Clinical Relevance of Immersive Virtual Reality in the Assessment and Treatment of Addictive Disorders: A Systematic Review and Future Perspective
Abstract
:1. Introduction
2. Method
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Quality Appraisal
2.5. Data Extraction
2.6. Data Synthesis
3. Results
3.1. Study Selection
3.2. Clinical Relevance of VR in the Assessment of ADs
3.2.1. General Description of the Included Studies
3.2.2. Clinical Assessment
3.2.3. VR Findings
3.2.4. Quality of the Studies
Reference | Design | Population | VR Assessment | Measurements | Clinical Outcome * | |
---|---|---|---|---|---|---|
Indicator of Clinical Status | Indicator of Cue-Reactivity | |||||
Nicotine studies | ||||||
Ferrer-Garcia et al. (2010) [29] | Within-group correlation |
|
|
|
|
|
Ferrer-Garcia et al. (2012) [30] | Within-group correlation |
|
|
|
|
|
Garcia-Rodriguez et al. (2012) [31] | Between groups comparison |
|
|
|
|
|
Bordnick et al. (2013) [32] | Between groups comparison |
|
|
|
|
|
Pericot-Valverde et al. (2013) [33] | Within-group (pre-post abstinence) comparison |
|
|
|
|
|
Thompson-Lake et al. (2015) [34] | Within-group correlation |
|
|
|
|
|
De Bruijn et al. (2020) [35] | Between groups comparison Subanalyses within a randomized experiment |
|
|
|
|
|
Kotlyar et al. (2020) [36] | Between groups comparison Subanalyses within a randomized cross-over study |
|
|
|
|
|
Alcohol studies | ||||||
Bordnick et al. (2008) [37] | Within-group correlation |
|
|
|
|
|
Lee et al. (2008) [38] | Between groups comparison |
|
|
|
|
|
Ryan et al. (2010) [39] | Between groups comparison |
|
|
|
|
|
Traylor et al. (2011) [40] | Between groups comparison |
|
|
|
|
|
Ghita et al. (2017) [41] | Between groups comparison |
|
|
|
|
|
Ghita et al. (2019) [20] | Between groups comparison and within group correlation |
|
|
|
|
|
Simon et al. (2020) [42] | Between groups comparison |
|
|
|
|
|
Methamphetamine studies | ||||||
Wang et al. (2018) [28] | Between groups comparison |
|
|
|
|
|
Tan et al. (2019) [43] | Between groups comparison |
|
|
|
|
|
Ding et al. (2020) [23] | Between groups comparison |
|
|
|
|
|
Gaming studies | ||||||
Shin et al. (2018) [44] | Between groups comparison and within group correlation |
|
|
|
|
|
3.3. Clinical Relevance of VR in the Treatment of ADs
3.3.1. General Description of the Studies
3.3.2. Treatment Studies Using a VR Exposure Therapy Paradigm
3.3.3. Treatment Studies Using Other VR Paradigms
3.3.4. Quality of the Treatment Studies
Reference | Design | Population | Control Intervention | VR Intervention | Measurements | Clinical Outcome |
---|---|---|---|---|---|---|
Nicotine studies | ||||||
Lee et al. (2004) [51] | VR2 study with pre-post and per session evaluation |
|
|
| Pre-post:
|
|
Moon et al. (2009) [52] | VR2 study with per session evaluation |
|
|
| Per session:
|
|
Pericot-Valverde et al. (2014) [46] | VR2 study with focus on first proof of effectiveness with per session evaluation |
|
|
| Per session:
|
|
Pericot-Valverde et al. (2015) [47] | VR2 study with focus on individual predictors of effectiveness with pre-post session evaluation |
|
|
| Pre-post:
|
|
Pericot-Valverde et al. (2016) [48] | VR2 study with focus on application in natural treatment setting with pre-post session evaluation |
|
|
| Baseline-post first session-post last session:
|
|
Malbos et al. (2018) [55] | VR2/3 study with a clinical population, compared to golden standard (CBT), no follow-up, no power-analysis, use of randomized controlled design |
|
|
| Pre-post:
|
|
Pericot-Valverde et al. (2019) [49] | VR3 with a clinical population, compared to golden standard (CBT), follow-up, no power-analysis, use of randomized controlled design |
|
|
| Pre-follow up:
|
|
Goldenhersch et al. (2020) [56] | VR2 study into adherence and preliminary effectiveness with pre-follow up evaluation and randomized controlled design |
|
|
| Pre-follow up:
|
|
Alcohol studies | ||||||
Hernandez-Serrano et al. (2020) [21] | VR2 study into preliminary effectiveness with pre-post evaluation and randomized controlled design, lacking a direct comparison between groups |
|
|
| Pre-post:
|
|
Gambling studies | ||||||
Giroux et al. (2013) [54] | VR2 study into preliminary effectiveness with pre-post evaluation |
|
|
| Pre-post:
|
|
Reference | Design | Population | Control Intervention | VR Intervention | Measurements | Clinical Outcome |
---|---|---|---|---|---|---|
Nicotine studies | ||||||
Girard et al. (2009) [53] | VR2/3 study into preliminary effectiveness with a clinical population, not compared to golden standard, follow-up, no power-analysis, use of randomized controlled design |
|
|
| Pre-post-follow up:
|
|
Bordnick et al. (2012) [58] | VR2 study into feasibility and preliminary effectiveness with pre-follow up and post-session evaluation and randomized controlled design |
|
|
| Post (between-groups):
|
|
Caponnetto et al. (2018) [59] | VR2 study into feasibility and preliminary effectiveness with pre-post session evaluation |
|
|
| Pre-post:
|
|
Alcohol studies | ||||||
Spagnoli et al. (2014) [57] | VR2 study into preliminary effectiveness with pre-post session evaluation |
|
|
| Pre-post:
|
|
Choi & Lee (2015) [50] | VR2 study with focus on preliminary effectiveness with pre-post session evaluation, within-person controlled |
|
|
| Pre-post:
|
|
Methamphetamine studies | ||||||
Wang et al. (2019) [22] | VR2 studies with focus on preliminary effectiveness with pre-post session evaluation and randomized controlled designs |
|
|
| Study 1, pre-post:
|
|
Gambling studies | ||||||
Bouchard et al. (2017) [45] | VR2 studies with focus on integrating VR and CBT (study 2) and preliminary effectiveness (study 3) with pre-post session evaluation and randomized controlled design |
|
|
| Study 2, pre-post:
|
|
4. Discussion
4.1. General Discussion
4.2. Strengths and Limitations
4.3. Future Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehm, J.; Shield, K.D. Global burden of disease and the impact of mental and addictive disorders. Curr. Psychiatry Rep. 2019, 21, 10. [Google Scholar] [CrossRef]
- Gowing, L.R.; Ali, R.L.; Allsop, S.; Marsden, J.; Turf, E.E.; West, R.; Witton, J. Global statistics on addictive behaviours: 2014 status report. Addiction 2015, 110, 904–919. [Google Scholar] [CrossRef] [Green Version]
- Schellekens, A.; De Jong, C.; Buitelaar, J.; Verkes, R. Co-morbid anxiety disorders predict early relapse after inpatient alcohol treatment. Eur. Psychiatry 2015, 30, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Lappan, S.N.; Brown, A.W.; Hendricks, P.S. Dropout rates of in-person psychosocial substance use disorder treatments: A systematic review and meta-analysis. Addiction 2020, 115, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, F.; Bourla, A.; Mouchabac, S.; Karila, L. e-Addictology: An overview of new technologies for assessing and intervening in addictive behaviors. Front. Psychiatry 2018, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Emmelkamp, P.M.; Meyerbröker, K. Virtual Reality Therapy in Mental Health. Annu. Rev. Clin. Psychol. 2021, 17, 495–519. [Google Scholar] [CrossRef] [PubMed]
- Bown, J.; White, E.; Boopalan, A. Looking for the ultimate display: A brief history of virtual reality. In Boundaries of Self and Reality Online; Elsevier: London, UK, 2017; pp. 239–259. [Google Scholar]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Oing, T.; Prescott, J. Implementations of virtual reality for anxiety-related disorders: Systematic review. JMIR Serious Games 2018, 6, e10965. [Google Scholar] [CrossRef] [PubMed]
- Carl, E.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.; Emmelkamp, P.; Asmundson, G.J.; Carlbring, P.; Powers, M.B. Virtual reality exposure therapy for anxiety and related disorders: A meta-analysis of randomized controlled trials. J. Anxiety Disord. 2019, 61, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Rus-Calafell, M.; Garety, P.; Sason, E.; Craig, T.J.; Valmaggia, L.R. Virtual reality in the assessment and treatment of psychosis: A systematic review of its utility, acceptability and effectiveness. Psychol. Med. 2018, 48, 362–391. [Google Scholar] [CrossRef]
- Segawa, T.; Baudry, T.; Bourla, A.; Blanc, J.-V.; Peretti, C.-S.; Mouchabac, S.; Ferreri, F. Virtual reality (VR) in assessment and treatment of addictive disorders: A systematic review. Front. Neurosci. 2020, 13, 1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pericot-Valverde, I.; Germeroth, L.J.; Tiffany, S.T. The use of virtual reality in the production of cue-specific craving for cigarettes: A meta-analysis. Nicotine Tob. Res. 2016, 18, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hone-Blanchet, A.; Wensing, T.; Fecteau, S. The use of virtual reality in craving assessment and cue-exposure therapy in substance use disorders. Front. Hum. Neurosci. 2014, 8, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiţă, A.; Gutiérrez-Maldonado, J. Applications of virtual reality in individuals with alcohol misuse: A systematic review. Addict. Behav. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Trahan, M.H.; Maynard, B.R.; Smith, K.S.; Farina, A.S.; Khoo, Y.M. Virtual reality exposure therapy on alcohol and nicotine: A systematic review. Res. Soc. Work Pract. 2019, 29, 876–891. [Google Scholar] [CrossRef]
- Bell, I.H.; Nicholas, J.; Alvarez-Jimenez, M.; Thompson, A.; Valmaggia, L. Virtual reality as a clinical tool in mental health research and practice. Dialogues Clin. Neurosci. 2020, 22, 169. [Google Scholar] [PubMed]
- Carter, B.L.; Tiffany, S.T. Meta-analysis of cue-reactivity in addiction research. Addiction 1999, 94, 327–340. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); APA Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Ghiţă, A.; Hernández-Serrano, O.; Fernández-Ruiz, Y.; Monras, M.; Ortega, L.; Mondon, S.; Teixidor, L.; Gual, A.; Porras-García, B.; Ferrer-García, M. Cue-Elicited Anxiety and Alcohol Craving as Indicators of the Validity of ALCO-VR Software: A Virtual Reality Study. J. Clin. Med. 2019, 8, 1153. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Serrano, O.; Ghiţă, A.; Figueras-Puigderrajols, N.; Fernández-Ruiz, J.; Monras, M.; Ortega, L.; Mondon, S.; Teixidor, L.; Gual, A.; Ugas-Ballester, L. Predictors of Changes in Alcohol Craving Levels during a Virtual Reality Cue Exposure Treatment among Patients with Alcohol Use Disorder. J. Clin. Med. 2020, 9, 3018. [Google Scholar] [CrossRef]
- Wang, Y.-G.; Liu, M.-H.; Shen, Z.-H. A virtual reality counterconditioning procedure to reduce methamphetamine cue-induced craving. J. Psychiatr. Res. 2019, 116, 88–94. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Li, D.; Li, L.; Liu, X. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment. Brain Behav. 2020, 10, e01814. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Birckhead, B.; Khalil, C.; Liu, X.; Conovitz, S.; Rizzo, A.; Danovitch, I.; Bullock, K.; Spiegel, B. Recommendations for methodology of virtual reality clinical trials in health care by an international working group: Iterative study. JMIR Ment. Health 2019, 6, e11973. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Wang, Y.-G.; Shen, Z.-H.; Wu, X.-C. Detection of patients with methamphetamine dependence with cue-elicited heart rate variability in a virtual social environment. Psychiatry Res. 2018, 270, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Garcia, M.; Garcia-Rodriguez, O.; Gutiérrez-Maldonado, J.; Pericot-Valverde, I.; Secades-Villa, R. Efficacy of virtual reality in triggering the craving to smoke: Its relation to level of presence and nicotine dependence. Stud. Health Technol. Inf. 2010, 154, 123–127. [Google Scholar]
- Ferrer-García, M.; García-Rodríguez, O.; Pericot-Valverde, I.; Yoon, J.H.; Secades-Villa, R.; Gutiérrez-Maldonado, J. Predictors of smoking craving during virtual reality exposure. Presence Teleoperators Virtual Environ. 2012, 21, 423–434. [Google Scholar] [CrossRef]
- García-Rodríguez, O.; Pericot-Valverde, I.; Gutiérrez-Maldonado, J.; Ferrer-García, M.; Secades-Villa, R. Validation of smoking-related virtual environments for cue exposure therapy. Addict. Behav. 2012, 37, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Bordnick, P.S.; Yoon, J.H.; Kaganoff, E.; Carter, B. Virtual reality cue reactivity assessment: A comparison of treatment-vs. nontreatment-seeking smokers. Res. Soc. Work Pract. 2013, 23, 419–425. [Google Scholar] [CrossRef]
- Pericot-Valverde, I.; García-Rodríguez, O.; Rus-Calafell, M.; Fernández-Artamendi, S.; Ferrer-García, M.; Gutiérrez-Maldonado, J. Peak provoked craving after smoking cessation. Annu. Rev. Cyberther. Telemed. 2013, 191, 163–167. [Google Scholar]
- Thompson-Lake, D.G.; Cooper, K.N.; Mahoney III, J.J.; Bordnick, P.S.; Salas, R.; Kosten, T.R.; Dani, J.A.; De La Garza, R. Withdrawal symptoms and nicotine dependence severity predict virtual reality craving in cigarette-deprived smokers. Nicotine Tob. Res. 2015, 17, 796–802. [Google Scholar] [CrossRef] [Green Version]
- de Bruijn, G.-J.; de Vries, J.; Bolman, C.; Wiers, R. (No) escape from reality? Cigarette craving in virtual smoking environments. J. Behav. Med. 2021, 44, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, M.; Vogel, R.I.; Dufresne, S.R.; Mills, A.M.; Vuchetich, J.P. Effect of nicotine lozenge use prior to smoking cue presentation on craving and withdrawal symptom severity. Drug Alcohol Depend. 2020, 206, 107706. [Google Scholar] [CrossRef]
- Bordnick, P.S.; Traylor, A.; Copp, H.L.; Graap, K.M.; Carter, B.; Ferrer, M.; Walton, A.P. Assessing reactivity to virtual reality alcohol based cues. Addict. Behav. 2008, 33, 743–756. [Google Scholar] [CrossRef]
- Lee, J.S.; Namkoong, K.; Ku, J.; Cho, S.; Park, J.Y.; Choi, Y.K.; Kim, J.-J.; Kim, I.Y.; Kim, S.I.; Jung, Y.-C. Social pressure-induced craving in patients with alcohol dependence: Application of virtual reality to coping skill training. Psychiatry Investig. 2008, 5, 239. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.J.; Kreiner, D.S.; Chapman, M.D.; Stark-Wroblewski, K. Virtual reality cues for binge drinking in college students. CyberPsychol. Behav. Soc. Netw. 2010, 13, 159–162. [Google Scholar] [CrossRef]
- Traylor, A.C.; Parrish, D.E.; Copp, H.L.; Bordnick, P.S. Using virtual reality to investigate complex and contextual cue reactivity in nicotine dependent problem drinkers. Addict. Behav. 2011, 36, 1068–1075. [Google Scholar] [CrossRef]
- Ghiţă, A.; Ferrer-Garcia, M.; Gutiérrez-Maldonado, J. Behavioral, craving and anxiety responses among light and heavy drinking college students in alcohol-related virtual environments. Annu. Rev. Cyberther. Telemed 2017, 15, 135–140. [Google Scholar]
- Simon, J.; Etienne, A.-M.; Bouchard, S.; Quertemont, E. Alcohol craving in heavy and occasional alcohol drinkers after cue exposure in a virtual environment: The role of the sense of presence. Front. Hum. Neurosci. 2020, 14, 124. [Google Scholar] [CrossRef]
- Tan, H.; Chen, T.; Du, J.; Li, R.; Jiang, H.; Deng, C.-l.; Song, W.; Xu, D.; Zhao, M. Drug-related Virtual Reality Cue Reactivity is Associated with Gamma Activity in Reward and Executive Control Circuit in Methamphetamine Use Disorders. Arch. Med. Res. 2019, 50, 509–517. [Google Scholar] [CrossRef]
- Shin, Y.-B.; Kim, J.-J.; Kim, M.-K.; Kyeong, S.; Jung, Y.H.; Eom, H.; Kim, E. Development of an effective virtual environment in eliciting craving in adolescents and young adults with internet gaming disorder. PLoS ONE 2018, 13, e0195677. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, S.; Robillard, G.; Giroux, I.; Jacques, C.; Loranger, C.; St-Pierre, M.; Chrétien, M.; Goulet, A. Using virtual reality in the treatment of gambling disorder: The development of a new tool for cognitive behavior therapy. Front. Psychiatry 2017, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Pericot-Valverde, I.; Secades-Villa, R.; Gutiérrez-Maldonado, J.; García-Rodríguez, O. Effects of systematic cue exposure through virtual reality on cigarette craving. Nicotine Tob. Res. 2014, 16, 1470–1477. [Google Scholar] [CrossRef] [Green Version]
- Pericot-Valverde, I.; García-Rodríguez, O.; Gutiérrez-Maldonado, J.; Secades-Villa, R. Individual variables related to craving reduction in cue exposure treatment. Addict. Behav. 2015, 49, 59–63. [Google Scholar] [CrossRef]
- Pericot-Valverde, I.; Ferrer-Garcia, M.; Pla-Sanjuanelo, J.; Secades-Villa, R.; Gutiérrez, J. Cue exposure treatment through virtual reality reduce cigarette craving in real life environments. Annu. Rev. Cyberther. Telemed. 2016, 14, 137–237. [Google Scholar]
- Pericot-Valverde, I.; Secades-Villa, R.; Gutiérrez-Maldonado, J. A randomized clinical trial of cue exposure treatment through virtual reality for smoking cessation. J. Subst. Abus. Treat. 2019, 96, 26–32. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, J.-H. The effect of virtual covert sensitization on reducing alcohol craving in heavy social drinkers. Virtual Real. 2015, 19, 111–117. [Google Scholar] [CrossRef]
- Lee, J.; Lim, Y.; Graham, S.J.; Kim, G.; Wiederhold, B.K.; Wiederhold, M.D.; Kim, I.Y.; Kim, S.I. Nicotine craving and cue exposure therapy by using virtual environments. CyberPsychol. Behav. 2004, 7, 705–713. [Google Scholar] [CrossRef]
- Moon, J.; Lee, J.-H. Cue exposure treatment in a virtual environment to reduce nicotine craving: A functional MRI study. CyberPsychol. Behav. 2009, 12, 43–45. [Google Scholar] [CrossRef]
- Girard, B.; Turcotte, V.; Bouchard, S.; Girard, B. Crushing virtual cigarettes reduces tobacco addiction and treatment discontinuation. CyberPsychol. Behav. 2009, 12, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Giroux, I.; Faucher-Gravel, A.; St-Hilaire, A.; Boudreault, C.; Jacques, C.; Bouchard, S. Gambling exposure in virtual reality and modification of urge to gamble. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 224–231. [Google Scholar] [CrossRef]
- Malbos, E.; Borwell, B.; Cantalupi, R.; Lancon, C. Virtual Reality Cue Exposure for Smoking Relapse Prevention: A Comparative Trial. Annu. Rev. Cybertherapy Telemed. 2018, 16, 124–130. [Google Scholar]
- Goldenhersch, E.; Thrul, J.; Ungaretti, J.; Rosencovich, N.; Waitman, C.; Ceberio, M.R. Virtual Reality Smartphone-Based Intervention for Smoking Cessation: Pilot Randomized Controlled Trial on Initial Clinical Efficacy and Adherence. J. Med. Internet Res. 2020, 22, e17571. [Google Scholar] [CrossRef]
- Spagnoli, G.; Gatti, E.; Massari, R.; Sacchelli, C.; Riva, G. Can virtual reality be useful to assess subjects with alcohol dependency? Development of a new assessment protocol for patients with alcoholism. Eur. Int. J. Sci. Technol. 2014, 3, 82–94. [Google Scholar]
- Bordnick, P.S.; Traylor, A.C.; Carter, B.L.; Graap, K.M. A feasibility study of virtual reality-based coping skills training for nicotine dependence. Res. Soc. Work Pract. 2012, 22, 293–300. [Google Scholar] [CrossRef]
- Caponnetto, P.; Maglia, M.; Lombardo, D.; Demma, S.; Polosa, R. The role of virtual reality intervention on young adult smokers’ motivation to quit smoking: A feasibility and pilot study. J. Addict. Dis. 2018, 37, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Giovancarli, C.; Malbos, E.; Baumstarck, K.; Parola, N.; Pélissier, M.-F.; Lançon, C.; Auquier, P.; Boyer, L. Virtual reality cue exposure for the relapse prevention of tobacco consumption: A study protocol for a randomized controlled trial. Trials 2016, 17, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paliwal, P.; Hyman, S.M.; Sinha, R. Craving predicts time to cocaine relapse: Further validation of the Now and Brief versions of the cocaine craving questionnaire. Drug Alcohol Depend. 2008, 93, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Galloway, G.P.; Singleton, E.G.; Methamphetamine Treatment Project Corporate Authors. How long does craving predict use of methamphetamine? Assessment of use one to seven weeks after the assessment of craving. Subst. Abus. Res. Treat. 2008, 1, SART-S775. [Google Scholar] [CrossRef] [Green Version]
- Perkins, K.A. Subjective reactivity to smoking cues as a predictor of quitting success. Nicotine Tob. Res. 2011, 14, 383–387. [Google Scholar] [CrossRef]
- Gatti, E.; Massari, R.; Sacchelli, C.; Lops, T.; Gatti, R.; Riva, G. Why do you drink? Virtual reality as an experiential medium for the assessment of alcohol-dependent individuals. Stud. Health Technol. Inform. 2008, 132, 132–137. [Google Scholar]
- Mellentin, A.I.; Skøt, L.; Nielsen, B.; Schippers, G.M.; Nielsen, A.S.; Stenager, E.; Juhl, C. Cue exposure therapy for the treatment of alcohol use disorders: A meta-analytic review. Clin. Psychol. Rev. 2017, 57, 195–207. [Google Scholar] [CrossRef]
- Conklin, C.A.; Tiffany, S.T. Applying extinction research and theory to cue-exposure addiction treatments. Addiction 2002, 97, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Marissen, M.A.; Franken, I.H.; Blanken, P.; van den Brink, W.; Hendriks, V.M. Cue exposure therapy for the treatment of opiate addiction: Results of a randomized controlled clinical trial. Psychother. Psychosom. 2007, 76, 97–105. [Google Scholar] [CrossRef]
- Riva, G.; Serino, S.; Di Lernia, D.; Pavone, E.F.; Dakanalis, A. Embodied medicine: Mens sana in corpore virtuale sano. Front. Hum. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-B.; Choi, J.-S.; Park, S.M.; Lee, J.-Y.; Jung, H.Y.; Seol, J.-M.; Hwang, J.Y.; Gwak, A.R.; Kwon, J.S. Comparison of the effectiveness of virtual cue exposure therapy and cognitive behavioral therapy for nicotine dependence. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Kellmeyer, P.; Biller-Andorno, N.; Meynen, G. Ethical tensions of virtual reality treatment in vulnerable patients. Nat. Med. 2019, 25, 1185–1188. [Google Scholar] [CrossRef]
- Marloth, M.; Chandler, J.; Vogeley, K. Psychiatric interventions in virtual reality: Why we need an ethical framework. Camb. Q. Healthc. Ethics 2020, 29, 574–584. [Google Scholar] [CrossRef]
- Weech, S.; Kenny, S.; Barnett-Cowan, M. Presence and cybersickness in virtual reality are negatively related: A review. Front. Psychol. 2019, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; De Vet, H.C. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. Clin. Chem. 2015, 61, 1446–1452. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-Y.; Lee, J.-H. Development of a virtual approach–avoidance task to assess alcohol cravings. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 763–766. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, J.-H. The Effects of Training to Reduce Automatic Action Tendencies Toward Alcohol Using the Virtual Alcohol Approach-Avoidance Task in Heavy Social Drinkers. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 794–798. [Google Scholar] [CrossRef]
- Papini, S.; Young, C.C.; Gebhardt, C.S.; Perrone, A.; Morikawa, H.; Otto, M.W.; Roache, J.D.; Smits, J.A. Isradipine enhancement of virtual reality cue exposure for smoking cessation: Rationale and study protocol for a double-blind randomized controlled trial. Contemp. Clin. Trials 2020, 94, 106013. [Google Scholar] [CrossRef] [Green Version]
- Machulska, A.; Eiler, T.J.; Grünewald, A.; Brück, R.; Jahn, K.; Niehaves, B.; Ullrich, H.; Klucken, T. Promoting smoking abstinence in smokers willing to quit smoking through virtual reality-approach bias retraining: A study protocol for a randomized controlled trial. Trials 2020, 21, 227. [Google Scholar] [CrossRef] [Green Version]
- Mellentin, A.I.; Nielsen, A.S.; Ascone, L.; Wirtz, J.; Samochowiec, J.; Kucharska-Mazur, J.; Schadow, F.; Lebiecka, Z.; Skoneczny, T.; Mistarz, N. A randomized controlled trial of a virtual reality based, approach-avoidance training program for alcohol use disorder: A study protocol. BMC Psychiatry 2020, 20, 340. [Google Scholar] [CrossRef]
- Chen, X.J.; Wang, D.M.; Zhou, L.D.; Winkler, M.; Pauli, P.; Sui, N.; Li, Y.H. Mindfulness-based relapse prevention combined with virtual reality cue exposure for methamphetamine use disorder: Study protocol for a randomized controlled trial. Contemp. Clin. Trials 2018, 70, 99–105. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.-J.; Wen, Y.-T.; Winkler, M.H.; Paul, P.; He, Y.-L.; Wang, L.; Chen, H.-X.; Li, Y.-H. Memory Retrieval-Extinction Combined With Virtual Reality Reducing Drug Craving for Methamphetamine: Study Protocol for a Randomized Controlled Trial. Front. Psychiatry 2020, 11, 322. [Google Scholar] [CrossRef]
Population: | Adolescent or adult humans with addictive disorders (SUD or other addictive behaviors) or daily/heavy use |
Intervention *: | Immersive VR (using Head-Mounted Display) for the assessment or treatment of addictive disorders |
Comparators *: | No limitation |
Outcomes: | Assessment: Diagnosis, disease severity, measure of treatment effect, or predictor of treatment outcome, related to VR-cue-reactivity (e.g., craving, psychophysio-logical response and attention to cues) Treatment: Cue-reactivity, motivation, dependence severity, substance use, abstinence |
Study designs: | No limitation, except single case studies (n < 3) |
Timing: | No restriction |
Language: | English |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langener, S.; Van Der Nagel, J.; van Manen, J.; Markus, W.; Dijkstra, B.; De Fuentes-Merillas, L.; Klaassen, R.; Heitmann, J.; Heylen, D.; Schellekens, A. Clinical Relevance of Immersive Virtual Reality in the Assessment and Treatment of Addictive Disorders: A Systematic Review and Future Perspective. J. Clin. Med. 2021, 10, 3658. https://doi.org/10.3390/jcm10163658
Langener S, Van Der Nagel J, van Manen J, Markus W, Dijkstra B, De Fuentes-Merillas L, Klaassen R, Heitmann J, Heylen D, Schellekens A. Clinical Relevance of Immersive Virtual Reality in the Assessment and Treatment of Addictive Disorders: A Systematic Review and Future Perspective. Journal of Clinical Medicine. 2021; 10(16):3658. https://doi.org/10.3390/jcm10163658
Chicago/Turabian StyleLangener, Simon, Joanne Van Der Nagel, Jeannette van Manen, Wiebren Markus, Boukje Dijkstra, Laura De Fuentes-Merillas, Randy Klaassen, Janika Heitmann, Dirk Heylen, and Arnt Schellekens. 2021. "Clinical Relevance of Immersive Virtual Reality in the Assessment and Treatment of Addictive Disorders: A Systematic Review and Future Perspective" Journal of Clinical Medicine 10, no. 16: 3658. https://doi.org/10.3390/jcm10163658
APA StyleLangener, S., Van Der Nagel, J., van Manen, J., Markus, W., Dijkstra, B., De Fuentes-Merillas, L., Klaassen, R., Heitmann, J., Heylen, D., & Schellekens, A. (2021). Clinical Relevance of Immersive Virtual Reality in the Assessment and Treatment of Addictive Disorders: A Systematic Review and Future Perspective. Journal of Clinical Medicine, 10(16), 3658. https://doi.org/10.3390/jcm10163658