Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Healthy Control Population
2.3. MR Imaging Acquisition
2.4. Image Processing and Analysis
3. Results
3.1. Subject Characteristics
3.2. Sex-Dependent Cortical Volumetric Differences
3.3. Interaction between Cortical Volume and mJOA Scores
4. Discussion
4.1. Cortical Volumetric Differences in HCs Are Not Sex Dependent
4.2. Sex-Dependent Cortical Volumetric Differences in Patients
4.3. Limitations and Future Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Theodore, N. Degenerative Cervical Spondylosis. N. Engl. J. Med. 2020, 383, 159–168. [Google Scholar] [CrossRef]
- Tracy, J.A.; Bartleson, J.D. Cervical Spondylotic Myelopathy. Neurology 2010, 16, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.I. Cervical spondylosis and neck pain. BMJ 2007, 334, 527–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karadimas, S.K.; Erwin, W.M.; Ely, C.G.; Dettori, J.R.; Fehlings, M. Pathophysiology and Natural History of Cervical Spondylotic Myelopathy. Spine 2013, 38, S21–S36. [Google Scholar] [CrossRef]
- Woodworth, D.C.; Holly, L.T.; Mayer, E.A.; Salamon, N.; Ellingson, B.M. Alterations in Cortical Thickness and Subcortical Volume are Associated with Neurological Symptoms and Neck Pain in Patients with Cervical Spondylosis. Neurosurgery 2018, 84, 588–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jütten, K.; Mainz, V.; Schubert, G.A.; Gohmann, R.F.; Schmidt, T.; Ridwan, H.; Clusmann, H.; Mueller, C.A.; Blume, C. Cortical volume reductions as a sign of secondary cerebral and cerebellar impairment in patients with degenerative cervical myelopathy. NeuroImage Clin. 2021, 30, 102624. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, H.; Zhang, M.; Wang, Y.; Li, D. Volumetric and functional connectivity alterations in patients with chronic cervical spondylotic pain. Neuroradiology 2020, 62, 995–1001. [Google Scholar] [CrossRef]
- Holly, L.T.; Wang, C.; Woodworth, D.C.; Salamon, N.; Ellingson, B.M. Neck disability in patients with cervical spondylosis is associated with altered brain functional connectivity. J. Clin. Neurosci. 2019, 69, 149–154. [Google Scholar] [CrossRef]
- Woodworth, D.C.; Holly, L.T.; Salamon, N.; Ellingson, B.M. Resting-State Functional Magnetic Resonance Imaging Connectivity of the Brain Is Associated with Altered Sensorimotor Function in Patients with Cervical Spondylosis. World Neurosurg. 2018, 119, e740–e749. [Google Scholar] [CrossRef]
- Wang, C.; Laiwalla, A.; Salamon, N.; Ellingson, B.M.; Holly, L.T. Compensatory brainstem functional and structural connectivity in patients with degenerative cervical myelopathy by probabilistic tractography and functional MRI. Brain Res. 2020, 1749, 147129. [Google Scholar] [CrossRef]
- Holly, L.T.; Dong, Y.; Albistegui-DuBois, R.; Marehbian, J.; Dobkin, B. Cortical reorganization in patients with cervical spondylotic myelopathy. J. Neurosurg. Spine 2007, 6, 544–551. [Google Scholar] [CrossRef]
- Kövesdi, E.; Szabó-Meleg, E.; Abrahám, I.M. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int. J. Mol. Sci. 2020, 22, 11. [Google Scholar] [CrossRef]
- Elkabes, S.; Nicot, A. Sex steroids and neuroprotection in spinal cord injury: A review of preclinical investigations. Exp. Neurol. 2014, 259, 28–37. [Google Scholar] [CrossRef]
- Byers, J.S.; Huguenard, A.; Kuruppu, D.; Liu, N.-K.; Xu, X.-M.; Sengelaub, D.R. Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury. J. Comp. Neurol. 2012, 520, 2683–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengelaub, D.R.; Han, Q.; Liu, N.-K.; Maczuga, M.A.; Szalavari, V.; Valencia, S.A.; Xu, X.-M. Protective Effects of Estradiol and Dihydrotestosterone following Spinal Cord Injury. J. Neurotrauma 2018, 35, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Zendedel, A.; Mönnink, F.; Hassanzadeh, G.; Zaminy, A.; Ansar, M.M.; Habib, P.; Slowik, A.D.; Kipp, M.; Beyer, C. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury. Mol. Neurobiol. 2017, 55, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Aminmansour, B.; Asnaashari, A.; Rezvani, M.; Ghaffarpasand, F.; Noorian, S.M.A.; Saboori, M.; Abdollahzadeh, P. Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J. Spinal Cord Med. 2015, 39, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Ovejero, D.; González, S.; Paniagua-Torija, B.; Lima, A.; Molina-Holgado, E.; De Nicola, A.F.; Labombarda, F. Progesterone Reduces Secondary Damage, Preserves White Matter, and Improves Locomotor Outcome after Spinal Cord Contusion. J. Neurotrauma 2014, 31, 857–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, A.K.; McCullough, E.H.; Niyonkuru, C.; Ozawa, H.; Loucks, T.; Dobos, J.A.; Brett, C.A.; Santarsieri, M.; Dixon, C.E.; Berga, S.L.; et al. Acute Serum Hormone Levels: Characterization and Prognosis after Severe Traumatic Brain Injury. J. Neurotrauma 2011, 28, 871–888. [Google Scholar] [CrossRef] [Green Version]
- Gölz, C.; Kirchhoff, F.P.; Westerhorstmann, J.; Schmidt, M.; Hirnet, T.; Rune, G.M.; Bender, R.A.; Schäfer, M.K. Sex hormones modulate pathogenic processes in experimental traumatic brain injury. J. Neurochem. 2019, 150, 173–187. [Google Scholar] [CrossRef]
- Sarkaki, A.; Haddad, M.K.; Soltani, Z.; Shahrokhi, N.; Mahmoodi, M. Time- and Dose-Dependent Neuroprotective Effects of Sex Steroid Hormones on Inflammatory Cytokines after a Traumatic Brain Injury. J. Neurotrauma 2013, 30, 47–54. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Wu, H.Y.; He, R.H.; Zheng, B.E.; Fan, J.Z. Sex Differences in Sex Hormone Profiles and Prediction of Consciousness Recovery After Severe Traumatic Brain Injury. Front. Endocrinol. 2019, 10, 261. [Google Scholar] [CrossRef]
- Stewart, A.N.; MacLean, S.M.; Stromberg, A.J.; Whelan, J.P.; Bailey, W.M.; Gensel, J.C.; Wilson, M.E. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front. Neurol. 2020, 11, 802, ARTN 597689fneur.2020.597689. [Google Scholar] [CrossRef]
- Yonenobu, K.; Abumi, K.; Nagata, K.; Taketomi, E.; Ueyama, K. Interobserver and Intraobserver Reliability of the Japanese Orthopaedic Association Scoring System for Evaluation of Cervical Compression Myelopathy. Spine 2001, 26, 1890–1894. [Google Scholar] [CrossRef] [PubMed]
- Imaging Data Parkinson’s Progression Markers Initiative (PPMI). Available online: https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acn3.644 (accessed on 30 August 2021).
- Fischl, B.; Sereno, M.I.; Dale, A.M. Cortical Surface-Based Analysis: II: Inflation, Flattening, and a Surface-Based Coordinate System. NeuroImage 1999, 9, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 2006, 31, 968–980. [Google Scholar] [CrossRef]
- Lemaitre, H.; Goldman, A.L.; Sambataro, F.; Verchinski, B.A.; Meyer-Lindenberg, A.; Weinberger, D.R.; Mattay, V.S. Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 2012, 33, 617.e1–617.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E.; Morris, J.C.; Dale, A.M.; Fischl, B. Thinning of the Cerebral Cortex in Aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Good, C.D.; Johnsrudeb, I.; Ashburner, J.; Henson, R.N.; Friston, K.J.; Frackowiak, R. Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains. NeuroImage 2001, 14, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Sachdev, P.S.; Wen, W.; Anstey, K. Sex differences in regional gray matter in healthy individuals aged 44–48 years: A voxel-based morphometric study. NeuroImage 2007, 36, 691–699. [Google Scholar] [CrossRef]
- Fjell, A.M.; Westlye, L.T.; Amlien, I.K.; Espeseth, T.; Reinvang, I.; Raz, N.; Agartz, I.; Salat, D.H.; Greve, U.N.; Fischl, B.; et al. Minute Effects of Sex on the Aging Brain: A Multisample Magnetic Resonance Imaging Study of Healthy Aging and Alzheimer’s Disease. J. Neurosci. 2009, 29, 8774–8783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.D.; Chebrolu, H.; Wekstein, D.R.; Schmitt, F.A.; Markesbery, W.R. Age and gender effects on human brain anatomy: A voxel-based morphometric study in healthy elderly. Neurobiol. Aging 2007, 28, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Segura, C.; Ibanez-Gual, M.V.; Adrian-Ventura, J.; Aguirre, N.; Gomez-Cruz, A.J.; Avila, C.; Forn, C. Sex differences in gray matter volume: How many and how large are they really? Biol. Sex Differ. 2019, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Holly, L.T.; Albistegui-DuBois, R.; Yan, X.; Marehbian, J.; Newton, J.M.; Dobkin, B.H. Compensatory cerebral adaptations before and evolving changes after surgical decompression in cervical spondylotic myelopathy. J. Neurosurg. Spine 2008, 9, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Bernabéu-Sanz, A.; Mollá-Torró, J.V.; López-Celada, S.; López, P.M.; Fernández-Jover, E. MRI evidence of brain atrophy, white matter damage, and functional adaptive changes in patients with cervical spondylosis and prolonged spinal cord compression. Eur. Radiol. 2019, 30, 357–369. [Google Scholar] [CrossRef]
- Durga, A.; Sepahpanah, F.; Regozzi, M.; Hastings, J.; Crane, D.A. Prevalence of Testosterone Deficiency After Spinal Cord Injury. PM&R 2011, 3, 929–932. [Google Scholar] [CrossRef]
- Bauman, W.A.; La Fountaine, M.F.; Spungen, A.M. Age-related prevalence of low testosterone in men with spinal cord injury. J. Spinal Cord Med. 2013, 37, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Fomberstein, K.; Qadri, S.; Ramani, R. Functional MRI and pain. Curr. Opin. Anaesthesiol. 2013, 26, 588–593. [Google Scholar] [CrossRef] [PubMed]
Subject Population | Number of Subject (Male/Female) | Age (Male/Female) (min, max) p-Value | mJOA (Male/Female) (min, max) p-Value |
---|---|---|---|
DCM Patients | 85 (52/33) | (58.5 ± 11.6/58.0 ± 10.7) (31, 81) p = 0.8068 | (15.0 ± 2.7/15.6 ± 2.4) (9, 18) p = 0.3885 |
Healthy Controls | 90 (53/37) | (58.7 ± 6.4/59.8 ± 6.3) (45, 70) p = 0.4076 | 18 * |
Left Hemisphere | Right Hemisphere | ||||
---|---|---|---|---|---|
Cortical Regions | Covariate | p Value | Surface Cluster Size | p Value | Surface Cluster Size |
Caudal Middle Frontal | Age | 0.0035 | 456.56 | - | - |
Cuneus | Age | 0.0405 | 1009.85 | - | - |
Fusiform | Age | 0.0006 | 1178.84 | <0.0001 | 1730.3 |
Insula | Age | 0.0015 | 443.74 | <0.0001 | 1175.08 |
Lateral Occipital | Age | 0.0006 | 3119.09 | 0.0007 | 2424.42 |
Lingual | Age | <0.0001 | 1050.38 | 0.0032 | 1698.96 |
Middle Temporal | Age | <0.0001 | 339.04 | <0.0001 | 652.45 |
Parahippocampal | Age | 0.0028 | 529.01 | <0.0001 | 402.56 |
Precentral | Age | 0.0403 | 56.35 | 0.0129 | 1715.10 |
Postcentral | Age | 0.0048 | 55.24 | - | - |
Rostral Middle Frontal | Age | 0.0001 | 949.68 | 0.0360 | 68.95 |
Superior Temporal | Age | <0.0001 | 290.82 | 0.0024 | 797.12 |
Supramarginal | Age | <0.0001 | 613.04 | - | - |
Inferior Parietal | Age, mJOA | 0.0048 | 471.79 | 0.0621 | 85.62 |
Inferior Temporal | Age, mJOA | - | - | <0.0001 | 640.1 |
Insula | Age, mJOA | 0.0168 | 24.63 | <0.0001 | 1118.52 |
Lateral Occipital | Age, mJOA | 0.0019 | 2160.62 | 0.0014 | 1302.23 |
Lingual | Age, mJOA | <0.0001 | 389.34 | 0.0001 | 565.68 |
Middle Temporal | Age, mJOA | - | - | 0.0002 | 250.46 |
Parahippocampal | Age, mJOA | 0.0076 | 414.86 | - | - |
Pericalcarine | Age, mJOA | 0.1354 | 90.56 | 0.0527 | 538.2 |
Postcentral | Age, mJOA | 0.0013 | 30.06 | 0.0038 | 479.84 |
Precentral | Age, mJOA | - | - | 0.0042 | 965.98 |
Superior Temporal | Age, mJOA | <0.0001 | 370.66 | 0.0003 | 179.34 |
Supramarginal | Age, mJOA | <0.0001 | 171.87 | 0.0076 | 712.19 |
Left Hemisphere | Right Hemisphere | ||||
---|---|---|---|---|---|
Cortical Regions | Group | p Value | Surface Cluster Size | p Value | Surface Cluster Size |
Cuneus | Males | 0.0004 | 380.97 | 0.0292 | 95.29 |
Inferior Parietal | Males | 0.8914 | 966.31 | 0.4102 | 93.41 |
Isthmus Cingulate | Males | 0.2006 | 30.38 | 0.0250 | 296.28 |
Lateral Occipital | Males | 0.2161 | 337.21 | 0.0608 | 1094.64 |
Lingual | Males | 0.0283 | 737.72 | 0.0378 | 848.74 |
Parahippocampal | Males | 0.1567 | 138.26 | 0.1132 | 109.2 |
Pars Opercularis | Males | 0.2592 | 506.63 | - | - |
Pars Triangularis | Males | 0.4047 | 623.99 | - | - |
Pericalcarine | Males | 0.0049 | 412.39 | 0.0020 | 18.51 |
Precuneus | Males | 0.0533 | 736.32 | 0.0311 | 396.69 |
Superior Parietal | Males | 0.3403 | 950.17 | 0.0371 | 116.98 |
Lingual | Females | 0.1318 | 323.52 | 0.0016 | 957.86 |
Pericalcarine | Females | 0.0050 | 417.95 | 0.0001 | 323.6 |
Left Hemisphere | Right Hemisphere | ||||||
---|---|---|---|---|---|---|---|
Cortical Regions | Group | p Value | T Score | Surface Cluster Size | p Value | T Score | Surface Cluster Size |
Caudal Middle Frontal | Male | 0.0147 | 2.4808 | 931.02 | 0.0001 | 4.0121 | 574.47 |
Cuneus | Male | 0.0001 | 4.0905 | 901.29 | <0.0001 | 4.2566 | 1024.76 |
Inferior Parietal | Male | 0.0003 | 3.7056 | 177.33 | - | - | - |
Isthmus Cingulate | Male | 0.0056 | 2.8325 | 274.58 | 0.0107 | 2.5992 | 194.44 |
Lingual | Male | 0.0323 | 2.1702 | 47.57 | 0.0014 | 3.2878 | 682.61 |
Middle Temporal | Male | - | - | - | 0.0018 | 3.1981 | 536.62 |
Paracentral | Male | 0.0038 | 2.9585 | 325.61 | 0.0007 | 3.5082 | 616.92 |
Pericalcarine | Male | 0.0004 | 3.6829 | 498.08 | 0.0008 | 3.4660 | 1016.29 |
Postcentral | Male | 0.0065 | 2.7768 | 838.30 | 0.0005 | 3.6186 | 1484.26 |
Precentral | Male | 0.0027 | 3.0707 | 519.88 | 0.0003 | 3.7609 | 1448.52 |
Precuneus | Male | 0.0007 | 3.4827 | 922.63 | 0.0002 | 3.9008 | 1591.98 |
Rostral Middle Frontal | Male | 0.0063 | 2.7869 | 1346.88 | <0.0001 | 4.6934 | 1227.85 |
Superior Frontal | Male | 0.0002 | 3.9345 | 3468.21 | 0.0001 | 3.9840 | 2102.31 |
Superior Parietal | Male | 0.0003 | 3.7857 | 957.57 | 0.0001 | 4.0080 | 612.55 |
Superior Temporal | Male | 0.0012 | 3.3395 | 912.92 | 0.0006 | 3.5349 | 1166.35 |
Supramarginal | Male | 0.0001 | 4.1949 | 345.84 | 0.0012 | 3.3300 | 531.18 |
Caudal Anterior Cingulate | Female | 0.0038 | 3.0027 | 418.91 | <0.0001 | 4.1818 | 479.93 |
Caudal Middle Frontal | Female | 0.0164 | 2.4607 | 580.33 | <0.0001 | 3.5973 | 1444.70 |
Cuneus | Female | 0.0017 | 3.2730 | 873.88 | <0.0001 | 4.1733 | 1049.93 |
Inferior Parietal | Female | 0.0082 | 2.7241 | 1190.14 | - | - | - |
Insula | Female | 0.0007 | 3.5679 | 1047.41 | 0.0018 | 3.2477 | 1134.00 |
Isthmus Cingulate | Female | 0.0004 | 3.7128 | 489.74 | 0.0015 | 3.3082 | 327.50 |
Lingual | Female | 0.0190 | 2.4029 | 741.95 | 0.0004 | 3.7339 | 1733.44 |
Middle Temporal | Female | - | - | - | <0.0001 | 5.3954 | 1139.43 |
Paracentral | Female | 0.0001 | 4.2580 | 1188.91 | 0.0001 | 4.1773 | 1065.10 |
Pericalcarine | Female | 0.0056 | 2.8602 | 533.04 | 0.0001 | 4.0976 | 1144.62 |
Postcentral | Female | 0.0005 | 3.6730 | 1839.21 | <0.0001 | 4.3079 | 2904.11 |
Posterior Cingulate | Female | 0.0017 | 3.2702 | 354.79 | - | - | - |
Precentral | Female | 0.0004 | 3.7429 | 2635.05 | <0.0001 | 4.5894 | 2441.22 |
Precuneus | Female | 0.0003 | 3.8012 | 2157.81 | 0.0002 | 4.0130 | 1517.61 |
Rostral Anterior Cingulate | Female | - | - | - | 0.0001 | 4.0743 | 215.08 |
Rostral Middle Frontal | Female | 0.0104 | 2.6356 | 219.43 | 0.0001 | 4.2596 | 1726.86 |
Superior Frontal | Female | <0.0001 | 4.3678 | 4436.93 | <0.0001 | 5.0532 | 4684.97 |
Superior Parietal | Female | 0.0004 | 3.7294 | 2221.67 | 0.0003 | 3.8566 | 1024.18 |
Superior Temporal | Female | <0.0001 | 4.6447 | 1161.84 | 0.0003 | 3.8598 | 976.21 |
Supramarginal | Female | 0.0023 | 3.1696 | 115.25 | 0.0011 | 3.4254 | 1135.15 |
Region | Size of ROI (mm2) | Comparison of Male & Female Fits p-Value | Male Simple Linear Regression p-Value | Female Simple Linear Regression p-Value | Male R2 | Female R2 |
---|---|---|---|---|---|---|
LH Paracentral | 322.69 | <0.0001 | 0.0954 | 0.0543 | 0.05462 | 0.1143 |
RH Paracentral | 518.81 | 0.8711 | 0.0379 | 0.0218 | 0.08336 | 0.1583 |
LH Postcentral | 674.12 | 0.9319 | 0.1626 | 0.1628 | 0.03862 | 0.06187 |
RH Postcentral | 1414.2 | 0.1601 | 0.0571 | 0.0237 | 0.0705 | 0.1544 |
LH Precentral | 439.37 | <0.0001 | 0.0762 | 0.0473 | 0.06152 | 0.121 |
RH Precentral | 1205.41 | <0.0001 | 0.0102 | 0.001 | 0.1248 | 0.2986 |
LH Superior Frontal | 2874.67 | 0.0013 | 0.0469 | 0.0515 | 0.0767 | 0.1169 |
RH Superior Frontal | 1894.1 | 0.0301 | 0.0452 | 0.004 | 0.0778 | 0.2382 |
LH Rostral Middle Frontal | 150.27 | 0.9753 | 0.1075 | 0.1016 | 0.05099 | 0.0841 |
RH Rostral Middle Frontal | 473.04 | <0.0001 | 0.0063 | 0.0027 | 0.1398 | 0.2561 |
LH Superior Parietal | 698.91 | 0.0556 | 0.0255 | 0.0273 | 0.09588 | 0.1476 |
RH Superior Parietal | 308.98 | <0.0001 | 0.0623 | 0.041 | 0.06777 | 0.1279 |
LH Supramarginal | 144.22 | <0.0001 | 0.0029 | 0.0413 | 0.1638 | 0.1275 |
RH Supramarginal | 341.88 | 0.0005 | 0.0656 | 0.0845 | 0.06618 | 0.09296 |
LH caudal ACC | 22.44 | <0.0001 | 0.2588 | 0.107 | 0.02543 | 0.08163 |
RH caudal ACC | 2.18 | <0.0001 | 0.492 | 0.0159 | 0.00949 | 0.1736 |
RH rostral ACC | 43.86 | <0.0001 | 0.1569 | 0.009 | 0.03968 | 0.2003 |
LH isthmus Cingulate | 227.99 | <0.0001 | 0.2472 | 0.0242 | 0.02669 | 0.1535 |
RH isthmus Cingulate | 107.14 | <0.0001 | 0.3069 | 0.0996 | 0.02087 | 0.08505 |
LH posterior Cingulate | 61.68 | <0.0001 | 0.5837 | 0.0184 | 0.006048 | 0.1666 |
LH Insula | 55.35 | <0.0001 | 0.7624 | 0.0534 | 0.001845 | 0.1151 |
RH Insula | 40.95 | <0.0001 | 0.443 | 0.2181 | 0.01182 | 0.04851 |
LH Precuneus | 855.31 | <0.0001 | 0.0398 | 0.0525 | 0.0818 | 0.116 |
RH Precuneus | 1421.53 | <0.0001 | 0.0686 | 0.0732 | 0.06477 | 0.09986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oughourlian, T.C.; Wang, C.; Salamon, N.; Holly, L.T.; Ellingson, B.M. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy. J. Clin. Med. 2021, 10, 3965. https://doi.org/10.3390/jcm10173965
Oughourlian TC, Wang C, Salamon N, Holly LT, Ellingson BM. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy. Journal of Clinical Medicine. 2021; 10(17):3965. https://doi.org/10.3390/jcm10173965
Chicago/Turabian StyleOughourlian, Talia C., Chencai Wang, Noriko Salamon, Langston T. Holly, and Benjamin M. Ellingson. 2021. "Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy" Journal of Clinical Medicine 10, no. 17: 3965. https://doi.org/10.3390/jcm10173965
APA StyleOughourlian, T. C., Wang, C., Salamon, N., Holly, L. T., & Ellingson, B. M. (2021). Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy. Journal of Clinical Medicine, 10(17), 3965. https://doi.org/10.3390/jcm10173965