GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
Study Population
3. Data Collection
4. Measurement of Growth Differentiation Factor-15 (GDF-15)
5. Statistical Analysis
6. Results
6.1. Baseline Characteristics at the Time of Continuous Renal Replacement Therapy (CRRT) Initiation
6.2. Association between GDF-15 and In-Hospital Mortality
6.3. Comparison of GDF-15 for Predicting In-Hospital Mortality with Other Prognostic Markers
6.4. Associated Factors of GDF-15
7. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Statement
Trial Registration
References
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [Green Version]
- Perico, N.; Remuzzi, G. Acute kidney injury: More awareness needed, globally. Lancet 2015, 386, 1425–1427. [Google Scholar] [CrossRef]
- Singbartl, K.; Kellum, J.A. AKI in the ICU: Definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012, 81, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waikar, S.S.; Liu, K.D.; Chertow, G.M. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2008, 3, 844–861. [Google Scholar] [CrossRef]
- Uchino, S. The epidemiology of acute renal failure in the world. Curr. Opin. Crit. Care 2006, 12, 538–543. [Google Scholar] [CrossRef]
- Iwagami, M.; Yasunaga, H.; Noiri, E.; Horiguchi, H.; Fushimi, K.; Matsubara, T.; Yahagi, N.; Nangaku, M.; Doi, K. Choice of renal replacement therapy modality in intensive care units: Data from a Japanese Nationwide Administrative Claim Database. J. Crit. Care 2015, 30, 381–385. [Google Scholar] [CrossRef]
- Lins, R.L.; Elseviers, M.M.; Van der Niepen, P.; Hoste, E.; Malbrain, M.L.; Damas, P.; Devriendt, J. Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: Results of a randomized clinical trial. Nephrol. Dial. Transplant. 2009, 24, 512–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; An, J.N.; Jhee, J.H.; Kim, D.K.; Oh, H.J.; Kim, S.; Joo, K.W.; Oh, Y.K.; Lim, C.S.; Kang, S.W.; et al. Early initiation of continuous renal replacement therapy improves survival of elderly patients with acute kidney injury: A multicenter prospective cohort study. Crit. Care 2016, 20, 260. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, J.; Eastwood, G.M.; Zhu, G.; Tanaka, A.; Bellomo, R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: A meta-analysis. Am. J. Kidney Dis. 2015, 66, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Jenq, C.C.; Hsu, C.K.; Yu, Y.C.; Chang, C.H.; Fan, P.C.; Pan, H.C.; Wu, I.W.; Cherng, W.J.; Chen, Y.C. Acute kidney disease and acute kidney injury biomarkers in coronary care unit patients. BMC Nephrol. 2020, 21, 207. [Google Scholar] [CrossRef]
- Wu, V.C.; Shiao, C.C.; Chi, N.H.; Wang, C.H.; Chueh, S.J.; Liou, H.H.; Spapen, H.D.; Honore, P.M.; Chu, T.S. Outcome prediction of acute kidney injury biomarkers at initiation of dialysis in critical units. J. Clin. Med. 2018, 7, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, S.K.; Yang, J.; Hwang, S.M.; Lee, M.S.; Park, S.H. Role of biomarkers as predictors of acute kidney injury and mortality in decompensated cirrhosis. Sci. Rep. 2019, 9, 14508. [Google Scholar] [CrossRef] [PubMed]
- Demirjian, S.; Chertow, G.M.; Zhang, J.H.; O’Connor, T.Z.; Vitale, J.; Paganini, E.P.; Palevsky, P.M. Model to predict mortality in critically ill adults with acute kidney injury. Clin. J. Am. Soc. Nephrol. 2011, 6, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaefer, J.H.; Jochimsen, F.; Keller, F.; Wegscheider, K.; Distler, A. Outcome prediction of acute renal failure in medical intensive care. Intensiv. Care Med. 1991, 17, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Halstenberg, W.K.; Goormastic, M.; Paganini, E.P. Validity of four models for predicting outcome in critically ill acute renal failure patients. Clin. Nephrol. 1997, 47, 81–86. [Google Scholar] [PubMed]
- Kim, Y.; Park, N.; Kim, J.; Kim, D.K.; Chin, H.J.; Na, K.Y.; Joo, K.W.; Kim, Y.S.; Kim, S.; Han, S.S. Development of a new mortality scoring system for acute kidney injury with continuous renal replacement therapy. Nephrology 2019, 24, 1233–1240. [Google Scholar] [CrossRef]
- Bootcov, M.R.; Bauskin, A.R.; Valenzuela, S.M.; Moore, A.G.; Bansal, M.; He, X.Y.; Zhang, H.P.; Donnellan, M.; Mahler, S.; Pryor, K.; et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc. Natl. Acad. Sci. USA 1997, 94, 11514–11519. [Google Scholar] [CrossRef] [Green Version]
- Lawton, L.N.; Bonaldo, M.F.; Jelenc, P.C.; Qiu, L.; Baumes, S.A.; Marcelino, R.A.; de Jesus, G.M.; Wellington, S.; Knowles, J.A.; Warburton, D.; et al. Identification of a novel member of the TGF-beta superfamily highly expressed in human placenta. Gene 1997, 203, 17–26. [Google Scholar] [CrossRef]
- Paralkar, V.M.; Vail, A.L.; Grasser, W.A.; Brown, T.A.; Xu, H.; Vukicevic, S.; Ke, H.Z.; Qi, H.; Owen, T.A.; Thompson, D.D. Cloning and characterization of a novel member of the transforming growth factor-beta/bone morphogenetic protein family. J. Biol. Chem. 1998, 273, 13760–13767. [Google Scholar] [CrossRef] [Green Version]
- Hromas, R.; Hufford, M.; Sutton, J.; Xu, D.; Li, Y.; Lu, L. PLAB, a novel placental bone morphogenetic protein. Biochim. Biophys. Acta 1997, 1354, 40–44. [Google Scholar] [CrossRef]
- Baek, S.J.; Kim, K.S.; Nixon, J.B.; Wilson, L.C.; Eling, T.E. Cyclooxygenase inhibitors regulate the expression of a TGF-beta superfamily member that has proapoptotic and antitumorigenic activities. Mol. Pharmacol. 2001, 59, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollert, K.C.; Kempf, T.; Peter, T.; Olofsson, S.; James, S.; Johnston, N.; Lindahl, B.; Horn-Wichmann, R.; Brabant, G.; Simoons, M.L.; et al. Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 2007, 115, 962–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adela, R.; Banerjee, S.K. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: A translational prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.N.; Carrero, J.J.; Tsai, V.W.; Yagoutifam, N.; Luo, W.; Kuffner, T.; Bauskin, A.R.; Wu, L.; Jiang, L.; Barany, P.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol. Dial. Transplant. 2012, 27, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Leitner, I.; Egger, M.; Haltmayer, M.; Dieplinger, B. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin. Chim. Acta 2015, 445, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.S.; Lee, J.; Baz, M.; Wells, C.E.; Bloch, S.; Lewis, A.; Donaldson, A.V.; Garfield, B.E.; Hopkinson, N.S.; Natanek, A.; et al. Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J. Cachexia Sarcopenia Muscle 2016, 7, 436–448. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.B.; Sapinoso, L.M.; Kern, S.G.; Brown, D.A.; Liu, T.; Bauskin, A.R.; Ward, R.L.; Hawkins, N.J.; Quinn, D.I.; Russell, P.J.; et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. USA 2003, 100, 3410–3415. [Google Scholar] [CrossRef] [Green Version]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology atlas of the human cancer transcriptome. Science 2017, 357. [Google Scholar] [CrossRef] [Green Version]
- Kempf, T.; Horn-Wichmann, R.; Brabant, G.; Peter, T.; Allhoff, T.; Klein, G.; Drexler, H.; Johnston, N.; Wallentin, L.; Wollert, K.C. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin. Chem. 2007, 53, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.Q.; Ng, K.; Dhillon, O.; Kelly, D.; Quinn, P.; Squire, I.B.; Davies, J.E.; Ng, L.L. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur. Heart J. 2009, 30, 1057–1065. [Google Scholar] [CrossRef]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Park, U.J.; Cho, W.H.; Kim, H.T.; Kim, M.Y.; Kim, Y.-L.; Kim, C.-D.; Cho, J.-H.; Kim, Y.H.; Park, S.J.; Chung, S.Y.; et al. Evaluation of the Korean network for organ sharing expanded donor criteria in deceased donor renal transplantation. J. Korean Soc. Transplant. 2013, 27, 166. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.J.; Bull, T.M.; Benson, A.B.; Stream, A.R.; Macht, M.; Gaydos, J.; Meadows, C.; Burnham, E.L.; Moss, M. Growth differentiation factor-15 and prognosis in acute respiratory distress syndrome: A retrospective cohort study. Crit. Care 2013, 17, R92. [Google Scholar] [CrossRef] [Green Version]
- Buendgens, L.; Yagmur, E.; Bruensing, J.; Herbers, U.; Baeck, C.; Trautwein, C.; Koch, A.; Tacke, F. Growth differentiation factor-15 is a predictor of mortality in critically Ill patients with sepsis. Dis. Markers 2017, 2017, 5271203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, H.J.; An, J.N.; Oh, S.; Rhee, H.; Lee, J.P.; Kim, D.K.; Ryu, D.R.; Kim, S. Volume management under body composition monitoring in critically ill patients on CRRT: Study protocol for a randomized controlled trial (VENUS trial). Trials 2018, 19, 681. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American college of chest physicians/society of critical care medicine. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Skarupskienė, I.; Adukauskienė, D.; Kuzminskienė, J.; Rimkutė, L.; Balčiuvienė, V.; Žiginskienė, E.; Kuzminskis, V.; Adukauskaitė, A.; Pentiokinienė, D.; Bumblytė, I.A. Mortality prediction in patients with acute kidney injury requiring renal replacement therapy after cardiac surgery. Medicina 2017, 53, 217–223. [Google Scholar] [CrossRef]
- Machado, M.N.; Nakazone, M.A.; Maia, L.N. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: Improving global outcomes definition and staging (KDIGO) criteria. PLoS ONE 2014, 9, e98028. [Google Scholar] [CrossRef]
- Karkouti, K.; Wijeysundera, D.N.; Yau, T.M.; Callum, J.L.; Cheng, D.C.; Crowther, M.; Dupuis, J.Y.; Fremes, S.E.; Kent, B.; Laflamme, C.; et al. Acute kidney injury after cardiac surgery: Focus on modifiable risk factors. Circulation 2009, 119, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Wiersema, R.; Eck, R.J.; Haapio, M.; Koeze, J.; Poukkanen, M.; Keus, F.; van der Horst, I.C.C.; Pettilä, V.; Vaara, S.T. Burden of acute kidney injury and 90-day mortality in critically ill patients. BMC Nephrol. 2019, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Walcher, A.; Faubel, S.; Keniston, A.; Dennen, P. In critically ill patients requiring CRRT, AKI is associated with increased respiratory failure and death versus ESRD. Ren. Fail. 2011, 33, 935–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, C.Y.; Yeh, H.C.; Chen, W.; Liu, J.H.; Lin, H.H.; Liu, Y.L.; Yang, Y.F.; Wang, S.M.; Huang, C.C. Norepinephrine and hospital mortality in critically ill patients undergoing continuous renal replacement therapy. Artif. Organs 2011, 35, E11–E17. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.W.; Kim, J.; Kim, D.K.; Oh, K.H.; Joo, K.W.; Kim, Y.S.; Han, S.S. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Crit. Care 2020, 24, 42. [Google Scholar] [CrossRef] [Green Version]
- Verhamme, F.M.; Freeman, C.M.; Brusselle, G.G.; Bracke, K.R.; Curtis, J.L. GDF-15 in pulmonary and critical care medicine. Am. J. Respir. Cell Mol. Biol. 2019, 60, 621–628. [Google Scholar] [CrossRef]
- Kempf, T.; Zarbock, A.; Widera, C.; Butz, S.; Stadtmann, A.; Rossaint, J.; Bolomini-Vittori, M.; Korf-Klingebiel, M.; Napp, L.C.; Hansen, B.; et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 2011, 17, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.D.; et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef]
- Van Huyen, J.P.D.; Cheval, L.; Bloch-Faure, M.; Belair, M.F.; Heudes, D.; Bruneval, P.; Doucet, A. GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J. Am. Soc. Nephrol. 2008, 19, 1965–1974. [Google Scholar] [CrossRef] [Green Version]
- Unsicker, K.; Spittau, B.; Krieglstein, K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013, 24, 373–384. [Google Scholar] [CrossRef]
- Brown, D.A.; Ward, R.L.; Buckhaults, P.; Liu, T.; Romans, K.E.; Hawkins, N.J.; Bauskin, A.R.; Kinzler, K.W.; Vogelstein, B.; Breit, S.N. MIC-1 serum level and genotype: Associations with progress and prognosis of colorectal carcinoma. Clin. Cancer Res. 2003, 9, 2642–2650. [Google Scholar] [PubMed]
- Doerstling, S.; Hedberg, P.; Öhrvik, J.; Leppert, J.; Henriksen, E. Growth differentiation factor 15 in a community-based sample: Age-dependent reference limits and prognostic impact. Ups. J. Med. Sci. 2018, 123, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, F.E.; Bennet, A.M.; Magnusson, P.K.; Eriksson, U.K.; Lindmark, F.; Wu, L.; Yaghoutyfam, N.; Marquis, C.P.; Stattin, P.; Pedersen, N.L.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell 2010, 9, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.; de Boer, I.H.; Essioux, L.; Formentini, I.; et al. Growth differentiation factor-15 and risk of CKD progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankeit, M.; Kempf, T.; Dellas, C.; Cuny, M.; Tapken, H.; Peter, T.; Olschewski, M.; Konstantinides, S.; Wollert, K.C. Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am. J. Respir. Crit. Care Med. 2008, 177, 1018–1025. [Google Scholar] [CrossRef]
- Hsiao, E.C.; Koniaris, L.G.; Zimmers-Koniaris, T.; Sebald, S.M.; Huynh, T.V.; Lee, S.J. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol. Cell Biol. 2000, 20, 3742–3751. [Google Scholar] [CrossRef]
- Zimmers, T.A.; Jin, X.; Hsiao, E.C.; McGrath, S.A.; Esquela, A.F.; Koniaris, L.G. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005, 23, 543–548. [Google Scholar]
- Abulizi, P.; Loganathan, N.; Zhao, D.; Mele, T.; Zhang, Y.; Zwiep, T.; Liu, K.; Zheng, X. Growth differentiation factor-15 deficiency augments inflammatory response and exacerbates septic heart and renal injury induced by lipopolysaccharide. Sci. Rep. 2017, 7, 1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kumar, S.; Heinzel, A.; Gao, M.; Guo, J.; Alvarado, G.F.; Reindl-Schwaighofer, R.; Krautzberger, A.M.; Cippà, P.E.; McMahon, J.; et al. Renoprotective and Immunomodulatory Effects of GDF15 following AKI Invoked by Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. 2020, 31, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra, G.A.; Zügel, S.; Thogersen, J.; Walter, S.A.; Haberkorn, U.; Strelau, J.; Kinscherf, R. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J. Am. Heart. Assoc. 2012, 1, e002550. [Google Scholar] [CrossRef] [Green Version]
- Guenancia, C.; Kahli, A.; Laurent, G.; Hachet, O.; Malapert, G.; Grosjean, S.; Girard, C.; Vergely, C.; Bouchot, O. Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery. Int. J. Cardiol. 2015, 197, 66–71. [Google Scholar] [CrossRef]
- Hamon, S.M.; Griffin, T.P.; Islam, M.N.; Wall, D.; Griffin, M.D.; O’Shea, P.M. Defining reference intervals for a serum growth differentiation factor-15 (GDF-15) assay in a Caucasian population and its potential utility in diabetic kidney disease (DKD). Clin. Chem. Lab. Med. 2019, 57, 510–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.E.; Hwang, S.J.; Wollert, K.C.; Larson, M.G.; Cheng, S.; Kempf, T.; Vasan, R.S.; Januzzi, J.L.; Wang, T.J.; Fox, C.S. Biomarkers of cardiovascular stress and incident chronic kidney disease. Clin. Chem. 2013, 59, 1613–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazagova, M.; Buikema, H.; van Buiten, A.; Duin, M.; Goris, M.; Sandovici, M.; Henning, R.H.; Deelman, L.E. Genetic deletion of growth differentiation factor 15 augments renal damage in both type 1 and type 2 models of diabetes. Am. J. Physiol. Renal. Physiol. 2013, 305, F1249–F1264. [Google Scholar] [CrossRef] [PubMed]
- Nichol, A.; Bailey, M.; Egi, M.; Pettila, V.; French, C.; Stachowski, E.; Reade, M.C.; Cooper, D.J.; Bellomo, R. Dynamic lactate indices as predictors of outcome in critically ill patients. Crit. Care 2011, 15, R242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Arts, D.G.; de Keizer, N.F.; Vroom, M.B.; de Jonge, E. Reliability and accuracy of Sequential Organ Failure Assessment (SOFA) scoring. Crit. Care Med. 2005, 33, 1988–1993. [Google Scholar] [CrossRef]
- Jones, A.E.; Trzeciak, S.; Kline, J.A. The sequential organ failure assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 2009, 37, 1649–1654. [Google Scholar] [CrossRef] [Green Version]
- Vinsonneau, C.; Camus, C.; Combes, A.; de Beauregard, M.A.C.; Klouche, K.; Boulain, T.; Pallot, J.L.; Chiche, J.D.; Taupin, P.; Landais, P.; et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: A multicentre randomised trial. Lancet 2006, 368, 379–385. [Google Scholar] [CrossRef]
- Palevsky, P.M.; Liu, K.D.; Brophy, P.D.; Chawla, L.S.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef] [PubMed]
Variables | All (n = 66) | Tertile 1 (n = 22) | Tertile 2 (n = 22) | Tertile 3 (n = 22) | p |
---|---|---|---|---|---|
Age, y | 67.7 ± 14.3 | 68.7 ± 15.0 | 68.3 ±11.6 | 66.1 ± 16.5 | 0.819 |
Sex, male, n (%) | 47 (71.2) | 16 (72.7) | 17 (77.3) | 14 (63.6) | 0.596 |
BMI, kg/m2 | 25.0 ± 3.5 | 25.2 ± 3.2 | 24.5 ± 2.3 | 25.3 ± 4.6 | 0.732 |
MAP, mmHg | 79.0 ± 14.4 | 80.4 ± 14.8 | 78.6 ± 16.8 | 77.9 ± 11.8 | 0.839 |
Cause of AKI | 0.313 | ||||
Septic | 33 (50.0) | 8 (36.4) | 11 (50.0) | 14 (63.6) | |
Ischemic | 27 (40.9) | 10 (45.5) | 10 (45.5) | 7 (31.8) | |
Others | 6 (9.1) | 4 (18.2) | 1 (4.5) | 1 (4.5) | |
Comorbidities, n (%) | |||||
Hypertension | 26 (39.4) | 9 (40.9) | 9 (40.9) | 8 (36.4) | 0.939 |
Diabetes | 27 (40.9) | 9 (40.9) | 13 (59.1) | 5 (22.7) | 0.058 |
CHF | 9 (13.6) | 3 (13.6) | 2 (9.1) | 4 (18.2) | 0.901 |
CVA | 6 (9.1) | 4 (18.2) | 1 (4.5) | 1 (4.5) | 0.348 |
Malignancy | 23 (34.8) | 5 (22.7) | 7 (31.8) | 11 (50.0) | 0.154 |
CCI | 2.6 ± 1.5 | 3.1 ± 1.5 | 2.3 ± 1.1 | 2.5 ± 1.7 | 0.233 |
SOFA score | 11.0 ± 3.8 | 9.2 ± 2.9 a | 11.7 ± 4.0 a,b | 12.0 ± 4.0 b | 0.026 |
APACHE II score | 35.4 ± 8.6 | 34.3 ± 8.0 a,b | 33.7 ± 7.7 a | 39.0 ± 8.2 b | 0.044 |
Ventilator apply, n (%) | 51 (77.3) | 14 (63.6) | 17 (77.3) | 20 (90.9) | 0.097 |
Vasopressor use, n (%) | 54 (81.8) | 16 (72.7) | 19 (86.4) | 19 (86.4) | 0.559 |
Admission to CRRT, d | 1.0 (1.0, 3.3) | 1.0 (0, 3.0) | 1.0 (0, 4.0) | 1.0 (0, 3.0) | 0.857 |
Laboratory findings | |||||
GDF-15, pg/mL | 7856.5 (5759.4, 9435.6) | 5187.3 (4678.0, 5798.5) | 7856.5 (6904.0, 8525.0) | 10,064.1 (9371.8, 10,497.2) | <0.001 |
WBC count, ×103/μL | 14.7 ± 9.2 | 13.1 ± 8.2 | 16.4 ± 10.1 | 14.7 ± 9.7 | 0.511 |
Hb, g/dL | 10.1 ± 2.4 | 9.8 ± 2.6 | 10.8 ± 2.2 | 9.5 ± 2.2 | 0.137 |
BUN, mg/dL | 48.5 (33.3, 67.8) | 60.5 (35.3, 80.3) | 48.5 (39.0, 63.5) | 35.0 (27.5, 63.0) | 0.179 |
Creatinine, mg/dL | 3.0 (2.1, 4.2) | 3.0 (2.2, 5.4) | 3.3 (2.2, 4.0) | 2.2 (1.6, 3.5) | 0.088 |
eGFR, mL/min/1.73 m2 | 17.9 (12.6, 29.1) | 17.3 (10.3, 29.2) | 18.2 (12.1, 26.6) | 25.2 (16.2, 40.3) | 0.131 |
Sodium, mEq/L | 139.0 (136.0, 142.0) | 141.0 (136.8, 143.0) | 136.5 (131.8, 141.3) | 139.0 (137.0, 141.0) | 0.070 |
Potassium, mEq/L | 4.2 (3.8, 5.4) | 4.2 (3.6, 5.4) | 4.3 (3.9, 4.9) | 4.9 (3.6, 5.5) | 0.637 |
Lactate, mEq/L | 4.8 (2.4, 8.5) | 2.8 (1.4, 6.0) a | 4.0 (2.5, 5.5) a | 10.4 (5.6, 13.8) b | <0.001 |
Albumin, g/dL | 2.6 (2.4, 3.1) | 2.6 (2.3, 2.9) | 2.7 (2.5, 3.1) | 2.6 (2.3, 3.1) | 0.489 |
hs-CRP, mg/dL | 10.3 (4.6, 18.1) | 12.8 (6.0, 17.8) | 5.4 (4.5, 15.5) | 10.3 (2.0, 18.7) | 0.622 |
Target clearance, mL/min | 32.9 ± 6.3 | 32.8 ± 5.5 | 32.6 ± 5.8 | 33.4 ± 7.6 | 0.393 |
Variables | Model 1 † | Model 2 ‡ | Model 3 § | |||
---|---|---|---|---|---|---|
HR (95% CI) | p | aHR (95% CI) | p | aHR (95% CI) | p | |
GDF-15 | ||||||
Tertile 1 | Reference | Reference | Reference | |||
Tertile 2 | 2.39 (0.83–6.91) | 0.107 | 3.26 (1.04–10.22) | 0.042 | 3.67 (1.05–12.76) | 0.041 |
Tertile 3 | 3.65 (1.33–10.08) | 0.012 | 4.70 (1.59–13.90) | 0.005 | 6.81 (1.98–23.44) | 0.002 |
Variables | AUC (95% CI) | pa | NRI | p | IDI | p |
---|---|---|---|---|---|---|
GDF-15 | 0.710 (0.585–0.815) | 0.001 | ||||
APACHE II | 0.624 (0.497–0.741) | 0.080 | Reference | Reference | ||
APACHE II + GDF-15 | 0.735 (0.612–0.836) | <0.001 | 0.490 | 0.040 | 0.103 | 0.007 |
SOFA | 0.584 (0.456–0.704) | 0.249 | Reference | Reference | ||
SOFA + GDF-15 | 0.712 (0.588–0.817) | <0.001 | 0.418 | 0.083 | 0.114 | 0.005 |
APACHE II + SOFA | 0.645 (0.518–0.759) | 0.039 | Reference | Reference | ||
APACHE II + SOFA + GDF-15 | 0.727 (0.601–0.854) | 0.003 | 0.361 | 0.136 | 0.103 | 0.007 |
CCI | 0.519 (0.393–0.644) | 0.783 | ||||
eGFR at the time of CRRT | 0.527 (0.379–0.671) | 0.754 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
B (SE) | β | p | B (SE) | β | p | |
Age | −6.3 (19.4) | −0.04 | 0.748 | 28.0 (25.3) | 0.18 | 0.273 |
Sex (ref: F) | −453.6 (607.3) | −0.09 | 0.458 | 53.9 (542.3) | 0.01 | 0.921 |
BMI | −11.2 (80.2) | −0.02 | 0.889 | |||
CCI | −240.0 (187.5) | −0.16 | 0.205 | −375.2 (246.8) | −0.25 | 0.134 |
Hypertension | −188.8 (564.7) | −0.04 | 0.739 | |||
Diabetes | −528.2 (557.8) | −0.12 | 0.347 | |||
SOFA | 247.3 (66.5) | 0.42 | <0.001 | 216.2 (65.0) | 0.37 | 0.002 |
APACHE II | 60.4 (31.4) | 0.23 | 0.059 | |||
Lactate | 142.3 (36.3) | 0.45 | <0.001 | 121.4 (34.5) | 0.38 | 0.001 |
Albumin | −22.7 (54.2) | −0.05 | 0.676 | |||
eGFR | 18.8 (17.2) | 0.14 | 0.280 | |||
hs-CRP | −7.9 (32.1) | −0.03 | 0.807 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.-H.; Jeon, Y.; Ahn, J.-S.; Kim, S.; Kim, D.K.; Lee, J.P.; Ryu, D.-R.; Seong, E.Y.; Ahn, S.Y.; Baek, S.H.; et al. GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study. J. Clin. Med. 2021, 10, 3660. https://doi.org/10.3390/jcm10163660
Lim J-H, Jeon Y, Ahn J-S, Kim S, Kim DK, Lee JP, Ryu D-R, Seong EY, Ahn SY, Baek SH, et al. GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study. Journal of Clinical Medicine. 2021; 10(16):3660. https://doi.org/10.3390/jcm10163660
Chicago/Turabian StyleLim, Jeong-Hoon, Yena Jeon, Ji-Sun Ahn, Sejoong Kim, Dong Ki Kim, Jung Pyo Lee, Dong-Ryeol Ryu, Eun Young Seong, Shin Young Ahn, Seon Ha Baek, and et al. 2021. "GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study" Journal of Clinical Medicine 10, no. 16: 3660. https://doi.org/10.3390/jcm10163660
APA StyleLim, J. -H., Jeon, Y., Ahn, J. -S., Kim, S., Kim, D. K., Lee, J. P., Ryu, D. -R., Seong, E. Y., Ahn, S. Y., Baek, S. H., Jung, H. -Y., Choi, J. -Y., Park, S. -H., Kim, C. -D., Kim, Y. -L., & Cho, J. -H. (2021). GDF-15 Predicts In-Hospital Mortality of Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy: A Multicenter Prospective Study. Journal of Clinical Medicine, 10(16), 3660. https://doi.org/10.3390/jcm10163660