Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation for SWATH-MS
2.2. Liquid Chromatography Mass Spectrometry (LC-MS) Instrument Analyses
2.3. Determination of Glycosylated Haemoglobin, Glucose and Insulin
2.4. Ethics
3. Statistical Analysis
4. Results
5. Discussion
6. Strengths and Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A2M | Alpha-2-macroglobulin |
AGT | Angiotensinogen |
APOA1 | Apolipoprotein A1 |
APOA4 | Apolipoprotein A4 |
APOC3 | Apolipoprotein C3 |
APOM | Apolipoprotein M |
BMI | Body Mass Index |
BS | Bariatric Surgery |
CRP | C—reactive protein |
CVD | Cardiovascular disease |
EETs | Epoxyeicoasatrienoic acids |
EPHX2 | Bifunctional epoxide hydrolase 2 |
FE | Fold Enrichment |
FN1 | Fibronectin |
GO | Gene Ontology |
HbA1c | glycosylated haemoglobin |
HCC | Hepatocellular carcinoma |
HOMA-B | Homeostatic model assessment of beta cell function |
HOMA-IR | Homeostatic model assessment of insulin resistance |
HP | Haptoglobulin |
HSPA4 | Heat shock 70 kDa protein 4 |
IGF-II | Insulin-like growth factor II |
LC-MS | Liquid Chromatography Mass spectrometry |
LRG1 | Leucine-rich alpha-2-glycoprotein |
NAHS | Non-Alcoholic Hepatic Steatosis |
PCA | Principal component analysis |
PGLYRP2 | N-acetylmuramoyl-L-alanine amidase |
PRG4 | Proteoglycan 4 |
SERPINC1 | Antithrombin-III |
SERPING1 | Plasma protease C1 inhibitor |
SHBG | Sex Hormone Binding Globulin |
SWATH-MS | Sequential window acquisition of all theoretical fragment ion spectra Mass Spectrometry |
T2DM | Type 2 Diabetes Mellitus |
TF | Serotransferrin |
References
- Jastreboff, A.M.; Kotz, C.M.; Kahan, S.; Kelly, A.S.; Heymsfield, S.B. Obesity as a disease: The obesity society 2018 position statement. Obesity 2019, 27, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G. The science of obesity management: An endocrine society scientific statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Lin, C.; Cai, X.; Yang, W.; Lv, F.; Nie, L.; Ji, L. The Body Weight Alteration and Incidence of Neoplasm in Patients with Type 2 Diabetes: A Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2020, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
- Ogrodnik, M.; Zhu, Y.; Langhi, L.G.; Tchkonia, T.; Krüger, P.; Fielder, E.; Victorelli, S.; Ruswhandi, R.A.; Giorgadze, N.; Pirtskhalava, T. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 2019, 29, 1061–1077.e8. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Graubard, B.I.; Williamson, D.F.; Gail, M.H. Cause-specific excess deaths associated with underweight, overweight, and obesity. Obstet. Gynecol. Surv. 2008, 63, 157–159. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Dye, L.; Boyle, N.B.; Champ, C.; Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 2017, 76, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Ammori, B.J.; Skarulis, M.C.; Soran, H.; Syed, A.A.; Eledrisi, M.; Malik, R.A. Medical and surgical management of obesity and diabetes: What’s new? Diabet. Med. 2020, 37, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, Z.; Adam, S.; Ho, J.H.; Syed, A.A.; Ammori, B.J.; Malik, R.A.; Soran, H. Metabolic and cardiovascular outcomes of bariatric surgery. Curr. Opin. Lipidol. 2020, 31, 246–256. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, Y.X.; Zhang, W. Does Roux-en-Y Construction Really Bring Benefit of Type 2 Diabetes Mellitus Remission after Gastrectomy in Patients with Gastric Cancer? A Systematic Review and Meta-Analysis. Diabetes Ther. 2020, 11, 2863–2872. [Google Scholar] [CrossRef]
- Frikke-Schmidt, H.; O’Rourke, R.W.; Lumeng, C.N.; Sandoval, D.A.; Seeley, R.J. Does bariatric surgery improve adipose tissue function? Obes. Rev. 2016, 17, 795–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purnell, J.Q.; Selzer, F.; Wahed, A.S.; Pender, J.; Pories, W.; Pomp, A.; Dakin, G.; Mitchell, J.; Garcia, L.; Staten, M.A. Type 2 diabetes remission rates after laparoscopic gastric bypass and gastric banding: Results of the longitudinal assessment of bariatric surgery study. Diabetes Care 2016, 39, 1101–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadera, B.E.; Lum, K.; Grant, J.; Pryor, A.D.; Portenier, D.D.; DeMaria, E.J. Remission of type 2 diabetes after Roux-en-Y gastric bypass is associated with greater weight loss. Surg. Obes. Relat. Dis. 2009, 5, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Hamza, N.; Abbas, M.H.; Darwish, A.; Shafeek, Z.; New, J.; Ammori, B.J. Predictors of remission of type 2 diabetes mellitus after laparoscopic gastric banding and bypass. Surg. Obes. Relat. Dis. 2011, 7, 691–696. [Google Scholar] [CrossRef]
- Aebersold, R.; Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef]
- Tanner, S.D.; Baranov, V.I.; Ornatsky, O.I.; Bandura, D.R.; George, T.C. An introduction to mass cytometry: Fundamentals and applications. Cancer Immunol. Immunother. 2013, 62, 955–965. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Subramanian, R. Comparison of information-dependent acquisition, SWATH, and MSAll techniques in metabolite identification study employing ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Chem. 2014, 86, 1202–1209. [Google Scholar] [CrossRef]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Adam, S.; Azmi, S.; Ho, J.H.; Liu, Y.; Ferdousi, M.; Siahmansur, T.; Kalteniece, A.; Marshall, A.; Dhage, S.S.; Iqbal, Z. Improvements in Diabetic Neuropathy and Nephropathy after Bariatric Surgery: A Prospective Cohort Study. Obes. Surg. 2020, 31, 554–563. [Google Scholar] [CrossRef]
- Brethauer, S.A.; Kim, J.; El Chaar, M.; Papasavas, P.; Eisenberg, D.; Rogers, A.; Ballem, N.; Kligman, M.; Kothari, S. Standardized Outcomes Reporting in Metabolic and Bariatric Surgery. Obes. Surg. 2015, 25, 587–606. [Google Scholar] [CrossRef] [PubMed]
- McGurk, K.A.; Dagliati, A.; Chiasserini, D.; Lee, D.; Plant, D.; Baricevic-Jones, I.; Kelsall, J.; Eineman, R.; Reed, R.; Geary, B. The use of missing values in proteomic data-independent acquisition mass spectrometry to enable disease activity discrimination. Bioinformatics 2020, 36, 2217–2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, D.E.; Yang, F.; Carver, J.; Joe, K.; Michels, D.A.; Yu, X.C. A modular and adaptive mass spectrometry-based platform for support of bioprocess development toward optimal host cell protein clearance. mAbs 2017, 9, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.; Hosker, J.; Rudenski, A.; Naylor, B.; Treacher, D.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, D.O.; Geloneze, B.; Delfini, R.; Pareja, B.C.; Callejas, F.; Pareja, J.C. Long-term weight regain after gastric bypass: A 5-year prospective study. Obes. Surg. 2008, 18, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Malipatil, N.; Fachim, H.A.; Siddals, K.; Geary, B.; Wark, G.; Porter, N.; Anderson, S.; Donn, R.; Harvie, M.; Whetton, A.D. Data independent acquisition mass spectrometry can identify circulating proteins that predict future weight loss with a diet and exercise programme. J. Clin. Med. 2019, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Varela-Rodríguez, B.M.; Juiz-Valiña, P.; Varela, L.; Outeiriño-Blanco, E.; Bravo, S.B.; García-Brao, M.J.; Mena, E.; Noguera, J.F.; Valero-Gasalla, J.; Cordido, F. Beneficial effects of bariatric surgery-induced by weight loss on the proteome of abdominal subcutaneous adipose tissue. J. Clin. Med. 2020, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.Y.; Shao, J.; Zaro, J.L.; Shen, W.C. Enhanced insulin receptor interaction by a bifunctional insulin-transferrin fusion protein: An approach to overcome insulin resistance. Sci. Rep. 2020, 10, 7724. [Google Scholar] [CrossRef]
- Deswal, R.; Yadav, A.; Dang, A.S. Sex hormone binding globulin-an important biomarker for predicting PCOS risk: A systematic review and meta-analysis. Syst. Biol. Reprod. Med. 2018, 64, 12–24. [Google Scholar] [CrossRef]
- Nahon, J.E.; Hoekstra, M.; van Harmelen, V.; Rensen, P.C.; Willems van Dijk, K.; Kooijman, S.; Van Eck, M. Proteoglycan 4 deficiency protects against glucose intolerance and fatty liver disease in diet-induced obese mice. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 494–501. [Google Scholar] [CrossRef]
- Goodman, S.C.; Letra, A.; Dorn, S.; Araujo-Pires, A.C.; Vieira, A.E.; de Souza, L.C.; Yadlapati, M.; Garlet, G.P.; Silva, R.M. Expression of heat shock proteins in periapical granulomas. J. Endod. 2014, 40, 830–836. [Google Scholar] [CrossRef]
- Doumatey, A.P.; Zhou, J.; Zhou, M.; Prieto, D.; Rotimi, C.N.; Adeyemo, A. Proinflammatory and lipid biomarkers mediate metabolically healthy obesity: A proteomics study. Obesity 2016, 24, 1257–1265. [Google Scholar] [CrossRef]
- Druhan, L.J.; Lance, A.; Li, S.; Price, A.E.; Emerson, J.T.; Baxter, S.A.; Gerber, J.M.; Avalos, B.R. Leucine rich α-2 glycoprotein: A novel neutrophil granule protein and modulator of myelopoiesis. PLoS ONE 2017, 12, e0170261. [Google Scholar] [CrossRef]
- Hao, L.; Xie, H.; Zhang, B.; Chen, D.; Wang, S.; Zhang, H.; He, S. LRG1 downregulation in allergic airway disorders and its expression in peripheral blood and tissue cells. J. Transl. Med. 2016, 14, 202. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Feng, J.; Xiao, L.; Chen, X.; Yao, Y.; Li, Y.; Tang, Y.; Zhang, S.; Lu, M.; Qian, Y. Tumor-Derived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology 2020, 71, 1626–1642. [Google Scholar] [CrossRef] [Green Version]
- Dziarski, R.; Gupta, D. The peptidoglycan recognition proteins (PGRPs). Genome Biol. 2006, 7, 232. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Peng, H.; Peng, R.; Fan, Q.; Zhao, S.; Xu, D.; Morisseau, C.; Chiamvimonvat, N.; Hammock, B.D. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis. Atherosclerosis 2015, 239, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Lien, C.C.; Chen, C.H.; Lee, Y.M.; Guo, B.C.; Cheng, L.C.; Pan, C.C.; Shyue, S.K.; Lee, T.S. The phosphatase activity of soluble epoxide hydrolase regulates ATP-binding cassette transporter-A1-dependent cholesterol efflux. J. Cell. Mol. Med. 2019, 23, 6611–6621. [Google Scholar] [CrossRef] [PubMed]
- Haupt, H.; Baudner, S. Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author’s transl). Hoppe-Seyler’s Z. Physiol. Chem. 1977, 358, 639–646. [Google Scholar] [CrossRef]
- Wang, X.; Abraham, S.; McKenzie, J.A.; Jeffs, N.; Swire, M.; Tripathi, V.B.; Luhmann, U.F.; Lange, C.A.; Zhai, Z.; Arthur, H.M. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature 2013, 499, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honda, H.; Fujimoto, M.; Miyamoto, S.; Ishikawa, N.; Serada, S.; Hattori, N.; Nomura, S.; Kohno, N.; Yokoyama, A.; Naka, T. Sputum leucine-rich alpha-2 glycoprotein as a marker of airway inflammation in asthma. PLoS ONE 2016, 11, e0162672. [Google Scholar] [CrossRef] [PubMed]
- Serada, S.; Fujimoto, M.; Terabe, F.; Iijima, H.; Shinzaki, S.; Matsuzaki, S.; Ohkawara, T.; Nezu, R.; Nakajima, S.; Kobayashi, T. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflamm. Bowel Dis. 2012, 18, 2169–2179. [Google Scholar] [CrossRef]
- Serada, S.; Fujimoto, M.; Ogata, A.; Terabe, F.; Hirano, T.; Iijima, H.; Shinzaki, S.; Nishikawa, T.; Ohkawara, T.; Iwahori, K. iTRAQ-based proteomic identification of leucine-rich α-2 glycoprotein as a novel inflammatory biomarker in autoimmune diseases. Ann. Rheum. Dis. 2010, 69, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Shirai, R.; Hirano, F.; Ohkura, N.; Ikeda, K.; Inoue, S. Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem. Biophys. Res. Commun. 2009, 382, 776–779. [Google Scholar] [CrossRef]
- Pek, S.L.; Tavintharan, S.; Wang, X.; Lim, S.C.; Woon, K.; Yeoh, L.Y.; Ng, X.; Liu, J.; Sum, C.F. Elevation of a novel angiogenic factor, leucine-rich-α2-glycoprotein (LRG1), is associated with arterial stiffness, endothelial dysfunction, and peripheral arterial disease in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2015, 100, 1586–1593. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rivera, C.; Pérez-García, C.; Muñoz-Rodríguez, J.R.; Vicente-Rodríguez, M.; Polo, F.; Ford, R.M.; Segura, E.; León, A.; Salas, E.; Sáenz-Mateos, L. Proteomic identification of biomarkers associated with eating control and bariatric surgery outcomes in patients with morbid obesity. World J. Surg. 2019, 43, 744–750. [Google Scholar] [CrossRef]
- Pek, S.L.; Cheng, A.K.; Lin, M.X.; Wong, M.S.; Chan, E.Z.; Moh, A.M.; Sum, C.F.; Lim, S.C.; Tavintharan, S. Association of circulating proinflammatory marker, leucine-rich-α2-glycoprotein (LRG1), following metabolic/bariatric surgery. Diabetes Metab. Res. Rev. 2018, 34, e3029. [Google Scholar] [CrossRef]
- Golizeh, M.; Lee, K.; Ilchenko, S.; Ösme, A.; Bena, J.; Sadygov, R.G.; Kashyap, S.R.; Kasumov, T. Increased serotransferrin and ceruloplasmin turnover in diet-controlled patients with type 2 diabetes. Free Radic. Biol. Med. 2017, 113, 461–469. [Google Scholar] [CrossRef]
- Shipton, M.J.; Johal, N.J.; Dutta, N.; Slater, C.; Iqbal, Z.; Ahmed, B.; Ammori, B.J.; Senapati, S.; Akhtar, K.; Summers, L.K. Haemoglobin and Hematinic Status before and after Bariatric Surgery over 4 years of Follow-Up. Obes. Surg. 2020, 31, 682–693. [Google Scholar] [CrossRef]
- Nakhjavani, M.; Morteza, A.; Khajeali, L.; Esteghamati, A.; Khalilzadeh, O.; Asgarani, F.; Outeiro, T.F. Increased serum HSP70 levels are associated with the duration of diabetes. Cell Stress Chaperones 2010, 15, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhjavani, M.; Morteza, A.; Asgarani, F.; Khalilzadeh, O.; Ghazizadeh, Z.; Bathaie, S.Z.; Esteghamati, A. The dual behavior of heat shock protein 70 and asymmetric dimethylarginine in relation to serum CRP levels in type 2 diabetes. Gene 2012, 498, 107–111. [Google Scholar] [CrossRef]
- Morteza, A.; Nakhjavani, M.; Larry, M.; Nargesi, A.A.; Esteghamati, A. Heat shock protein 70 and albuminuria in patients with type 2 diabetes: A matched case control study. Cell Stress Chaperones 2013, 18, 815–819. [Google Scholar] [CrossRef] [Green Version]
- Garamvölgyi, Z.; Prohászka, Z.; Rigó, J.; Kecskeméti, A.; Molvarec, A. Increased circulating heat shock protein 70 (HSPA1A) levels in gestational diabetes mellitus: A pilot study. Cell Stress Chaperones 2015, 20, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Stygar, D.; Skrzep-Poloczek, B.; Romuk, E.; Chełmecka, E.; Poloczek, J.; Sawczyn, T.; Maciarz, J.; Kukla, M.; Karcz, K.W.; Jochem, J. The influence of high-fat, high-sugar diet and bariatric surgery on HSP70 and HSP90 plasma and liver concentrations in diet-induced obese rats. Cell Stress Chaperones 2019, 24, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Van Eden, W.; Van der Zee, R.; Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 2005, 5, 318–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulyani, W.R.; Sanjiwani, M.I.; Sandra, I.; Lestari, A.A.; Wihandani, D.M.; Suastika, K.; Saraswati, M.R.; Bhargah, A.; Manuaba, I.B. Chaperone-based therapeutic target innovation: Heat shock protein 70 (HSP70) for Type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 559. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Ko, C.W.; Tso, P.; Bhargava, A. Apolipoprotein A-IV: A multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 2019, 8, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordovas, J.M.; Cassidy, D.; Civeira, F.; Bisgaier, C.; Schaefer, E. Familial apolipoprotein AI, C-III, and A-IV deficiency and premature atherosclerosis due to deletion of a gene complex on chromosome 11. J. Biol. Chem. 1989, 264, 16339–16342. [Google Scholar] [CrossRef]
- Cohen, R.D.; Castellani, L.W.; Qiao, J.H.; Van Lenten, B.J.; Lusis, A.J.; Reue, K. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J. Clin. Investig. 1997, 99, 1906–1916. [Google Scholar] [CrossRef]
- Rao, R.; Roche, A.; Febres, G.; Bessler, M.; Tso, P.; Korner, J. Circulating Apolipoprotein A-IV presurgical levels are associated with improvement in insulin sensitivity after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 2017, 13, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Culnan, D.M.; Cooney, R.N.; Stanley, B.; Lynch, C.J. Apolipoprotein A-IV, a putative satiety/antiatherogenic factor, rises after gastric bypass. Obesity 2009, 17, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Bruderer, R.; Muntel, J.; Müller, S.; Bernhardt, O.M.; Gandhi, T.; Cominetti, O.; Macron, C.; Carayol, J.; Rinner, O.; Astrup, A. Analysis of 1508 plasma samples by capillary-flow data-independent acquisition profiles proteomics of weight loss and maintenance. Mol. Cell. Proteom. 2019, 18, 1242–1254. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Li, X.P. Apolipoprotein A-IV: A potential therapeutic target for atherosclerosis. Prostaglandins Other Lipid Mediat. 2018, 139, 87–92. [Google Scholar] [CrossRef]
- Wang, Z.M.; Li, X.; Cocklin, R.R.; Wang, M.; Wang, M.; Fukase, K.; Inamura, S.; Kusumoto, S.; Gupta, D.; Dziarski, R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 2003, 278, 49044–49052. [Google Scholar] [CrossRef] [Green Version]
- Herbold, D.R.; Glaser, L. Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 1975, 250, 7231–7238. [Google Scholar] [CrossRef]
- Zhang, Y.; Van Der Fits, L.; Voerman, J.S.; Melief, M.J.; Laman, J.D.; Wang, M.; Wang, H.; Wang, M.; Li, X.; Walls, C.D. Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochim. Biophys. Acta BBA -Proteins Proteom. 2005, 1752, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro da Silva, F.; Cataldi, T.R.; de Lima, T.M.; Starzynski, P.N.; Barbeiro, H.V.; Labate, M.T.; CéMachado, M.C.; de Souza, H.P.; Labate, C.A. Proteomic profiling identifies N-acetylmuramoyl-l-alanine amidase as a novel biomarker of sepsis. Biomark. Med. 2016, 10, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gupta, D.; Li, X.; Dziarski, R. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infect. Immun. 2005, 73, 7216–7225. [Google Scholar] [CrossRef] [Green Version]
- Uehara, A.; Sugawara, Y.; Kurata, S.; Fujimoto, Y.; Fukase, K.; Kusumoto, S.; Satta, Y.; Sasano, T.; Sugawara, S.; Takada, H. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cell. Microbiol. 2005, 7, 675–686. [Google Scholar] [CrossRef]
- Wettenhall, J.M.; Smyth, G.K. limmaGUI: A graphical user interface for linear modeling of microarray data. Bioinformatics 2004, 20, 3705–3706. [Google Scholar] [CrossRef] [Green Version]
- Njei, B.; McCarty, T.R.; Sharma, P.; Lange, A.; Najafian, N.; Ngu, J.N.; Ngomba, V.E.; Echouffo-Tcheugui, J.B. Bariatric surgery and hepatocellular carcinoma: A propensity score-matched analysis. Obes. Surg. 2018, 28, 3880–3889. [Google Scholar] [CrossRef]
- Lassailly, G.; Caiazzo, R.; Buob, D.; Pigeyre, M.; Verkindt, H.; Labreuche, J.; Raverdy, V.; Leteurtre, E.; Dharancy, S.; Louvet, A. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 2015, 149, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Simó, R.; Sáez-López, C.; Barbosa-Desongles, A.; Hernández, C.; Selva, D.M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 2015, 26, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Kalme, T.; Seppälä, M.; Qiao, Q.; Koistinen, R.; Nissinen, A.; Harrela, M.; Loukovaara, M.; Leinonen, P.; Tuomilehto, J. Sex Hormone-Binding Globulin and Insulin-Like Growth Factor-Binding Protein-1 as Indicators of Metabolic Syndrome, Cardiovascular Risk, and Mortality in Elderly Men. J. Clin. Endocrinol. Metab. 2005, 90, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone–binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutton-Tyrrell, K.; Wildman, R.; Matthews, K.; Chae, C.; Lasley, B.; Brockwell, S.; Pasternak, R.; Lloyd-Jones, D.; Sowers, M.; Torrens, J. Sex-hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation 2005, 111, 1242–1249. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.; Berg, J.P.; Klungsøyr, O.; Müller, M.H.; Lyche, J.L.; Aaseth, J.O. The Influence of Persistent Organic Pollutants on Thyroidal, Reproductive and Adrenal Hormones after Bariatric Surgery. Obes. Surg. 2020, 30, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Spitzer, J.C.; Wadden, T.A.; Rosen, R.C.; Mitchell, J.E.; Lancaster, K.; Courcoulas, A.; Gourash, W.; Christian, N.J. Sexual functioning and sex hormones in men who underwent bariatric surgery. Surg. Obes. Relat. Dis. 2015, 11, 643–651. [Google Scholar] [CrossRef]
- Larsen, B.T.; Campbell, W.B.; Gutterman, D.D. Beyond vasodilatation: Non-vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. Trends Pharmacol. Sci. 2007, 28, 32–38. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, F.; Huse, L.M.; Morisseau, C.; Draper, A.J.; Newman, J.W.; Parker, C.; Graham, L.; Engler, M.M.; Hammock, B.D. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ. Res. 2000, 87, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Newman, J.W.; Morisseau, C.; Hammock, B.D. Epoxide hydrolases: Their roles and interactions with lipid metabolism. Prog. Lipid Res. 2005, 44, 1–51. [Google Scholar] [CrossRef]
- Mustafa, S.; Sharma, V.; McNeill, J.H. Insulin resistance and endothelial dysfunction: Are epoxyeicosatrienoic acids the link? Exp. Clin. Cardiol. 2009, 14, e41–e50. [Google Scholar] [PubMed]
- Schmelzer, K.R.; Kubala, L.; Newman, J.W.; Kim, I.H.; Eiserich, J.P.; Hammock, B.D. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl. Acad. Sci. USA 2005, 102, 9772–9777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inceoglu, B.; Wagner, K.; Schebb, N.H.; Morisseau, C.; Jinks, S.L.; Ulu, A.; Hegedus, C.; Rose, T.; Brosnan, R.; Hammock, B.D. Analgesia mediated by soluble epoxide hydrolase inhibitors is dependent on cAMP. Proc. Natl. Acad. Sci. USA 2011, 108, 5093–5097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, J.M.; Brown, N.J. Epoxyeicosatrienoic acids and glucose homeostasis in mice and men. Prostaglandins Other Lipid Mediat. 2016, 125, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Habieb, M.S.; Dawood, A.A.; Emara, M.M.; Elhelbawy, M.G.; Elhelbawy, N.G. The Human Genetic Variants CYP2J2 rs2280275 and EPHX2 rs751141 and Risk of Diabetic Nephropathy in Egyptian Type 2 Diabetic Patients. Appl. Clin. Genet. 2020, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Khadir, A.; Kavalakatt, S.; Madhu, D.; Cherian, P.; Al-Mulla, F.; Abubaker, J.; Tiss, A. Soluble epoxide hydrolase 2 expression is elevated in obese humans and decreased by physical activity. Int. J. Mol. Sci. 2020, 21, 2056. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.R.; North, K.E.; Bray, M.S.; Fornage, M.; Seubert, J.M.; Newman, J.W.; Hammock, B.D.; Couper, D.J.; Heiss, G.; Zeldin, D.C. Genetic variation in soluble epoxide hydrolase ( EPHX2 ) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) study. Hum. Mol. Genet. 2006, 15, 1640–1649. [Google Scholar] [CrossRef]
- Imig, J.D.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat. Rev. Drug Discov. 2009, 8, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Swann, D.A.; Slayter, H.S.; Silver, F.H. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J. Biol. Chem. 1981, 256, 5921–5925. [Google Scholar] [CrossRef]
- Iozzo, R.V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015, 42, 11–55. [Google Scholar] [CrossRef]
- Das, N.; Schmidt, T.A.; Krawetz, R.J.; Dufour, A. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation: Does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays 2019, 41, 1800166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, P.E.; Wewer Albrechtsen, N.J.; Tyanova, S.; Grassl, N.; Iepsen, E.W.; Lundgren, J.; Madsbad, S.; Holst, J.J.; Torekov, S.S.; Mann, M. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol. Syst. Biol. 2016, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Oller Moreno, S.; Cominetti, O.; Núñez Galindo, A.; Irincheeva, I.; Corthesy, J.; Astrup, A.; Saris, W.H.; Hager, J.; Kussmann, M.; Dayon, L. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteom. Clin. Appl. 2018, 12, 1600150. [Google Scholar] [CrossRef] [PubMed]
Baseline | 6 Months | 12 Months | p-Value | |
---|---|---|---|---|
Number of samples | 10 | 10 | 10 | |
Age (years) | 53 CI (46–60) | |||
Sex | 2 Males, 8 Females | |||
Anthropometric and Clinical * | ||||
Height (cm) | Male: 177 Female: 163 cm | |||
BMI (kg/m2) | 54.9 (10.3) | 41.8 (6.96) * | 38.6 (5.08) * † | p < 0.0001 |
Systolic BP | 135 (22.6) | 123 (16.7) | 116 (14.4) * | p < 0.05 |
Diastolic BP | 79.2 (17.3) | 67.9 (14.1) | 67.9 (11) * | p < 0.05 |
Biochemical | ||||
HbA1c (mmol/mol) | 56.0 (14.1) | 40.0 (5.4) * | 38.2 (6.25) * † | p < 0.0001 |
Fasting plasma glucose | 7.9 (3.5) | 5.8 (2.0) | 4.8 (0.70) | p < 0.05 |
HOMA2-IR | 0.57 (0.52) | 0.489 (0.6) | 0.34 (0.24) | p = 0.57 |
HOMA2-B (%) | 28.9 (18.2) | 45.5 (32.7) | 48.9 (16.7) | p = 0.14 |
Protein Names (Gene Symbol) | Fold Change (Log2) | p Value |
---|---|---|
Serotransferrin (TF) | −1.068 | <0.0001 |
Beta-Ala-His dipeptidase (CNDP1) | −0.952 | 0.006 |
Complement C3 (C3) | −0.555 | 0.008 |
Proteoglycan 4 (PRG4) | −0.898 | 0.011 |
Cholinesterase (BCHE) | −0.581 | 0.012 |
Sex hormone-binding globulin (SHBG) | 1.485 | 0.013 |
Apolipoprotein M (APOM) | 0.689 | 0.018 |
Protein disulfide-isomerase A3 (PDIA3) | 1.527 | 0.021 |
Bifunctional epoxide hydrolase 2 (EPHX2) | −0.412 | 0.022 |
Apolipoprotein A-IV (APOA4) | −0.713 | 0.023 |
N-acetylmuramoyl-L-alanine amidase (PGLYRP) | 0.391 | 0.024 |
Angiotensinogen (AGT) | −1.036 | 0.025 |
T-complex protein 1 subunit theta (CCT8) | −1.235 | 0.026 |
Heat shock 70 kDa protein 4 (HSPA4) | −0.497 | 0.026 |
Leucine-rich alpha-2-glycoprotein (LRG1) | 0.532 | 0.032 |
Pigment epithelium-derived factor (SERPINF1) | −0.391 | 0.032 |
C4b-binding protein alpha chain (C4BPA) | −0.393 | 0.032 |
Exportin-1 (XPO1) | −0.746 | 0.033 |
Immunoglobulin heavy constant mu (IGHM) | −0.978 | 0.034 |
Alpha-1-acid glycoprotein 2 (ORM2) | −0.742 | 0.036 |
Sulfhydryl oxidase 1 (QSOX1) | −0.775 | 0.037 |
Apolipoprotein C-III (APOC3) | −1.171 | 0.039 |
Basement membrane-specific heparan sulfate proteoglycan core protein (HSPG2) | −0.435 | 0.041 |
Heparin cofactor 2 (SERPIND1) | −0.415 | 0.042 |
Aminopeptidase (ANPEP) | −0.395 | 0.048 |
Protein Names (Gene Symbol) | Fold Change (log2) | p Value |
---|---|---|
Serum amyloid p-component (SAP) | −0.936 | 0.001 |
Apolipoprotein A-I (APOA1) | 1.104 | 0.001 |
Serotransferrin (TF) | −0.776 | 0.002 |
Inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) | 0.799 | 0.002 |
Fibronectin (FN1) | −1.724 | 0.003 |
Sex hormone-binding globulin (SHBG) | 1.951 | 0.003 |
Neural cell adhesion molecule L1-like protein (L1CAM) | 0.663 | 0.007 |
Haptoglobin (HP) | −1.383 | 0.007 |
Apolipoprotein A-IV (APOA4) | −1.381 | 0.008 |
Antithrombin-III (SERPINC1) | 0.541 | 0.008 |
Peptidase inhibitor 16 (PI16) | 0.742 | 0.009 |
Galectin-3-binding protein (LGALS3BP) | −0.590 | 0.009 |
Laminin subunit gamma-1 (LAMC1) | −1.506 | 0.012 |
Proteoglycan 4 (PRG4) | −0.779 | 0.015 |
Hemoglobin subunit delta (HBD) | −1.088 | 0.020 |
N-acetylmuramoyl-L-alanine amidase (PGLYRP2) | 0.438 | 0.021 |
Dermcidin (DCD) | 0.905 | 0.021 |
Heat shock 70 kDa protein 4 (HSPA4) | −0.389 | 0.022 |
Actin-related protein 2/3 complex subunit 1B (ARPC1B) | −0.403 | 0.023 |
Bifunctional epoxide hydrolase 2 (EPHX2) | −0.473 | 0.025 |
Hyaluronan-binding protein 2 (HABP2) | 0.358 | 0.025 |
Galactokinase (GALK1) | 0.899 | 0.027 |
Alpha-2-macroglobulin (A2M) | 0.801 | 0.027 |
Leucine-rich alpha-2-glycoprotein (LRG1) | 0.591 | 0.027 |
Peroxiredoxin-6 (PRDX6) | 0.627 | 0.028 |
Thyroxine-binding globulin (SERPINA7) | 0.365 | 0.030 |
Mitogen-activated protein 3 kinase 5 (MAP3K5) | 0.632 | 0.031 |
Alpha-1B-glycoprotein (A1BG) | 0.462 | 0.033 |
Complement factor H (CFH) | −0.415 | 0.036 |
Protein AMBP (AMBP) | 0.352 | 0.037 |
L-lactate dehydrogenase A chain (LDHA) | −1.538 | 0.037 |
Endoplasmin (HSP90B1) | −0.417 | 0.038 |
Angiotensin-converting enzyme (ACE) | −0.405 | 0.039 |
Plasma protease C1 inhibitor (SERPING1) | 0.939 | 0.039 |
Desmin (DES) | −0.952 | 0.043 |
Vitamin D-binding protein (GC) | 0.381 | 0.046 |
Secreted phosphoprotein 24 (SPP2) | 0.475 | 0.048 |
T-complex protein 1 subunit gamma (CCT3) | −0.722 | 0.049 |
Haemoglobin subunit beta (HBB) | −1.128 | 0.049 |
Protein Names (Gene Symbol) | Fold Change (log2) | p Value |
---|---|---|
Serotransferrin (TF) | −0.776 | 0.002 |
Apolipoprotein A-IV (APOA4) | −1.381 | 0.008 |
Heat shock 70 kDa protein 4 (HSPA4) | −0.389 | 0.022 |
Leucine-rich alpha-2-glycoprotein (LRG1) | 0.591 | 0.027 |
N-acetylmuramoyl-L-alanine amidase (PGLYRP2) | 0.438 | 0.021 |
Sex hormone-binding globulin (SHBG) | 1.951 | 0.003 |
Bifunctional epoxide hydrolase 2 (EPHX2) | −0.473 | 0.025 |
Proteoglycan 4 (PRG4) | −0.779 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, Z.; Fachim, H.A.; Gibson, J.M.; Baricevic-Jones, I.; Campbell, A.E.; Geary, B.; Donn, R.P.; Hamarashid, D.; Syed, A.; Whetton, A.D.; et al. Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery. J. Clin. Med. 2021, 10, 3659. https://doi.org/10.3390/jcm10163659
Iqbal Z, Fachim HA, Gibson JM, Baricevic-Jones I, Campbell AE, Geary B, Donn RP, Hamarashid D, Syed A, Whetton AD, et al. Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery. Journal of Clinical Medicine. 2021; 10(16):3659. https://doi.org/10.3390/jcm10163659
Chicago/Turabian StyleIqbal, Zohaib, Helene A. Fachim, J. Martin Gibson, Ivona Baricevic-Jones, Amy E. Campbell, Bethany Geary, Rachelle P. Donn, Dashne Hamarashid, Akheel Syed, Anthony D. Whetton, and et al. 2021. "Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery" Journal of Clinical Medicine 10, no. 16: 3659. https://doi.org/10.3390/jcm10163659
APA StyleIqbal, Z., Fachim, H. A., Gibson, J. M., Baricevic-Jones, I., Campbell, A. E., Geary, B., Donn, R. P., Hamarashid, D., Syed, A., Whetton, A. D., Soran, H., & Heald, A. H. (2021). Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery. Journal of Clinical Medicine, 10(16), 3659. https://doi.org/10.3390/jcm10163659