Factors Associated with Increased Neuroretinal Rim Thickness Measured Based on Bruch’s Membrane Opening-Minimum Rim Width after Trabeculectomy
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measurement of Bruch’s Membrane Opening-Minimum Rim Width Using Spectral-Domain Optical Coherence Tomography
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aydin, A.; Wollstein, G.; Price, L.L.; Fujimoto, J.G.; Schuman, J.S. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology 2003, 110, 1506–1511. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.T.; Sekhon, N.; Budenz, D.L.; Feuer, W.J.; Park, P.W.; Anderson, D.R. Effect of Lowering Intraocular Pressure on Optical Coherence Tomography Measurement of Peripapillary Retinal Nerve Fiber Layer Thickness. Ophthalmology 2007, 114, 2252–2258. [Google Scholar] [CrossRef] [PubMed]
- Gietzelt, C.; Lemke, J.; Schaub, F.; Hermann, M.M.; Dietlein, T.S.; Cursiefen, C.; Enders, P.; Heindl, L.M. Structural Reversal of Disc Cupping After Trabeculectomy Alters Bruch Membrane Opening–Based Parameters to Assess Neuroretinal Rim. Am. J. Ophthalmol. 2018, 194, 143–152. [Google Scholar] [CrossRef]
- Greenidge, K.C.; Spaeth, G.L.; Traverso, C.E. Change in Appearance of the Optic Disc Associated with Lowering of intraocular Pressure. Ophthalmology 1985, 92, 897–903. [Google Scholar] [CrossRef]
- Irak, I.; Zangwill, L.; Garden, V.; Shakiba, S.; Weinreb, R.N. Change in Optic Disk Topography After Trabeculectomy. Am. J. Ophthalmol. 1996, 122, 690–695. [Google Scholar] [CrossRef]
- Katz, L.J.; Spaeth, G.L.; Cantor, L.B.; Poryzees, E.M.; Steinmann, W.C. Reversible Optic Disk Cupping and Visual Field Improvement in Adults with Glaucoma. Am. J. Ophthalmol. 1989, 107, 485–492. [Google Scholar] [CrossRef]
- Kiessling, D.; Christ, H.; Gietzelt, C.; Schaub, F.; Dietlein, T.S.; Cursiefen, C.; Heindl, L.M.; Enders, P. Impact of ab-interno trabeculectomy on Bruch’s membrane opening-based morphometry of the optic nerve head for glaucoma progression analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 257, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Kim, T.-W.; Weinreb, R.N. Reversal of Lamina Cribrosa Displacement and Thickness after Trabeculectomy in Glaucoma. Ophthalmology 2012, 119, 1359–1366. [Google Scholar] [CrossRef]
- Lesk, M.R.; Spaeth, G.L.; Azuara-Blanco, A.; Araujo, S.V.; Katz, L.; Terebuh, A.K.; Wilson, R.P.; Moster, M.R.; Schmidt, C.M. Reversal of optic disc cupping after glaucoma surgery analyzed with a scanning laser tomograph. Ophthalmology 1999, 106, 1013–1018. [Google Scholar] [CrossRef]
- Quigley, H.A. The Pathogenesis of Reversible Cupping in Congenital Glaucoma. Am. J. Ophthalmol. 1977, 84, 358–370. [Google Scholar] [CrossRef]
- Sanchez, F.G.; Sanders, D.S.; Moon, J.J.; Gardiner, S.K.; Reynaud, J.; Fortune, B.; Mansberger, S.L. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Ophthalmol. Glaucoma 2020, 3, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.; Quigley, H.A. Transient Reversible Cupping in Juvenile-Onset Glaucoma. Am. J. Ophthalmol. 1979, 88, 580–584. [Google Scholar] [CrossRef]
- Chauhan, B.C.; O’Leary, N.; AlMobarak, F.A.; Reis, A.S.; Yang, H.; Sharpe, G.P.; Hutchison, D.M.; Nicolela, M.T.; Burgoyne, C. Enhanced Detection of Open-angle Glaucoma with an Anatomically Accurate Optical Coherence Tomography–Derived Neuroretinal Rim Parameter. Ophthalmology 2012, 120, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.S.C.; O’Leary, N.; Yang, H.; Sharpe, G.P.; Nicolela, M.T.; Burgoyne, C.; Chauhan, B.C. Influence of Clinically Invisible, but Optical Coherence Tomography Detected, Optic Disc Margin Anatomy on Neuroretinal Rim Evaluation. Investig. Opthalmol. Vis. Sci. 2012, 53, 1852–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenig, S.F.; Hirneiss, C.W. Changes of Neuroretinal Rim and Retinal Nerve Fiber Layer Thickness Assessed by Optical Coherence Tomography After Filtration Surgery in Glaucomatous Eyes. Clin. Ophthalmol. 2021, 15, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, E.J.; Kim, J.M.; Girard, M.J.A.; Mari, J.M.; Kim, T.-W. Lamina Cribrosa Moves Anteriorly After Trabeculectomy in Myopic Eyes. Investig. Opthalmol. Vis. Sci. 2020, 61. [Google Scholar] [CrossRef]
- Lee, S.H.; Yu, D.-A.; Kim, T.-W.; Lee, E.J.; Girard, M.; Mari, J.M. Reduction of the Lamina Cribrosa Curvature After Trabeculectomy in Glaucoma. Investig. Opthalmol. Vis. Sci. 2016, 57, 5006–5014. [Google Scholar] [CrossRef] [PubMed]
- Kadziauskienė, A.; Jašinskienė, E.; Ašoklis, R.; Lesinskas, E.; Rekašius, T.; Chua, J.; Cheng, C.-Y.; Mari, J.M.; Girard, M.J.; Schmetterer, L. Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy. Ophthalmology 2018, 125, 1729–1740. [Google Scholar] [CrossRef]
- Lee, E.J.; Han, J.C.; Park, D.Y.; Kee, C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog. Retin. Eye Res. 2020, 77, 100840. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Vrabec, F. The Structure of the Head of the Optic Nerve in Rhesus Monkey. Am. J. Ophthalmol. 1966, 61, 136–150. [Google Scholar] [CrossRef]
- Triviño, A.; Ramírez, J.M.; Salazar, J.J.; Ramírez, A.I.; Garcia-Sánchez, J. Immunohistochemical Study of Human Optic Nerve Head Astroglia. Vis. Res. 1996, 36, 2015–2028. [Google Scholar] [CrossRef] [Green Version]
- Tehrani, S.; Johnson, E.C.; Cepurna, W.O.; Morrison, J.C. Astrocyte Processes Label for Filamentous Actin and Reorient Early Within the Optic Nerve Head in a Rat Glaucoma Model. Investig. Opthalmol. Vis. Sci. 2014, 55, 6945–6952. [Google Scholar] [CrossRef] [PubMed]
- Lye-Barthel, M.; Sun, D.; Jakobs, T.C. Morphology of Astrocytes in a Glaucomatous Optic Nerve. Investig. Opthalmol. Vis. Sci. 2013, 54, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.H.; David, S.; Patel, R.; Abney, E.R.; Raff, M.C. A quantitative immunohistochemical study of macroglial cell development in the rat optic nerve: In vivo evidence for two distinct astrocyte lineages. Dev. Biol. 1985, 111, 35–41. [Google Scholar] [CrossRef]
- Cooper, M.; Crish, S.D.; Inman, D.M.; Horner, P.J.; Calkins, D.J. Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2J mouse model of glaucoma. Exp. Eye Res. 2015, 150, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Gietzelt, C.; Von Goscinski, C.; Lemke, J.; Schaub, F.; Hermann, M.M.; Dietlein, T.S.; Cursiefen, C.; Heindl, L.M.; Enders, P. Dynamics of structural reversal in Bruch’s membrane opening-based morphometrics after glaucoma drainage device surgery. Graefe Arch. Clin. Exp. Ophthalmol. 2020, 258, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
Variables | Total Subjects (n = 44) |
---|---|
Age, years | 62.5 ± 15.1 |
Gender, male/female | 33/11 |
Diabetes, yes/no | 15/29 |
Hypertension, yes/no | 12/32 |
Phakia/pseudophakia | 28/16 |
Central corneal thickness, μm | 548.1 ± 37.4 |
Axial length, mm | 24.2 ±1.3 |
Visual field MD, dB | −20 ± 7.5 |
Visual field PSD, dB | 8.4 ± 3.0 |
Visual field VFI, % | 44.7 ± 26.5 |
Average RNFL thickness, μm | 62.5 ± 22.4 |
BMO-area, μm2 | 2.32 ± 0.56 |
Global BMO-MRW, μm | 151.9 ± 45.5 |
Preoperative | Postoperative | p-Value | |
---|---|---|---|
IOP, mmHg | 27 ± 6.6 | 10.5 ± 3.3 | <0.001 |
BMO-area, μm2 | 2.32 ± 0.56 | 2.29 ± 0.57 | 0.52 |
Global BMO-MRW, μm | 151.9 ± 45.5 | 181.8 ± 84.7 | <0.001 |
BMO-MRW_TS, μm | 127.3 ± 55.1 | 143.1 ± 83 | 0.007 |
BMO-MRW_T, μm | 132.4 ± 45 | 153.8 ± 75.7 | 0.002 |
BMO-MRW_TI, μm | 138.1 ± 78.8 | 152 ± 108.1 | 0.06 |
BMO-MRW_NI, μm | 189.3 ± 66.7 | 212.8 ± 94 | 0.004 |
BMO-MRW_N, μm | 169.7 ± 55.7 | 195.6 ± 73.6 | <0.001 |
BMO-MRW_NS, μm | 161.4 ± 61.9 | 183.7 ± 70.5 | <0.001 |
Average RNFL thickness, μm | 62.5 ± 22.4 | 61.6 ± 19.7 | 0.68 |
RNFL_TS, μm | 79.2 ± 42 | 71.6 ± 31.9 | 0.08 |
RNFL_T, μm | 57.4 ± 25.8 | 57.1 ± 24.8 | 0.87 |
RNFL_TI, μm | 71.6 ± 33.1 | 70.3 ± 37.1 | 0.72 |
RNFL_NI, μm | 66.2 ± 28.2 | 67.8 ± 24.9 | 0.37 |
RNFL_N, μm | 53.6 ± 23.6 | 54.9 ± 20.7 | 0.45 |
RNFL_NS, μm | 70 ± 35.5 | 64.9 ± 28.4 | 0.20 |
Univariable | Multivariable | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||||||
Variables | Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | Beta (95% CI) | p-Value | ||||
Age, per 1 year older | −0.19 (−0.31 to −0.08) | 0.001 | −0.11 (−0.20 to −0.02) | 0.02 | −0.10 (−0.19 to −0.00) | 0.05 | ||||
Gender, male | −0.96 (−5.38 to 3.46) | 0.67 | ||||||||
Diabetes | −1.01 (−5.06 to 3.04) | 0.63 | ||||||||
Hypertension | −0.77 (−5.20 to 3.65) | 0.73 | ||||||||
Phakia/pseudophakia | −1.80 (−5.76 to 2.16) | 0.38 | ||||||||
Duration, months | 0.36 (−0.69 to 1.41) | 0.51 | ||||||||
Central corneal thickness, 40 μm | −2.04 (−3.98 to −0.09) | 0.04 | −0.55 (−1.97 to 0.86) | 0.45 | −0.40 (−1.85 to 1.05) | 0.59 | ||||
Axial length, mm | 0.78 (−1.31 to 2.87) | 0.47 | ||||||||
Visual field MD, dB | 0.28 (0.04 to 0.52) | 0.03 | 0.09 (−0.09 to 0.28) | 0.33 | ||||||
Visual field PSD, dB | 0.25 (−0.39 to 0.89) | 0.44 | ||||||||
Preoperative average RNFL thickness, 10 μm | 0.80 (−0.04 to 1.63) | 0.07 | 0.26 (−0.32 to 0.85) | 0.38 | ||||||
Preoperative global BMO-MRW thickness, 10 μm | 0.28 (−0.14 to 0.70) | 0.21 | ||||||||
Preoperative IOP, mmHg | 0.13 (−0.16 to 0.43) | 0.39 | ||||||||
Postoperative IOP, mmHg | −0.63 (−1.03 to −0.24) | 0.003 | ||||||||
Reduction of IOP, mmHg | 0.28 (0.11 to 0.45) | 0.002 | 0.19 (0.01 to 0.37) | 0.04 | 0.21 (0.04 to 0.38) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.-Y.; Cha, S.-C. Factors Associated with Increased Neuroretinal Rim Thickness Measured Based on Bruch’s Membrane Opening-Minimum Rim Width after Trabeculectomy. J. Clin. Med. 2021, 10, 3646. https://doi.org/10.3390/jcm10163646
Park D-Y, Cha S-C. Factors Associated with Increased Neuroretinal Rim Thickness Measured Based on Bruch’s Membrane Opening-Minimum Rim Width after Trabeculectomy. Journal of Clinical Medicine. 2021; 10(16):3646. https://doi.org/10.3390/jcm10163646
Chicago/Turabian StylePark, Do-Young, and Soon-Cheol Cha. 2021. "Factors Associated with Increased Neuroretinal Rim Thickness Measured Based on Bruch’s Membrane Opening-Minimum Rim Width after Trabeculectomy" Journal of Clinical Medicine 10, no. 16: 3646. https://doi.org/10.3390/jcm10163646
APA StylePark, D. -Y., & Cha, S. -C. (2021). Factors Associated with Increased Neuroretinal Rim Thickness Measured Based on Bruch’s Membrane Opening-Minimum Rim Width after Trabeculectomy. Journal of Clinical Medicine, 10(16), 3646. https://doi.org/10.3390/jcm10163646