Supervised Machine Learning Approach to Identify Early Predictors of Poor Outcome in Patients with COVID-19 Presenting to a Large Quaternary Care Hospital in New York City
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of Clinical Characteristics and Laboratory Markers of the Cohort
3.2. Tertile Analysis Based on Duration of Symptom from Illness Onset to Hospital Presentation
3.3. Classification and Regression Tree Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- NYC Department of Health COVID-19: Data. Available online: https://www1.nyc.gov/site/doh/data/data-home.page (accessed on 1 May 2020).
- Boudourakis, L.; Uppal, A. Decreased COVID-19 Mortality—A Cause for Optimism. JAMA Intern. Med. 2021, 181, 478. [Google Scholar] [CrossRef]
- Horwitz, L.I.; Jones, S.A.; Cerfolio, R.J.; Francois, F.; Greco, J.; Rudy, B.; Petrilli, C.M. Trends in COVID-19 Risk-Adjusted Mortality Rates. J. Hosp. Med. 2021, 16, 90–92. [Google Scholar] [CrossRef]
- Macedo, A.; Gonçalves, N.; Febra, C. COVID-19 fatality rates in hospitalized patients: Systematic review and meta-analysis. Ann. Epidemiol. 2021, 57, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.L.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.; Lutrick, K.; et al. Interim Estimates of Vaccine Effectiveness of BNT162b2 and mRNA-1273 COVID-19 Vaccines in Preventing SARS-CoV-2 Infection Among Health Care Personnel, First Responders, and Other Essential and Frontline Workers—Eight U.S. Locations, December 2020–March 2021. MMWR 2021, 70, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 Variants—Clinical, Public Health, and Vaccine Implications. N. Engl. J. Med. 2021, 384, 1866–1868. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of COVID-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Chow, N.; Fleming-Dutra, K.; Gierke, R.; Hall, A.; Hughes, M.; Pilishvili, T.; Ritchey, M.; Roguski, K.; Skoff, T.; Ussery, E. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions among Patients with Coronavirus Disease 2019—United States, February 12–March 28, 2020. MMWR 2020, 69, 382–386. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Suardi, L.R.; Pallotto, C.; Esperti, S.; Tazzioli, E.; Baragli, F.; Salomoni, E.; Botta, A.; Covani Frigieri, F.; Pazzi, M.; Stera, C.; et al. Risk factors for non-invasive/invasive ventilatory support in patients with COVID-19 pneumonia: A retrospective study within a multidisciplinary approach. Int. J. Infect. Dis. 2020, 100, 258–263. [Google Scholar] [CrossRef]
- Galloway, J.B.; Norton, S.; Barker, R.D.; Brookes, A.; Carey, I.; Clarke, B.D.; Jina, R.; Reid, C.; Russell, M.D.; Sneep, R.; et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. J. Infect. 2020, 81, 282–288. [Google Scholar] [CrossRef]
- Liang, W.; Liang, H.; Ou, L.; Chen, B.; Chen, A.; Li, C.; Li, Y.; Guan, W.; Sang, L.; Lu, J.; et al. Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA Intern. Med. 2020, 180, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, C.J.; Wooster, L.; Sigurslid, H.H.; Li, R.H.; Jiang, W.; Tian, W.; Lino Cardenas, C.L.; Malhotra, R. Estimating risk of mechanical ventilation and in-hospital mortality among adult COVID-19 patients admitted to Mass General Brigham: The VICE and DICE scores. EClinicalMedicine 2021, 33, 100765. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cai, G.-Y.; Fang, W.; Li, H.-Y.; Wang, S.-Y.; Chen, L.; Yu, Y.; Liu, D.; Xu, S.; Cui, P.-F.; et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19. Nat. Commun. 2020, 11, 5033. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gordillo, J.A.; Camiro-Zúñiga, A.; Aguilar-Soto, M.; Cuenca, D.; Cadena-Fernández, A.; Khouri, L.S.; Rayek, J.N.; Mercado, M. COVID-IRS: A novel predictive score for risk of invasive mechanical ventilation in patients with COVID-19. PLoS ONE 2021, 16, e0248357. [Google Scholar] [CrossRef]
- Green, D.A.; Zucker, J.; Westblade, L.F.; Whittier, S.; Rennert, H.; Velu, P.; Craney, A.; Cushing, M.; Liu, D.; Sobieszczyk, M.E.; et al. Clinical Performance of SARS-CoV-2 Molecular Tests. J. Clin. Microbiol. 2020, 58, e00995-20. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development for R.; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; Taylor & Francis: Boca Raton, FL, USA, 1984; ISBN 0412048418. [Google Scholar]
- Polak, S.B.; Van Gool, I.C.; Cohen, D.; Von Der Thüsen, J.H.; Van Paassen, J. A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression. Mod. Pathol. 2020, 33, 2128–2138. [Google Scholar] [CrossRef]
- Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol. 2020, 215, 108448. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gutiérrez, B.; del Toro, M.D.; Borobia, A.M.; Carcas, A.; Jarrín, I.; Yllescas, M.; Ryan, P.; Pachón, J.; Carratalà, J.; Berenguer, J.; et al. Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: A multicentre cohort study. Lancet Infect. Dis. 2021, 21, 783–792. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Tian, J.; Xiong, S. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel coronavirus. Ann. Palliat. Med. 2020, 9, 428–436. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecconi, M.; Piovani, D.; Brunetta, E.; Aghemo, A.; Greco, M.; Ciccarelli, M.; Angelini, C.; Voza, A.; Omodei, P.; Vespa, E.; et al. Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for COVID-19 Infection in Lombardy, Italy. J. Clin. Med. 2020, 9, 1548. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensiv. Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Lei, Q.; Li, W.; Wang, X.; Liu, W.; Fan, X.; Li, W. Clinical Characteristics, Associated Factors, and Predicting COVID-19 Mortality Risk: A Retrospective Study in Wuhan, China. Am. J. Prev. Med. 2020, 59, 168–175. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Li, G.-M.; He, J.; Liu, Y.; Li, M.; Zhang, R.; Li, Y.-L.; Wu, Y.-Z.; Diao, B. Combined use of the neutrophil-to-lymphocyte ratio and CRP to predict 7-day disease severity in 84 hospitalized patients with COVID-19 pneumonia: A retrospective cohort study. Ann. Transl. Med. 2020, 8, 635. [Google Scholar] [CrossRef]
- Chen, R.; Liang, W.; Jiang, M.; Guan, W.; Zhan, C.; Wang, T.; Tang, C.; Sang, L.; Liu, J.; Ni, Z.; et al. Risk Factors of Fatal Outcome in Hospitalized Subjects with Coronavirus Disease 2019 From a Nationwide Analysis in China. Chest 2020, 158, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef]
- Pallotto, C.; Suardi, L.R.; Esperti, S.; Tarquini, R.; Grifoni, E.; Meini, S.; Valoriani, A.; Di Martino, S.; Cei, F.; Sisti, E.; et al. Increased CD4/CD8 ratio as a risk factor for critical illness in coronavirus disease 2019 (COVID-19): A retrospective multicentre study. Infect. Dis. 2020, 52, 675–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zuo, P.; Liu, Y.; Zhang, M.; Zhao, X.; Xie, S.; Zhang, H.; Chen, X.; Liu, C. Clinical and Laboratory Predictors of In-Hospital Mortality in Patients with COVID-19: A Cohort Study in Wuhan, China. Clin. Infect. Dis. 2020, 71, 2079–2088. [Google Scholar] [CrossRef] [PubMed]
Overall Cohort | Tertiles: Days since Onset of Symptoms | |||||
---|---|---|---|---|---|---|
All Patients (n = 4103) | Intubated/ Died (n = 792) | Survived without Intubation (n = 3311) | ≤4 Days (n = 599) | 4–8 Days (n = 685) | >8 Days (n = 589) | |
Demographics, n (%) | ||||||
Sex | ||||||
Male | 2214 (53.96) | 476 (60.10) | 1738 (52.49) | 341 (56.93) | 391 (57.08) | 333 (56.54) |
Female | 1889 (46.04) | 316 (39.90) | 1573 (47.51) | 258 (43.07) | 294 (42.92) | 256 (43.46) |
Ethnicity | ||||||
Hispanic | 1483 (36.14) | 387 (48.86) | 1096 (33.10) | 312 (52.09) | 355 (51.82) | 308 (52.29) |
Non-Hispanic | 1534 (37.39) | 220 (27.78) | 1314 (39.69) | 162 (27.05) | 176 (25.69) | 138 (23.43) |
Unknown | 1086 (26.47) | 185 (23.36) | 901 (27.21) | 125 (20.87) | 154 (22.48) | 143 (24.28) |
Race | ||||||
Black | 1088 (26.52) | 152 (19.19) | 936 (28.27) | 139 (23.21) | 151 (22.04) | 103 (17.49) |
White | 1074 (26.18) | 209 (26.39) | 865 (26.13) | 144 (24.04) | 158 (23.07) | 130 (22.07) |
Other | 1941 (47.31) | 431 (54.42) | 1510 (45.61) | 316 (52.75) | 376 (54.89) | 356 (60.44) |
Age, median (IQR) | 63 (49, 75) | 73 (62, 83) | 60 (46, 72) | 69 (55, 80) | 62 (51, 75) | 62 (47, 72) |
Symptoms, n (%) | ||||||
Fever | 1501 (70.64) | 476 (70.73) | 1025 (70.59) | 360 (62.07) | 520 (76.36) | 445 (75.94) |
Chills | 688 (31.84) | 168 (25.69) | 500 (34.63) | 134 (23.67) | 239 (35.46) | 234 (40.07) |
Fatigue | 723 (34.40) | 183 (27.81) | 540 (37.24) | 145 (25.44) | 271 (40.21) | 252 (43.08) |
Dyspnea | 1560 (73.17) | 556 (81.89) | 1004 (69.10) | 371 (63.75) | 550 (80.65) | 476 (81.23) |
Chest Pain | 342 (16.19) | 74 (11.23) | 268 (18.44) | 76 (13.31) | 109 (16.1) | 123 (21.03) |
Cough | 1603 (75.26) | 483 (71.88) | 1120 (76.82) | 365 (62.93) | 566 (82.99) | 497 (84.67) |
Nausea | 418 (19.86) | 78 (11.87) | 340 (23.48) | 92 (16.2) | 136 (20.18) | 155 (26.41) |
Diarrhea | 503 (23.92) | 113 (17.28) | 390 (26.92) | 66 (11.64) | 195 (28.89) | 197 (33.62) |
Myalgia | 571 (27.26) | 110 (16.95) | 461 (31.88) | 95 (16.99) | 208 (30.81) | 217 (37.03) |
Comorbidities, n (%) | ||||||
Diabetes | 990 (24.13) | 355 (44.82) | 635 (19.18) | 266 (44.41) | 264 (38.54) | 195 (33.11) |
Hypertension | 1549 (37.75) | 547 (69.07) | 1002 (30.26) | 412 (68.78) | 386 (56.35) | 326 (55.35) |
Pulmonary Disease | 470 (11.89) | 153 (19.32) | 317 (9.57) | 119 (19.87) | 142 (20.73) | 102 (17.32) |
Kidney Disease | 488 (11.89) | 245 (30.93) | 243 (7.34) | 144 (24.04) | 136 (19.85) | 91 (15.45) |
Liver Disease | 139 (3.39) | 36 (6.01) | 23 (3.36) | 35 (5.94) | ||
Use of ACE Inhibitor | 118 (15.51) | 35 (15.35) | 83 (15.57) | 40 (14.71) | 43 (20.87) | 22 (14.47) |
Vital signs and laboratory parameters, median (IQR) | ||||||
Body Mass Index | 28.14 (24.5, 32.8) | 27.1 (23.8, 31.69) | 28.52 (25, 33.2) | 27.38 (23.44, 31.67) | 28.51 (25.3, 33.37) | 29.03 (25.63, 33.89) |
OSR, n (%) | ||||||
OSR = 0 | 1264 (58.65) | 304 (40.05) | 960 (68.77) | 329 (60.37) | 373 (57.12) | 330 (60.33) |
OSR = 1 | 508 (23.57) | 170 (22.40) | 338 (24.21) | 117 (21.47) | 161 (24.66) | 150 (27.42) |
OSR = 2 | 377 (17.49) | 280 (36.89) | 97 (6.95) | 97 (17.8) | 117 (17.92) | 66 (12.07) |
OSR = 3 | 6 (0.28) | 5 (0.66) | 1 (0.07) | 2 (0.37) | 2 (0.31) | 1 (0.18) |
Initial Temperature (°F) | 99.0 | 98.9 | 99 | 98.8 | 99.1 | 99.1 |
(98.2, 100.2) | (98.1, 100.2) | (98.2, 100.0) | (98.2, 100.3) | (98.2, 100.5) | (98.2, 100.4) | |
WBC Count (×103/µL) | 7.29 | 8.45 | 6.90 | 7.08 | 7.05 | 7.61 |
(5.39, 9.92) | (5.98, 11.87) | (5.25, 9.14) | (5.3, 9.88) | (5.35, 9.75) | (5.75, 9.94) | |
Neutrophil % | 76.9 | 81.7 | 74.2 | 75.3 | 76.7 | 77.8 |
(68.3, 83.8) | (74.95, 86.9) | (66, 81.3) | (66.3, 83.5) | (68.6, 83.3) | (70.1, 84) | |
Lymphocyte % | 14 | 10.45 | 16.2 | 14.2 | 14.35 | 13.4 |
(9, 21) | (6.5, 16.1) | (10.5, 22.8) | (8.6, 21.3) | (9.3, 21.3) | (9.1, 20.5) | |
NLR | 5.49 | 7.8 | 4.58 | 5.34 | 5.30 | 5.87 |
(3.27, 9.22) | (4.7, 13.38) | (2.88, 7.66) | (3.15, 9.49) | (3.2, 8.84) | (3.46, 9.09) | |
Hemoglobin (g/dL) | 13.1 | 13.1 | 13.1 | 13 | 13.4 | 13.4 |
(11.7, 14.5) | (11.4, 14.5) | (11.8, 14.5) | (11.2, 14.5) | (12, 14.7) | (12, 14.6) | |
Platelet Count (×103/µL) | 199 | 191.5 | 202 | 185 | 195 | 215 |
(153, 257.5) | (146, 260) | (156, 256) | (142, 242) | (154, 251) | (168, 267) | |
Creatinine (mg/dL) | 1.06 | 1.3 | 1 | 1.21 | 1.05 | 0.99 |
(0.8, 1.61) | (0.91, 2.24) | (0.76, 1.4) | (0.85, 1.98) | (0.81, 1.52) | (0.76, 1.33) | |
Albumin (g/dL) | 3.8 (3.4, 4.1) | 3.6 (3.2, 3.8) | 3.9 (3.5, 4.2) | 3.8 (3.4, 4.2) | 3.8 (3.5, 4.1) | 3.8 (3.4, 4.1) |
AST (U/L) | 42 (27, 68) | 55 (35, 87) | 37 (25, 59) | 38 (24, 65) | 42 (30, 68) | 46 (30, 69) |
ALT (U/L) | 28 (18, 48) | 30 (20, 53) | 27 (18, 45) | 25 (17, 43) | 29 (19, 48) | 32 (21, 53) |
ESR (mm/hr) | 70 (48, 96) | 75 (55, 101) | 67 (45, 91) | 67 (43, 94) | 69 (48, 95) | 72 (54, 98) |
CRP (mg/L) | 113.8 | 167.92 | 91.9 | 99.33 | 113.82 | 133.64 |
(56.47, 198.64) | (99.33, 260.89) | (39.54, 160.97) | (35.95, 178.2) | (59.7, 205.1) | (72.25, 204.46) | |
LDH (U/L) | 407 | 516 | 363 | 361 | 411 | 422.5 |
(297, 559) | (377, 708) | (273, 479) | (258, 523) | (308, 575) | (326, 552) | |
Ferritin (ng/mL) | 686.5 | 852.6 | 591.1 | 604.5 | 667.8 | 793.65 |
(336.8, 1258) | (453.4, 1546) | (282.3, 1115) | (277.7, 1262) | (356.8, 1239) | (407, 1395) | |
D-Dimer (µg/mL) | 1.42 | 2.42 | 1.15 | 1.47 | 1.24 | 1.34 |
(0.81, 3.17) | (1.23, 6.27) | (0.68, 2.23) | (0.83, 3.22) | (0.72, 2.59) | (0.78, 2.86) | |
Procalcitonin (ng/mL) | 0.23 | 0.45 | 0.16 | 0.26 | 0.2 | 0.2 |
(0.11, 0.59) | (0.20, 1.27) | (0.09, 0.37) | (0.12, 0.9) | (0.11, 0.46) | (0.1, 0.49) | |
IL-6 (pg/mL) | 19.5 | 45.08 | 12.05 | 19.2 | 16 | 19.7 |
(6, 49) | (18, 92.48) | (5, 29.7) | (5, 48.38) | (5.78, 42.95) | (7.23, 49.3) | |
Troponin (ng/L) | 16 (8, 42) | 31(15, 76) | 12 (6, 25) | 26 (11, 63) | 13 (7, 30) | 11 (6, 23) |
Overall Cohort | Tertiles Defined by Symptom Duration | |||||||
---|---|---|---|---|---|---|---|---|
All Patients (n = 4103) | ≤4 Days (n = 599) | 4–8 Days (n = 685) | >8 Days (n = 589) | |||||
Predictors | Crude | Adjusted | Crude | Adjusted | Crude | Adjusted | Crude | Adjusted |
OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | OR (95%CI) | |
OSR ≤ 1 (Nasal cannula) | Ref | |||||||
OSR ≥ 2 (Non-rebreather, non-invasive ventilation) | 8.0 | 5.5 | 9.6 | 7.4 | 5.4 | 3.8 | 11.2 | 8.8 |
(6.18–10.25) | (4.15–7.32) | (5.46–17.04) | (4.01–13.71) | (3.54–8.27) | (2.05–6.10) | (6.18, 20.21) | (4.12, 18.76) | |
CRP ≥ 161.8 mg/L | 3.7 | 2.6 | 3.9 | 2.0 | ||||
(3.03, 4.44) | (2.04, 3.20) | (2.60–5.75) | (1.21–3.46) | |||||
Neutrophil % ≥ 84.18 | 3.4 (2.73, 4.13) | 1.9 (1.46, 2.41) | ||||||
Kidney disease | 5.7 | 2.7 | ||||||
(4.63, 6.90) | (2.10, 3.46) | |||||||
IL-6 ≥ 24.7 pg/mL | 4.3 | 3.3 | ||||||
(2.91–6.30) | (2.15–5.01) | |||||||
IL-6 ≥ 64.3 pg/mL | 16.1 | 11.9 | ||||||
(8.6–30.1) | (6.0–23.63) | |||||||
Age ≥ 63 years | 4.8 | 4.8 | ||||||
(3.30–7.10) | (3.03–7.47) | |||||||
NLR ≥ 5.1 | 3.8 | 2.9 | ||||||
(2.66–5.48) | (1.93–4.42) | |||||||
D-Dimer ≥ 2.4 µg/mL | 1.2 | 1.1 | ||||||
(1.12–1.24) | (1.06–1.19) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucker, J.; Gomez-Simmonds, A.; Purpura, L.J.; Shoucri, S.; LaSota, E.; Morley, N.E.; Sovic, B.W.; Castellon, M.A.; Theodore, D.A.; Bartram, L.L.; et al. Supervised Machine Learning Approach to Identify Early Predictors of Poor Outcome in Patients with COVID-19 Presenting to a Large Quaternary Care Hospital in New York City. J. Clin. Med. 2021, 10, 3523. https://doi.org/10.3390/jcm10163523
Zucker J, Gomez-Simmonds A, Purpura LJ, Shoucri S, LaSota E, Morley NE, Sovic BW, Castellon MA, Theodore DA, Bartram LL, et al. Supervised Machine Learning Approach to Identify Early Predictors of Poor Outcome in Patients with COVID-19 Presenting to a Large Quaternary Care Hospital in New York City. Journal of Clinical Medicine. 2021; 10(16):3523. https://doi.org/10.3390/jcm10163523
Chicago/Turabian StyleZucker, Jason, Angela Gomez-Simmonds, Lawrence J. Purpura, Sherif Shoucri, Elijah LaSota, Nicholas E. Morley, Brit W. Sovic, Marvin A. Castellon, Deborah A. Theodore, Logan L. Bartram, and et al. 2021. "Supervised Machine Learning Approach to Identify Early Predictors of Poor Outcome in Patients with COVID-19 Presenting to a Large Quaternary Care Hospital in New York City" Journal of Clinical Medicine 10, no. 16: 3523. https://doi.org/10.3390/jcm10163523
APA StyleZucker, J., Gomez-Simmonds, A., Purpura, L. J., Shoucri, S., LaSota, E., Morley, N. E., Sovic, B. W., Castellon, M. A., Theodore, D. A., Bartram, L. L., Miko, B. A., Scherer, M. L., Meyers, K. A., Turner, W. C., Kelly, M., Pavlicova, M., Basaraba, C. N., Baldwin, M. R., Brodie, D., ... Sobieszczyk, M. E. (2021). Supervised Machine Learning Approach to Identify Early Predictors of Poor Outcome in Patients with COVID-19 Presenting to a Large Quaternary Care Hospital in New York City. Journal of Clinical Medicine, 10(16), 3523. https://doi.org/10.3390/jcm10163523