic device upon photobiomodulation of tissue remodeling and cytokine pathway of tissue repair. Dermatol. Ther. 2009, 22, 8–15. [Google Scholar] [CrossRef]
- Nistico, S.P.; Silvestri, M.; Zingoni, T.; Tamburi, F.; Bennardo, L.; Cannarozzo, G. Combination of Fractional CO2 Laser and Rhodamine-Intense Pulsed Light in Facial Rejuvenation: A Randomized Controlled Trial. Photobiomodul. Photomed. Laser Surg. 2021, 39, 113–117. [Google Scholar] [CrossRef]
- Brauer, J.A.; Gordon Spratt, E.A.; Geronemus, R.G. Laser Therapy in the Treatment of Connective Tissue Diseases: A Review. Dermatol. Surg. 2014, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lodi, G.; Sannino, M.; Caterino, P.; Cannarozzo, G.; Bennardo, L.; Nisticò, S.P. Fractional CO2 laser-assisted topical rifamycin drug delivery in the treatment of pediatric cutaneous leishmaniasis. Pediatr. Dermatol. 2021, 38, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, S.R.; Brianti, P.; Dattola, A.; Bennardo, L.; Silvestri, M.; Schipani, G.; Nisticò, S.P. CO2 laser and photodynamic therapy: Study of efficacy in periocular BCC. Dermatol. Ther. 2018, 31, e12616. [Google Scholar] [CrossRef]
- Hantash, B.M.; Bedi, V.P.; Kapadia, B.; Rahman, Z.; Jiang, K.; Tanner, H.; Chan, K.F.; Zachary, C.B. In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg. Med. 2007, 39, 96–107. [Google Scholar] [CrossRef]
- Reilly, M.J.; Cohen, M.; Hokugo, A.; Keller, G.S. Molecular effects of fractional carbon dioxide laser resurfacing on photodamaged human skin. Arch. Facial Plast. Surg. 2010, 12, 321–325. [Google Scholar] [CrossRef]
- Makboul, M.; Makboul, R.; Abdelhafez, A.H.K.; Hassan, S.S.; Youssif, S.M. Evaluation of the effect of fractional CO2 laser on histopathological picture and TGF-β1 expression in hypertrophic scar. J. Cosmet. Dermatol. 2014, 13, 169–179. [Google Scholar] [CrossRef]
- Grunewald, S.; Bodendorf, M.; Illes, M.; Kendler, M.; Simon, J.C.; Paasch, U. In vivo wound healing and dermal matrix remodelling in response to fractional CO 2 laser intervention: Clinicopathological correlation in non-facial skin. Int. J. Hyperth. 2011, 27, 811–818. [Google Scholar] [CrossRef]
- Laubach, H.J.; Tannous, Z.; Anderson, R.R.; Manstein, D. Skin responses to fractional photothermolysis. Lasers Surg. Med. 2006, 38, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Hantash, B.M.; Mahmood, M.B. Fractional photothermolysis: A novel aesthetic laser surgery modality. Dermatol. Surg. 2007, 33, 525–534. [Google Scholar] [CrossRef]
- Kaushik, S.B.; Alexis, A.F. Nonablative Fractional Laser Resurfacing in Skin of Color: Evidence-based Review. J. Clin. Aesthet. Dermatol. 2017, 10, 51–67. [Google Scholar]
- Labadie, J.G.; Kosche, C.; Kyllo, R.; Johnson, T.; Shumaker, P.R.; Alam, M.; Choi, J.N. Fractional CO2 laser for the treatment of sclerodermatous cGVHD. J. Cosmet. Laser Ther. 2020, 22, 49–51. [Google Scholar] [CrossRef]
- Waibel, J.; Beer, K. Fractional laser resurfacing for thermal burns. J. Drugs Dermatol. 2008, 7, 59–61. [Google Scholar] [PubMed]
- Cho, S.B.; Lee, S.J.; Chung, W.S.; Kang, J.M.; Kim, Y.K. Treatment of burn scar using a carbon dioxide fractional laser. J. Drugs Dermatol. 2010, 9, 173–175. [Google Scholar] [PubMed]
- Bowen, R.E. A novel approach to ablative fractional treatment of mature thermal burn scars. J. Drugs Dermatol. 2010, 9, 389–392. [Google Scholar] [PubMed]
- Kineston, D.; Kwan, J.M.; Uebelhoer, N.S.; Shumaker, P.R. Use of a fractional ablative 10.6-μm carbon dioxide laser in the treatment of a morphea-related contracture. Arch. Dermatol. 2011, 147, 1148–1150. [Google Scholar] [CrossRef]
- Farmer, C.; Griffith, J.L.; Lim, H.W.; Ozog, D.M. Fractionated CO2 laser for treatment of linear morphea: A case series. J. Am. Acad. Dermatol. 2018, 79, AB143. [Google Scholar] [CrossRef]
- Yeager, D.; Ozog, D.M. Persistent improvement at three year follow-up in a patient with localized deep morphea treated with both injected and laser-assisted topical poly-l-lactic acid. Lasers Surg. Med. 2019, 51, S11–S12. [Google Scholar]
- Shalaby, S.M.; Bosseila, M.; Fawzy, M.M.; Abdel Halim, D.M.; Sayed, S.S.; Allam, R.S.H.M. Fractional carbon dioxide laser versus low-dose UVA-1 phototherapy for treatment of localized scleroderma: A clinical and immunohistochemical randomized controlled study. Lasers Med. Sci. 2016, 31, 1707–1715. [Google Scholar] [CrossRef]
- Qu, L.; Liu, A.; Zhou, L.; He, C.; Grossman, P.H.; Moy, R.L.; Mi, Q.S.; Ozog, D. Clinical and molecular effects on mature burn scars after treatment with a fractional CO2 laser. Lasers Surg. Med. 2012, 44, 517–524. [Google Scholar] [CrossRef]
- Cicchi, R.; Kapsokalyvas, D.; Troiano, M.; Campolmi, P.; Morini, C.; Massi, D.; Cannarozzo, G.; Lotti, T.; Pavone, F.S. In vivo non-invasive monitoring of collagen remodelling by two-photon microscopy after micro-ablative fractional laser resurfacing. J. Biophotonics 2014, 7, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Helbig, D.; Paasch, U. Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res. Technol. 2011, 17, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Hantash, B.M.; Bedi, V.P.; Chan, K.F.; Zachary, C.B. Ex vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg. Med. 2007, 39, 87–95. [Google Scholar] [CrossRef]
- Kozarev, J. Fractional Er:YAG Laser Therapy for Localized Scleroderma (Summary). J. Laser Health Acad. 2012, 1, S07. [Google Scholar]
- Ghorbel, H.H.; Lacour, J.P.; Passeron, T. Use of 2940-nm Erbium-Yag fractional laser for treating the skin texture changes in stabilized Parry Romberg syndrome. Eur. J. Dermatol. 2013, 23, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, I.A. Current uses of alexandrite laser in dermatology. Expert. Rev. Dermatol. 2007, 2, 655–661. [Google Scholar] [CrossRef]
- Nistico, S.P.; Bennardo, L.; Del Duca, E.; Tamburi, F.; Rajabi-Estarabadi, A.; Nouri, K. Long-pulsed 755-nm alexandrite laser equipped with a sapphire handpiece: Unwanted hair removal in darker phototypes. Lasers Med. Sci. 2021, 36, 237–238. [Google Scholar] [CrossRef]
- Arpey, C.J.; Patel, D.S.; Stone, M.S.; Qiang-Shao, J.; Moore, K.C. Treatment of Atrophoderma of Pasini and Pierini-Associated hyperpigmentation with the Q-switched Alexandrite laser: A clinical, histologic, and ultrastructural appraisal. Lasers Surg. Med. 2000, 27, 206–212. [Google Scholar] [CrossRef]
- Hong, J.S.; Park, Y.; Seo, K.K.; Goo, B.L.; Hwang, E.J.; Park, G.Y.; Eun, H.C. Long pulsed 1064 nm Nd:YAG laser treatment for wrinkle reduction and skin laxity: Evaluation of new parameters. Int. J. Dermatol. 2015, 54, 345–350. [Google Scholar] [CrossRef]
- Truitt, A.; Elkeeb, L.; Ortiz, A.; Saedi, N.; Echague, A.; Kelly, K.M. Evaluation of a long pulsed 1064-nm Nd:YAG laser for improvement in appearance of cellulite. J. Cosmet. Laser Ther. 2012, 1, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, A.E.; Anderson, R.R.; DiGiorgio, C.; Jiang, S.I.B.; Shafiq, F.; Avram, M.M. An expanded study of long-pulsed 1064 nm Nd:YAG laser treatment of basal cell carcinoma. Lasers Surg. Med. 2018, 13, 727–731. [Google Scholar] [CrossRef]
- Piccolo, D.; Kostaki, D.; Del Duca, E.; Cannarozzo, G.; Sannino, M.; Nisticò, S. Long-Pulsed 1064-nm Nd:YAG Laser for the Treatment of Onychomycosis. Photomed. Laser Surg. 2017, 35, 213–216. [Google Scholar] [CrossRef]
- Tanzi, E.L.; Alster, T.S. Long-pulsed 1064-nm Nd:YAG laser-assisted hair removal in all skin types. Dermatol. Surg. 2004, 30, 13–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bimbi, C.; Koumoundourou, D.; Kyriakou, G.; Brzezinski, P. Improvement of linear scleroderma of the limbs after treatment with long-pulsed 1064 nm Nd:YAG laser: A case report. Dermatol. Online J. 2020, 11, 376–378. [Google Scholar] [CrossRef]
- Rinaldi, F. Laser: A review. Clin. Dermatol. 2008, 26, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Husain, Z.; Alster, T.S. The role of lasers and intense pulsed light technology in dermatology. Clin. Cosmet. Investig. Dermatol. 2016, 9, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisticò, S.P.; Tolone, M.; Zingoni, T.; Tamburi, F.; Scali, E.; Bennardo, L.; Cannarozzo, G. A New 675 nm Laser Device in the Treatment of Melasma: Results of a Prospective Observational Study. Photobiomodulation Photomed. Laser Surg. 2020, 38, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, E.L.; Lupton, J.R.; Alster, T.S. Lasers in dermatology: Four decades of progress. J. Am. Acad. Dermatol. 2003, 49, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Zwischenberger, B.A.; Jacobe, H.T. A systematic review of morphea treatments and therapeutic algorithm. J. Am. Acad. Dermatol. 2011, 65, 925–941. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Salgado, P.; García-Romero, M.T. Morphea: A practical review of its diagnosis, classification and treatment. Gac. Med. Mex. 2019, 155, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannarozzo, G.; Negosanti, F.; Sannino, M.; Santoli, M.; Bennardo, L.; Banzola, N.; Negosanti, L.; Nisticò, S.P. Q-switched Nd:YAG laser for cosmetic tattoo removal. Dermatol. Ther. 2019, 32, e13042. [Google Scholar] [CrossRef] [PubMed]
Study | Type of Study | No of the Patients Completing the Study | Patients Age [Years] | Morphea Type | Duration of Disease | Type of Laser Used | Parameters | No of Treatments | Results of Treatment | Adverse Effects | Additional Therapy |
---|---|---|---|---|---|---|---|---|---|---|---|
Eisen et al. [20] | Case report | 1 | 41 | Plaque | - | Pulsed dye laser (PDL) | wavelength 585 nm long-pulsed, fluence 5.0 J/cm2, spot size 10 mm, cryogen duration 30 ms | 4 | Softening and improvement in pigmentation of a lesion | - | - |
Tawfik et al. [21] | Investigational | 26 | 14–37 | Plaque | 1–5 years | Pulsed dye laser (PDL) | wavelength 585 nm, pulse duration 450 us, spot size 5 or 7, fluence 7.5–8.5 J/cm2 | 4–12, every 2 weeks | Improvement in clinical, histological, immunohistological aspects; high patients’ satisfaction scores | - | - |
Kakimoto et al. [22] | Case report | 1 | 6 | Linear (En coup de sabre) | 3 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 8 J/cm2, pulse duration 1.5 ms, duration 40 us, delay 30 us | 1 | Alleviation of erythema | Blistering, hypopigmentation | - |
Kim et al. [23] | Case report | 1 | 24 | Linear | 4 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, pulse width 10 msec, duration 30 ms, delay 30 ms | 2 | Minimal improvement; temporary alleviation of erythema | - | - |
Pickert et al. [24] | Case report | 1 | 2,5 | Linear | 6 months | Pulsed dye laser (PDL) | fluence 8.5 J/cm2, (I treatment), 9.0 J/cm2 (II treatment), 9.25 J/cm2 (III treatment), spot size 10 mm, pulse duration 1.5 ms | 3 | Alleviation of erythema | - | - |
Nijhawan et al. [25] | Case report | 1 | 6 | Linear | 7 months | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 8.5 J/cm2, pulse duration 1.5 ms total 53 pulses | 1 | Subsequent resolution of the erythema | - | - |
Ng et al. [26] | Case report | 1 | 7 | Linear | 7 months | Pulsed dye laser (PDL) | - | 3 | Temporary alleviation of erythema | - | - |
Miura et al. [27] | Case report | 1 | 11 | Linear | 2 years | Pulsed dye laser (PDL) | wavelength 595 nm, spot 7 mm, fluence 5.5 J/cm2 | 2 | Temporary alleviation of erythema; lesions became white and slightly shiny | - | - |
Nisticò et al. [31] | Investigational | 5 | 46 | Plaque | - | Excimer | mean MED 0.3 J/cm2, mean starting dose 0.25 J/cm2, mean dose per session 1.5 J/cm2, mean total dose 10 J/cm2 | 8–12 (mean 7) | Four months after treatments, partial remission seen in 60% patients, whereas slight improvement in 40% patients | Residual hyperpigmentation | - |
Hanson et al. [32] | Case report | 1 | 17 | Linear | 4 years | Excimer | maximum 2200 mJ/treatment | In total 34; sessions twice weekly | Remission of active disease, a decrease in the size of the lesion and minimalizing of subjective symptoms | - | Methotrexate |
Hajjar et al. [33] | Case report | 1 | 28 | Plaque | - | Excimer | 300 mJ one treatment; then 260 mJ | 16 | Resolution of local inflammation | Erythema after the first treatment (300 mJ); after decreasing the dose to 260 mJ–none | Hydroxychloroquine 400 mg and calcipotriene/bethametasone ointment twice a day |
Tatu et al. [34] | Observational | - | - | Plaque | - | Excimer | - | - | Improvement of inflammatory lesions | - | - |
Kineston et al. [51] | Case report | 1 | 27 | Mixed | 1 year | Fractional carbon dioxide | single pass, single pulse, no overlap, fluence 50-mJ, 5% density | 1 | Improvement in the range of motions, alleviating pain | - | Methotrexate, topical agents, UV-A1, physical therapy |
Farmer et al. [52] | Case report | 2 | (1) 50 (2) 22 | 1) Linear 2) Linear | - - | both patients: fractional carbon dioxide | (1) pulse energy 15 mJ/cm2, density 15% (2) pulse energy 100 mJ/cm2, density 3% | (1) 1 (2) 5 | (1) improvement in hyperpigmentation and asymmetry (2) significant improvement in hyperpigmentation, induration, and range of motions | - | (1) topical poly-l-lactic acid and injection of botulinum toxin (2) none |
Yeager et al. [53] | Case report | 1 | 44 | Deep morphea | - | Fractional carbon dioxide | pulse energy 80 mJ, density 5%, pulse energy 50 mJ, density 10% | 4 | Significant cosmetic improvement | - | After the laser therapy, sudden application of topical and injected poly-l-lactic acid |
Shalaby et al. [54] | A parallel intra-individual comparative randomized controlled trial | 17 | 7–47 | Plaque n = 12 Linear n = 3 En coup de sabre n = 2 | 6–96 months | Fractional carbon dioxide | power 25 W, dwelling time 500 msec, spacing 500 um | 3 | Significantly better clinical, histopathological, immunohistochemical results; high patients’ satisfaction scores | Pain during sessions (mild to moderate n = 17, marked n = 10), itch in first 24 h after laser treatment (n = 8), persistent erythema (n = 1), hyperpigmentation (n = 1) | - |
Kozarev [59] | Case report | 2 | - | Plaque | - | Er:YAG fractional laser | scanning device in turbo 3 mode, pulse width 100 ms, fluence 24 J/cm2 | 3 | complete remission | transient hyperpigmentation | - |
Ghorbel et al. [60] | Case report | 1 | 50 | Parry Romberg Syndrome | 5 years | Er:YAG fractional laser | wavelength 2940 nm, fluence 120 J/cm2, 12-mm diameter handpiece, coagulation level at 4 | 4 | excellent cosmetic results- pigmentation normalization of the lesions; tightening, softening of lesions; texture improvement | Local; erythema lasting <1 week and pinpoint bleeding | - |
Arpey et al. [63] | Case report | 1 | 22 | Atrophoderma Pasini-Pierini | 8 years | Q-switched alexandrite laser | wavelength 755 nm, fluence 9.0 J/cm2, spot 3 mm, repetition rate 2 Hz | 3 | decrease the severity of hyperpigmentation by 50% | - | - |
Bimbi et al. [69] | Case report | 1 | 22 | Linear | 2 years | long-pulsed Nd:YAG associated with pulsed light | wavelength 1064 nm, fluence 14 J/cm2, spot 5 mm, pulse duration 0.8 ms. | 5 | treated skin more pliable, plaques softened, mobility restored and hyperpigmentation decreased (due to pulsed light) | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanik-Kułak, P.; Michalska-Jakubus, M.; Krasowska, D. Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. J. Clin. Med. 2021, 10, 3409. https://doi.org/10.3390/jcm10153409
Szczepanik-Kułak P, Michalska-Jakubus M, Krasowska D. Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. Journal of Clinical Medicine. 2021; 10(15):3409. https://doi.org/10.3390/jcm10153409
Chicago/Turabian StyleSzczepanik-Kułak, Paulina, Małgorzata Michalska-Jakubus, and Dorota Krasowska. 2021. "Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature" Journal of Clinical Medicine 10, no. 15: 3409. https://doi.org/10.3390/jcm10153409
APA StyleSzczepanik-Kułak, P., Michalska-Jakubus, M., & Krasowska, D. (2021). Laser Therapy for the Treatment of Morphea: A Systematic Review of Literature. Journal of Clinical Medicine, 10(15), 3409. https://doi.org/10.3390/jcm10153409