The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population and Participant Selection
2.3. Exposure (Thyroid Diseases)
- Hypothyroidism was defined as International Classification of Diseases 10th revision (ICD-10) codes E02 (subclinical iodine-deficiency hypothyroidism) and E03 (other hypothyroidism). Among the participants with these codes, we selected the participants who were treated ≥ 2 times.
- Hyperthyroidism was defined as ICD-10 code E05 (hyperthyroidism (thyrotoxicosis)). Among these participants, we selected the participants who were treated ≥ 2 times.
- Graves’ disease was defined as ICD-10 code E050 (thyrotoxicosis with diffuse goiter). Among these participants, we selected those who were treated with antithyroid medication ≥ 3 months.
- Thyroiditis was defined as ICD-10 code E06 (thyroiditis). Among these participants, we selected the participants who were treated ≥ 2 times.
- Autoimmune thyroiditis was defined as ICD-10 code E063 (autoimmune thyroiditis). Among these participants, we selected the participants who were treated ≥ 2 times.
2.4. Outcome (COVID-19 Infection)
2.5. Secondary Outcomes (Morbidity and Mortality)
2.6. Covariates
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Jang, W.; Kim, S.-W.; Lee, J.; Lim, Y.-S.; Cho, C.-G.; Park, S.-W.; Kim, B.H. The Clinical Manifestations and Chest Computed Tomography Findings of Coronavirus Disease 2019 (COVID-19) Patients in China: A Proportion Meta-Analysis. Clin. Exp. Otorhinolaryngol. 2020, 13, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, D.W. Does the Clinical Spectrum of Coronavirus Disease 2019 (COVID-19) Show Regional Differences? Clin. Exp. Otorhinolaryngol. 2020, 13, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Brojakowska, A.; Eskandari, A.; Bisserier, M.; Bander, J.; Garikipati, V.N.S.; Hadri, L.; Goukassian, D.A.; Fish, K.M. Comorbidities, sequelae, blood biomarkers and their associated clinical outcomes in the Mount Sinai Health System COVID-19 patients. PLoS ONE 2021, 16, e0253660. [Google Scholar] [CrossRef]
- Duntas, L.H.; Jonklaas, J. COVID-19 and thyroid diseases: A bidirectional impact. J. Endocr. Soc. 2021, 5, bvab076. [Google Scholar] [CrossRef]
- Brix, T.H.; Hegedüs, L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and thyroid disease. An update. Curr. Opin. Endocrinol. Diabetes Obes. 2021. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.; Pfeffer, M.A.; Solomon, S.D. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef]
- Iaccarino, G.; De Rosa, M.; Trimarco, B. Thyroid function predicts increased cardiovascular risk. Int. J. Cardiol. 2018, 254, 338–339. [Google Scholar] [CrossRef]
- Owji, M.S.; Varedi, M.; Naghibalhossaini, F.; Pajouhi, N. Thyroid function modulates lung fluid and alveolar viscoelasticity in mechanically ventilated rat. J. Surg. Res. 2020, 253, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Carlé, A.; Laurberg, P.; Pedersen, I.B.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Jørgensen, T. Epidemiology of subtypes of hypothyroidism in Denmark. Eur. J. Endocrinol. 2006, 154, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlé, A.; Pedersen, I.B.; Knudsen, N.; Perrild, H.; Ovesen, L.; Rasmussen, L.B.; Laurberg, P. Epidemiology of subtypes of hyperthyroidism in Denmark: A population-based study. Eur. J. Endocrinol. 2011, 164, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Emmi, G.; Bettiol, A.; Mattioli, I.; Silvestri, E.; Di Scala, G.; Urban, M.L.; Vaglio, A.; Prisco, D. SARS-CoV-2 infection among patients with systemic autoimmune diseases. Autoimmun. Rev. 2020, 19, 102575. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, F.; Tu, W.; Zhang, J.; Choudhry, A.A.; Ahmed, O.; Cheng, J.; Cui, Y.; Liu, B.; Dai, M.; et al. Thyroid dysfunction may be associated with poor outcomes in patients with COVID-19. Mol. Cell. Endocrinol. 2021, 521, 111097. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Blanco, S.; Pla-Peris, B.; Marazuela, M. COVID-19: A cause of recurrent Graves’ hyperthyroidism? J. Endocrinol. Investig. 2021, 44, 387–388. [Google Scholar] [CrossRef]
- Mateu-Salat, M.; Urgell, E.; Chico, A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Investig. 2020, 43, 1527–1528. [Google Scholar] [CrossRef] [PubMed]
- Boelaert, K.; Visser, W.E.; Taylor, P.N.; Moran, C.; Léger, J.; Persani, L. Endocrinology in the time of COVID-19: Management of hyperthyroidism and hypothyroidism. Eur. J. Endocrinol. 2020, 183, G33–G39. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Kurniawan, A. Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1429–1430. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Brix, T.H.; Hegedüs, L.; Hallas, J.; Lund, L.C. Risk and course of SARS-CoV-2 infection in patients treated for hypothyroidism and hyperthyroidism. Lancet Diabetes Endocrinol. 2021, 9, 197–199. [Google Scholar] [CrossRef]
- Van Gerwen, M.; Alsen, M.; Little, C.; Barlow, J.; Naymagon, L.; Tremblay, D.; Sinclair, C.F.; Genden, E. Outcomes of patients with hypothyroidism and COVID-19: A retrospective cohort study. Front. Endocrinol. 2020, 11. [Google Scholar] [CrossRef]
- Daraei, M.; Hasibi, M.; Abdollahi, H.; Hazaveh, M.M.; Zebaradst, J.; Hajinoori, M.; Asadollahi-Amin, A. Possible role of hypothyroidism in the prognosis of COVID-19. Intern. Med. J. 2020, 50, 1410–1412. [Google Scholar] [CrossRef]
- Kumari, K.; Chainy, G.B.; Subudhi, U. Prospective role of thyroid disorders in monitoring COVID-19 pandemic. Heliyon 2020, 6, e05712. [Google Scholar] [CrossRef] [PubMed]
- Ordookhani, A.; Burman, K.D. Hemostasis in overt and subclinical hyperthyroidism. Int. J. Endocrinol. Metab. 2017, 15, e44157. [Google Scholar] [CrossRef] [Green Version]
- Iba, T.; Levy, J.H.; Levi, M.; Connors, J.M.; Thachil, J. Coagulopathy of coronavirus disease 2019. Crit. Care Med. 2020, 48, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, M.; Runyon, M.R.; Smirnov, D.; Lei, J.; Groppoli, T.J.; Mariash, C.N.; Wangensteen, O.D.; Ingbar, D.H. Triiodo-l-thyronine rapidly stimulates alveolar fluid clearance in normal and hyperoxia-injured lungs. Am. J. Respir. Crit. Care Med. 2008, 178, 506–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Tzouvelekis, A.; Wang, R.; Herazo-Maya, J.D.; Ibarra, G.H.; Srivastava, A.; Werneck-De-Castro, J.P.; DeIuliis, G.; Ahangari, F.; Woolard, T.; et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 2018, 24, 39–49. [Google Scholar] [CrossRef]
- Davis, P.J.; Lin, H.-Y.; Hercbergs, A.; Keating, K.A.; Mousa, S.A. Coronaviruses and integrin αvβ3: Does thyroid hormone modify the relationship? Endocr. Res. 2020, 45, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Brandt, F.; Thvilum, M.; Almind, D.; Christensen, K.; Green, A.; Hegedüs, L.; Brix, T.H. Morbidity before and after the diagnosis of hyperthyroidism: A nationwide register-based study. PLoS ONE 2013, 8, e66711. [Google Scholar] [CrossRef] [Green Version]
- Thvilum, M.; Brandt, F.; Almind, D.; Christensen, K.; Brix, T.H.; Hegedüs, L. Type and extent of somatic morbidity before and after the diagnosis of hypothyroidism. A nationwide register study. PLoS ONE 2013, 8, e75789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total Participants | COVID-19 Participants | |||||
---|---|---|---|---|---|---|---|
COVID-19 | Control | p-Value | Severe Morbidity | Mild Morbidity | p-Value | ||
Total number (n, %) | 8070 (100.0) | 32,280 (100.0) | 569 (100.0) | 7501 (100.0) | |||
Age (years old) (n, %) | 1.000 | <0.001 * | |||||
0–9 | 81 (1.0) | 324 (1.0) | 6 (1.1) | 75 (1.0) | |||
10–19 | 276 (3.4) | 1104 (3.4) | 6 (1.1) | 270 (3.6) | |||
20–29 | 2057 (25.5) | 8228 (25.5) | 31 (5.5) | 2026 (27.0) | |||
30–39 | 832 (10.3) | 3328 (10.3) | 25 (4.4) | 807 (10.8) | |||
40–49 | 1036 (12.8) | 4144 (12.8) | 30 (5.3) | 1006 (13.4) | |||
50–59 | 1567 (19.4) | 6268 (19.4) | 71 (12.5) | 1496 (19.9) | |||
60–69 | 1199 (14.9) | 4796 (14.9) | 116 (20.4) | 1083 (14.4) | |||
70–79 | 617 (7.7) | 2468 (7.7) | 118 (20.7) | 499 (6.7) | |||
80 + | 405 (5.0) | 1620 (5.0) | 166 (29.2) | 239 (3.2) | |||
Sex (n, %) | 1.000 | <0.001 * | |||||
Male | 3236 (40.1) | 12,944 (40.1) | 306 (53.8) | 2930 (39.1) | |||
Female | 4834 (59.9) | 19,336 (59.9) | 263 (46.2) | 4571 (60.9) | |||
Income (n, %) | 1.000 | 0.029 * | |||||
1 (low) | 3105 (38.5) | 12,420 (38.5) | 196 (34.5) | 2909 (38.8) | |||
2 | 2347 (29.1) | 9388 (29.1) | 161 (28.3) | 2186 (29.1) | |||
3 (high) | 2618 (32.4) | 10,472 (32.4) | 212 (37.3) | 2406 (32.1) | |||
CCI score (n, %) | <0.001 * | <0.001 * | |||||
0 | 6518 (80.8) | 29,513 (91.4) | 264 (46.4) | 6254 (83.4) | |||
1 | 889 (11.0) | 1389 (4.3) | 134 (23.6) | 755 (10.1) | |||
≥ 2 | 663 (8.2) | 1378 (4.3) | 171 (30.1) | 492 (6.6) | |||
Hypertension (n, %) | 1657 (20.5) | 6452 (20.0) | 0.274 | 275 (48.3) | 1382 (18.4) | <0.001 * | |
Hypothyroidism (n, %) | 284 (3.5) | 980 (3.0) | 0.026 * | 23 (4.0) | 261 (3.5) | 0.483 | |
Hyperthyroidism (n, %) | 134 (1.7) | 531 (1.6) | 0.010 * | 10 (1.8) | 124 (1.7) | 0.851 | |
Graves’ disease (n, %) | 20 (0.3) | 97 (0.3) | 0.431 | 1 (0.2) | 19 (0.3) | 0.720 | |
Thyroiditis (n, %) | 108 (1.3) | 423 (1.3) | 0.844 | 5 (0.9) | 103 (1.4) | 0.322 | |
Autoimmune thyroiditis (n, %) | 52 (0.6) | 155 (0.5) | 0.065 | 3 (0.5) | 49 (0.7) | 0.717 |
Characteristics | COVID-19 | Control | ORs (95% Confidence Interval) for COVID-19 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude † | p-Value | Model 1 †,‡ | p-Value | Model 2 †,§ | p-Value | Model 3 †,‖ | p-Value | |
Hypothyroidism | 284/8070 (3.5%) | 980/32,280 (3.0%) | 1.17 (1.02–1.34) | 0.025 * | 1.11 (0.97–1.28) | 0.126 | 1.12 (0.97–1.29) | 0.120 | 1.09 (0.95–1.26) | 0.229 |
Hyperthyroidism | 134/8070 (1.7%) | 531/32,280 (1.6%) | 1.01 (0.83–1.22) | 0.922 | 1.00 (0.82–1.21) | 0.983 | 0.98 (0.81–1.20) | 0.871 | N/A | |
Graves’ disease | 20/8070 (0.2%) | 97/32,280 (0.3%) | 0.82 (0.51–1.34) | 0.432 | 0.82 (0.51–1.33) | 0.423 | N/A | 0.79 (0.49–1.29) | 0.348 | |
Thyroiditis | 108/8070 (1.3%) | 423/32,280 (1.3%) | 1.02 (0.83–1.27) | 0.844 | 1.01 (0.81–1.25) | 0.930 | 0.98 (0.78–1.23) | 0.840 | N/A | |
Autoimmune thyroiditis | 52/8070 (0.6%) | 155/32,280 (0.5%) | 1.35 (0.98–1.85) | 0.065 | 1.32 (0.96–1.82) | 0.085 | N/A | 1.27 (0.92–1.77) | 0.146 |
Characteristics | Severe Participants | Mild Participants | ORs (95% Confidence Interval) for Morbidity | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Model 1 † | p-Value | Model 2 ‡ | p-Value | Model 3 § | p-Value | |
Hypothyroidism | 23/569 (4.0%) | 261/7501 (3.5%) | 1.17 (0.76–1.81) | 0.483 | 0.98 (0.62–1.57) | 0.946 | 1.01 (0.62–1.63) | 0.978 | 0.99 (0.61–1.61) | 0.977 |
Hyperthyroidism | 10/569 (1.8%) | 124/7501 (1.7%) | 1.06 (0.56–2.04) | 0.851 | 1.19 (0.60–2.35) | 0.616 | 1.25 (0.63–2.50) | 0.526 | N/A | |
Graves’ disease | 1/569 (0.2%) | 19/7501 (0.3%) | 0.69 (0.09–5.19) | 0.722 | 0.90 (0.12–6.98) | 0.919 | N/A | 0.93 (0.12–7.49) | 0.946 | |
Thyroiditis | 5/569 (0.9%) | 103/7501 (1.4%) | 0.64 (0.26–1.57) | 0.327 | 0.73 (0.29–1.86) | 0.511 | 0.69 (0.26–1.82) | 0.457 | N/A | |
Autoimmune thyroiditis | 3/569 (0.5%) | 49/7501 (0.7%) | 0.81 (0.25–2.59) | 0.718 | 0.89 (0.27–2.96) | 0.850 | N/A | 0.90 (0.26–3.15) | 0.870 |
Characteristics | Dead Participants | Survived Participants | ORs (95% Confidence Interval) for Mortality | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(Exposure/Total, %) | (Exposure/Total, %) | Crude | p-Value | Model 1 † | p-Value | Model 2 ‡ | p-Value | Model 3 § | p-Value | |
Hypothyroidism | 6/237 (2.5%) | 278/7833 (3.5%) | 0.71 (0.31–1.60) | 0.406 | 0.48 (0.19–1.20) | 0.115 | 0.51 (0.20–1.28) | 0.152 | 0.51 (0.20–1.27) | 0.147 |
Hyperthyroidism | 4/237 (1.7%) | 130/7833 (1.7%) | 1.02 (0.37–2.78) | 0.973 | 1.69 (0.55–5.17) | 0.359 | 2.32 (0.74–7.30) | 0.152 | N/A | |
Graves’ disease | 1/237 (0.4%) | 19/7833 (0.2%) | 1.74 (0.23–13.07) | 0.589 | 5.77 (0.70–47.74) | 0.104 | N/A | 11.43 (1.29–101.22) | 0.029 * | |
Thyroiditis | 0/237 (0.0%) | 108/7833 (1.4%) | N/A | N/A | N/A | N/A | ||||
Autoimmune thyroiditis | 0/237 (0.0%) | 52/7833 (0.7%) | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Yoo, D.-M.; Min, C.-Y.; Choi, H.-G. The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea. J. Clin. Med. 2021, 10, 3522. https://doi.org/10.3390/jcm10163522
Kim S-Y, Yoo D-M, Min C-Y, Choi H-G. The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine. 2021; 10(16):3522. https://doi.org/10.3390/jcm10163522
Chicago/Turabian StyleKim, So-Young, Dae-Myoung Yoo, Chan-Yang Min, and Hyo-Geun Choi. 2021. "The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea" Journal of Clinical Medicine 10, no. 16: 3522. https://doi.org/10.3390/jcm10163522
APA StyleKim, S. -Y., Yoo, D. -M., Min, C. -Y., & Choi, H. -G. (2021). The Effects of Previous Thyroid Disease on the Susceptibility to, Morbidity of, and Mortality Due to COVID-19: A Nationwide Cohort Study in South Korea. Journal of Clinical Medicine, 10(16), 3522. https://doi.org/10.3390/jcm10163522