Spinal Cord Signal Change on Magnetic Resonance Imaging May Predict Worse Clinical In- and Outpatient Outcomes in Patients with Spinal Cord Injury: A Prospective Multicenter Study in 459 Patients
Abstract
:Key Points
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Main Findings
4.2. Current Knowledge and Addition of Our Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cripps, R.A.; Lee, B.; Wing, P.; Weerts, E.; Mackay, J.; Brown, D. A global map for traumatic spinal cord injury epidemiology: Towards a living data repository for injury prevention. Spinal Cord 2010, 49, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, G.S.; Danesh, J.N.; Caradoc-Davies, T.H. Epidemiology of Spinal Cord Injury in New Zealand. Neuroepidemiology 1993, 12, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Biering-Sørensen, F.; Pedersen, V.; Clausen, S. Epidemiology of spinal cord lesions in Denmark. Spinal Cord 1990, 28, 105–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sørensen, F.; Donovan, W.; Graves, D.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.; et al. International standards for neurological classification of spinal cord injury (Revised 2011). J. Spinal Cord Med. 2011, 34, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Rutges, J.P.H.J.; Kwon, B.K.; Heran, M.; Ailon, T.; Street, J.T.; Dvorak, M.F. A prospective serial MRI study following acute traumatic cervical spinal cord injury. Eur. Spine J. 2017, 26, 2324–2332. [Google Scholar] [CrossRef]
- Martínez-Pérez, R.; Cepeda, S.; Paredes, I.; Alen, J.F.; Lagares, A. MRI Prognostication Factors in the Setting of Cervical Spinal Cord Injury Secondary to Trauma. World Neurosurg. 2017, 101, 623–632. [Google Scholar] [CrossRef]
- Gu, J.; Guan, F.; Zhu, L.; Guan, G.; Chi, Z.; Li, W.; Yu, Z. Predictors of Surgical Outcome in Acute Spinal Cord Injury Patients with Cervical Ossification of the Posterior Longitudinal Ligament. World Neurosurg. 2016, 90, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Kwon, S.Y.; Shin, J.J.; Lee, J.H.; Cho, W.H. Prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL). J. Orthop. Surg. Res. 2015, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Freund, P.; Weiskopf, N.; Ashburner, J.; Wolf, K.; Sutter, R.; Altmann, D.R.; Friston, K.; Thompson, A.; Curt, A. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: A prospective longitudinal study. Lancet Neurol. 2013, 12, 873–881. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Ueta, T.; Mori, E.; Yugue, I.; Kawano, O.; Takao, T.; Sakai, H.; Okada, S.; Shiba, K. Soft-Tissue Damage and Segmental Instability in Adult Patients With Cervical Spinal Cord Injury Without Major Bone Injury. Spine 2012, 37, E1560–E1566. [Google Scholar] [CrossRef]
- Machino, M.; Yukawa, Y.; Ito, K.; Nakashima, H.; Kanbara, S.; Morita, D.; Kato, F. Can magnetic resonance imaging reflect the prognosis in patients of cervical spinal cord injury without radiographic abnormality? Spine 2011, 36, E1568–E1572. [Google Scholar] [CrossRef]
- Miyanji, F.; Furlan, J.C.; Aarabi, B.; Arnold, P.M.; Fehlings, M.G. Acute Cervical Traumatic Spinal Cord Injury: MR Imaging Findings Correlated with Neurologic Outcome—Prospective Study with 100 Consecutive Patients1. Radiology 2007, 243, 820–827. [Google Scholar] [CrossRef]
- Boldin, C.; Raith, J.; Fankhauser, F.; Haunschmid, C.; Schwantzer, G.; Schweighofer, F. Predicting Neurologic Recovery in Cervical Spinal Cord Injury With Postoperative MR Imaging. Spine 2006, 31, 554–559. [Google Scholar] [CrossRef]
- Koyanagi, I.; Iwasaki, Y.; Hida, K.; Imamura, H.; Fujimoto, S.; Akino, M. Acute Cervical Cord Injury Associated with Ossification of the Posterior Longitudinal Ligament. Neurosurgery 2003, 53, 887–892. [Google Scholar] [CrossRef]
- Takahashi, M.; Harada, Y.; Inoue, H.; Shimada, K. Traumatic cervical cord injury at C3-4 without radiographic abnormalities: Correlation of magnetic resonance findings with clinical features and outcome. J. Orthop. Surg. 2002, 10, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Ishida, Y.; Tominaga, T. Predictors of Neurologic Recovery in Acute Central Cervical Cord Injury with Only Upper Extremity Impairment. Spine 2002, 27, 1652–1657. [Google Scholar] [CrossRef]
- Koyanagi, I.; Iwasaki, Y.; Hida, K.; Akino, M.; Imamura, H.; Abe, H. Acute cervical cord injury without fracture or dislocation of the spinal column. J. Neurosurg. Spine 2000, 93, 15–20. [Google Scholar] [CrossRef]
- Shimada, K.; Tokioka, T. Sequential MR studies of cervical cord injury: Correlation with neurological damage and clinical outcome. Spinal Cord 1999, 37, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Aarabi, B.; Sansur, C.A.; Ibrahimi, D.M.; Simard, J.M.; Hersh, D.; Le, E.; Diaz, C.; Massetti, J.; Akhtar-Danesh, N. Intramedullary Lesion Length on Postoperative Magnetic Resonance Imaging is a Strong Predictor of ASIA Impairment Scale Grade Conversion Following Decompressive Surgery in Cervical Spinal Cord Injury. Neurosurgery 2016, 80, 610–620. [Google Scholar] [CrossRef] [Green Version]
- Grossman, R.G.; Toups, E.G.; Frankowski, R.F.; Burau, K.D.; Howley, S. North American Clinical Trials Network for the Treatment of Spinal Cord Injury: Goals and progress. J. Neurosurg. Spine 2012, 17, 6–10. [Google Scholar] [CrossRef]
- Grossman, R.G.; Frankowski, R.F.; Burau, K.D.; Toups, E.G.; Crommett, J.W.; Johnson, M.M.; Fehlings, M.; Tator, C.H.; Shaffrey, C.I.; Harkema, S.J.; et al. Incidence and severity of acute complications after spinal cord injury. J. Neurosurg. Spine 2012, 17, 119–128. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Spinal Cord Injury Registry—NACTN (NACTN). 2005. Available online: http://clinicaltrials.gov/ct2/show/NCT00178724?term=NACTN&recr=Open&cond=spinal+cord+injury&rank=1 (accessed on 13 October 2021).
- Rhee, J.; Tetreault, L.A.; Chapman, J.R.; Wilson, J.R.; Smith, J.S.; Martin, A.R.; Dettori, J.R.; Fehlings, M.G. Nonoperative Versus Operative Management for the Treatment Degenerative Cervical Myelopathy: An Updated Systematic Review. Glob. Spine J. 2017, 7 (Suppl. 3), 35S–41S. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Jaja, B.N.; Kurpad, S.N.; Badhiwala, J.H.; Aarabi, B.; Grossman, R.G.; Harrop, J.S.; Guest, J.D.; Schär, R.T.; Shaffrey, C.I.; et al. Acute Adverse Events After Spinal Cord Injury and Their Relationship to Long-term Neurologic and Functional Outcomes: Analysis From the North American Clinical Trials Network for Spinal Cord Injury. Crit. Care Med. 2019, 47, e854–e862. [Google Scholar] [CrossRef]
- Giannarini, G.; Kessler, T.M.; Roth, B.; Vermathen, P.; Thoeny, H.C. Functional Multiparametric Magnetic Resonance Imaging of the Kidneys Using Blood Oxygen Level Dependent and Diffusion-Weighted Sequences. J. Urol. 2014, 192, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Katsumi, K.; Yamazaki, A.; Watanabe, K.; Ohashi, M.; Shoji, H. Can Prophylactic Bilateral C4/C5 Foraminotomy Prevent Postoperative C5 Palsy After Open-Door Laminoplasty? Spine 2012, 37, 748–754. [Google Scholar] [CrossRef]
- Ichihara, D.; Okada, E.; Chiba, K.; Toyama, Y.; Fujiwara, H.; Momoshima, S.; Nishiwaki, Y.; Hashimoto, T.; Ogawa, J.; Watanabe, M.; et al. Longitudinal magnetic resonance imaging study on whiplash injury patients: Minimum 10-year follow-up. J. Orthop. Sci. 2009, 14, 602–610. [Google Scholar] [CrossRef]
- Marquardt, G.; Setzer, M.; Szelenyi, A.; Seifert, V.; Gerlach, R. Significance of serial S100b and NSE serum measurements in surgically treated patients with spondylotic cervical myelopathy. Acta Neurochir. 2009, 151, 1439–1443. [Google Scholar] [CrossRef]
- Como, J.J.; Thompson, M.A.; Anderson, J.S.; Shah, R.R.; Claridge, J.A.; Yowler, C.J.; Malangoni, M.A. Is magnetic resonance imaging essential in clearing the cervical spine in obtunded patients with blunt trauma? J. Trauma 2007, 63, 544–549. [Google Scholar] [CrossRef]
- Summers, B.; Malhan, K.; Cassar-Pullicino, V. Low back pain on passive straight leg raising: The anterior theca as a source of pain. Spine 2005, 30, 342–345. [Google Scholar] [CrossRef]
- Ishibe, T.; Takahashi, S. Respiratory Dysfunction in Patients with Chronic-Onset Cervical Myelopathy. Spine 2002, 27, 2234–2239. [Google Scholar] [CrossRef]
- Friedman, D.; Flanders, A.; Thomas, C.; Millar, W. Vertebral artery injury after acute cervical spine trauma: Rate of occurrence as detected by MR angiography and assessment of clinical consequences. Am. J. Roentgenol. 1995, 164, 443–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, L.; Righetti, C.; Terrini, G.; Zanette, G. Atypical syndromes caudal to the injury site in patients following spinal cord injury. A clinical, neurophysiological and MRI study. Spinal Cord 1993, 31, 751–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, L.; Brookshire, R.; Roche, B.; Johnson, A.; Cole, F.; Karmy-Jones, R.; Long, W.; Martin, M.J. Evaluation of Cervical Spine Clearance by Computed Tomographic Scan Alone in Intoxicated Patients with Blunt Trauma. JAMA Surg. 2016, 151, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arija-Blázquez, A.; Ceruelo-Abajo, S.; Díaz-Merino, M.S.; Godino-Duran, J.A.; Martínez-Dhier, L.; Martin, J.L.R.; Florensa-Vila, J. Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: A randomized clinical trial. J. Spinal Cord Med. 2013, 37, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Sabre, L.; Tomberg, T.; Kõrv, J.; Kepler, J.; Kepler, K.; Linnamägi, Ü.; Asser, T. Brain activation in the acute phase of traumatic spinal cord injury. Spinal Cord 2013, 51, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Mishina, M.; Kokubo, R.; Nakajima, T.; Morimoto, D.; Isu, T.; Kobayashi, S.; Teramoto, A. Ketamine for acute neuropathic pain in patients with spinal cord injury. J. Clin. Neurosci. 2013, 20, 804–807. [Google Scholar] [CrossRef]
- Kelly, J.; O’Briain, D.; Kelly, G.; Mc Cabe, J. Imaging the spine for tumour and trauma—A national audit of practice in Irish hospitals. Surgeon 2012, 10, 80–83. [Google Scholar] [CrossRef]
- Hiersemenzel, L.-P.; Curt, A.; Dietz, V. From spinal shock to spasticity: Neuronal adaptations to a spinal cord injury. Neurology 2000, 54, 1574–1582. [Google Scholar] [CrossRef]
- Wang-Leandro, A.; Hobert, M.K.; Alisauskaite, N.; Dziallas, P.; Rohn, K.; Stein, V.M.; Tipold, A. Spontaneous acute and chronic spinal cord injuries in paraplegic dogs: A comparative study of in vivo diffusion tensor imaging. Spinal Cord 2017, 55, 1108–1116. [Google Scholar] [CrossRef] [Green Version]
- Wang-Leandro, A.; Siedenburg, J.; Hobert, M.; Dziallas, P.; Rohn, K.; Stein, V.; Tipold, A. Comparison of Preoperative Quantitative Magnetic Resonance Imaging and Clinical Assessment of Deep Pain Perception as Prognostic Tools for Early Recovery of Motor Function in Paraplegic Dogs with Intervertebral Disk Herniations. J. Veter Intern. Med. 2017, 31, 842–848. [Google Scholar] [CrossRef]
- Dickomeit, M.; Jaggy, A.; Forterre, F.; Gorgas, D.; Lang, J.; Spreng, D. Incidence of spinal compressive lesions in chondrodystrophic dogs with abnormal recovery after hemilaminectomy for treatment of thoracolumbar disc disease: A prospective magnetic resonance imaging study. Vet. Surg. 2010, 39, 165–172. [Google Scholar] [CrossRef]
- Nout, Y.S.; Mihai, G.; Tovar, C.A.; Schmalbrock, P.; Bresnahan, J.C.; Beattie, M.S. Hypertonic saline attenuates cord swelling and edema in experimental spinal cord injury: A study utilizing magnetic resonance imaging. Crit. Care Med. 2009, 37, 2160–2166. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.M.; Dong, C.; Zhang, Y.Z.; Tian, Y.Y.; Chen, H.X.; Zhang, S.; Li, N.; Gu, P. Clinical and imaging features of spinal cord type of neuro Behçet disease: A case report and systematic review. Medicine 2017, 96, e7958. [Google Scholar] [CrossRef]
- Takahata, S.; Shirado, O.; Minami, A.; Oda, H. Quadriparesis due to acute collapse of a seemingly stabilized C5/6 segment in a patient with rheumatoid arthritis—A case report. Orthopedics 2008, 31, 401. [Google Scholar]
- Tolonen, A.; Turkka, J.; Salonen, O.; Ahoniemi, E.; Alaranta, H. Traumatic brain injury is under-diagnosed in patients with spinal cord injury. Acta Derm. Venereol. 2007, 39, 622–626. [Google Scholar] [CrossRef] [Green Version]
- Hadjipavlou, A.; Tosounidis, T.; Gaitanis, I.; Kakavelakis, K.; Katonis, P. Balloon kyphoplasty as a single or as an adjunct procedure for the management of symptomatic vertebral haemangiomas. J. Bone Jt. Surgery. Br. Vol. 2007, 89, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Awad, B.I.; Carmody, M.A.; Lubelski, D.; El Hawi, M.; Claridge, J.A.; Como, J.J.; Mroz, T.E.; Moore, T.A.; Steinmetz, M.P. Adjacent Level Ligamentous Injury Associated with Traumatic Cervical Spine Fractures: Indications for Imaging and Implications for Treatment. World Neurosurg. 2015, 84, 69–75. [Google Scholar] [CrossRef]
- McGivern, U.; Drinkwater, K.; Clarke, J.; Locke, I. A Royal College of Radiologists National Audit of Radiotherapy in the Treatment of Metastatic Spinal Cord Compression and Implications for the Development of Acute Oncology Services. Clin. Oncol. 2014, 26, 453–460. [Google Scholar] [CrossRef]
- Santos, J.M.G.; Blanquer, M.; del Río, S.T.; Iniesta, F.; Espuch, J.G.; Pérez-Espejo, M.Á.; Martínez, S.; Moraleda, J.M. Acute and chronic MRI changes in the spine and spinal cord after surgical stem cell grafting in patients with definite amyotrophic lateral sclerosis: Post-infusion injuries are unrelated with clinical impairment. Magn. Reson. Imaging 2013, 31, 1298–1308. [Google Scholar] [CrossRef]
- Lamothe, G.; Müller, F.; Vital, J.-M.; Goossens, D.; Barat, M. Evolution of spinal cord injuries due to cervical canal stenosis without radiographic evidence of trauma (SCIWORET): A prospective study. Ann. Phys. Rehabil. Med. 2011, 54, 213–224. [Google Scholar] [CrossRef] [Green Version]
- DeVivo, M.J.; Kartus, P.L.; Rutt, R.D.; Stover, S.L.; Fine, P.R. The Influence of Age at Time of Spinal Cord Injury on Rehabilitation Outcome. Arch. Neurol. 1990, 47, 687–691. [Google Scholar] [CrossRef]
- Kaminski, L.; Cordemans, V.; Cernat, E.; M’Bra, K.I.; Mac-Thiong, J.-M. Functional Outcome Prediction after Traumatic Spinal Cord Injury Based on Acute Clinical Factors. J. Neurotrauma 2017, 34, 2027–2033. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Pfyffer, D.; Vallotton, K.; Curt, A.; Freund, P. Tissue bridges predict neuropathic pain emergence after spinal cord injury. J. Neurol. Neurosurg. Psychiatry 2020, 91, 1111–1117. [Google Scholar] [CrossRef]
Exclusion Criterion | Studies (n) |
---|---|
No acute SCI | 9 [25,26,27,28,29,30,31,32,33] |
No MRI of the spine | 6 [34,35,36,37,38,39] |
Experimental study | 4 [40,41,42,43] |
Case report | 2 [44,45] |
Focus on brain injury | 2 [46,47] |
Heterogenous study population (not exclusively SCI patients) | 1 [48] |
Metastatic SC compression | 1 [49] |
Neurological condition (amyotrophic lateral sclerosis) | 1 [50] |
No association between imaging and clinical outcome | 1 [51] |
Spinal Cord T2 Signal Change | ||||||
---|---|---|---|---|---|---|
Yes (n = 355) | No (n = 105) | |||||
Variable | Median | (IQR) | Median | (IQR) | p-Value * | |
Age (n = 435) | 46.0 | (29.0) | 50.0 | (20.5) | 0.039 | |
Gender (n = 446), n (%) | 0.831 | |||||
Female | 65 | (19.1) | 21 | (20.0) | ||
Male | 277 | (81.0) | 84 | (80.0) | ||
BMI (n = 422) | 25.9 | (5.9) | 25.8 | (7.0) | 0.708 | |
Smoker (n = 444), n (%) | 95 | (27.8) | 20 | (19.6) | 0.098 | |
Comorbidities (n = 449), n (%) | 138 | (40.1) | 42 | (40.0) | 0.983 | |
Mechanism of injury (n = 437), n (%) | 0.116 | |||||
Fall | 132 | (39.1) | 49 | (49.5) | ||
Motor vehicle accident | 154 | (45.4) | 34 | (34.3) | ||
Sports | 32 | (9.5) | 7 | (7.1) | ||
Other (assault, blast) | 20 | (5.9) | 9 | (9.1) | ||
Injury location (n = 452), n (%) | 0.169 | |||||
Cervical | 273 | (78.5) | 88 | (84.6) | ||
Thoracic and lumbosacral conus | 75 | (21.5) | 16 | (15.4) |
Spinal Cord T2 Signal Change | ||||||
---|---|---|---|---|---|---|
Yes (n = 354) | No (n = 105) | |||||
Variable | Median | (IQR) | Median | (IQR) | p-Value * | |
Adverse events, n (%) † | 230 | (65.0) | 47 | (44.8) | <0.001 | |
Cardiopulmonary | 157 | (68.3) | 29 | (61.7) | 0.383 | |
Pulmonary embolus | 12 | (5.2) | 2 | (4.3) | 0.784 | |
DVT | 16 | (7.0) | 2 | (4.3) | 0.494 | |
Systemic | 11 | (4.8) | 5 | (10.6) | 0.117 | |
UTI | 45 | (19.6) | 7 | (14.9) | 0.455 | |
GI and GU | 28 | (12.2) | 5 | (10.6) | 0.767 | |
Wound infection | 5 | (2.2) | 3 | (6.4) | 0.116 | |
Hematology | 78 | (33.9) | 16 | (34.0) | 0.986 | |
Skin | 35 | (15.2) | 6 | (12.7) | 0.666 | |
Neurological | 60 | (26.1) | 12 | (25.5) | 0.937 | |
Hardware failure | 3 | (1.3) | 3 | (1.3) | 0.431 | |
Other (unspecified) | 143 | (62.2) | 22 | (46.8) | 0.050 | |
AIS D | ||||||
Baseline | 175 | (49.7) | 72 | (68.6) | 0.001 | |
AIS D or E | ||||||
Follow-up | 288 | (81.1) | 97 | (92.4) | 0.006 | |
Length of stay (n = 442) | 13.0 | (17.0) | 11.0 | (14.0) | 0.049 | |
Death (n = 443), n (%) | 11 | (3.2) | 4 | (3.9) | 0.767 |
Variable | OR | 95% CI | p-Value * |
---|---|---|---|
Spinal cord T2 signal change | 2.09 | (1.31–3.35) | 0.002 |
Age | 1.00 | (0.99–1.01) | 0.598 |
AIS D at baseline | 0.36 | (0.24–0.55) | <0.001 |
Study Number | Author(s) | Patients (n) | Aim | Main Finding | Age | Limitation | |
---|---|---|---|---|---|---|---|
Mean | (SD) | ||||||
1 | Rutges et al. [5] | 19 | Change during first three postoperative weeks |
| 57.2 | (15.1) | Short-term follow-up (three weeks) |
2 | Martínez-Pérez et al. [6] | 86 | Radiologic findings for neurologic prognosis | Edema > 36 mm and facet dislocation predicted worse neurological outcome | 47.6 | na | Limited patient number and cervical spine only |
3 | Gu et al. [7] | 36 | Outcome predictors in patients with OPLL | High-intensity zones (vs low-intensity zones) were associated with worse outcomes (mJOA improvement of 2.5 (SD 2.8) vs. 6.3 (1.5) points) | 53.5 | (13.3) | Limited to OPLL |
4 | Kwon et al. [8] | 38 | Outcome predictors in patients with OPLL | Higher intramedullary signal intensity grade and space available for cord were associated with worse outcomes | 62.7 | na | Limited to OPLL |
5 | Freund et al. [9] | 13 (18 controls) | Neuronal degeneration above the lesion level |
| 46.9 | (20.2) | Limited patient number |
6 | Maeda et al. [10] | 88 | Extraneural soft-tissue damage and clinical relevance in patients without bone injury | Association between anterior longitudinal disruption, disc damage, and prevertebral hyperintensity with AIS motor score | 64 | na | Short-follow-up (mean six months (range of one to seven months)) |
7 | Machino et al. [11] | 100 | Occurrence rate of ISI and PVH in patients with cervical SCIWORA |
| 55 | na | Limited to SCIWORA |
8 | Miyanji et al. [12] | 100 | MRI association with neurologic status |
| 45 | na | Limited number of patients |
9 | Boldin et al. [13] | 29 | Investigated spinal cord hemorrhage and length of hematoma as predictors of recovery |
| 43.5 | 18.1 | Limited patient number |
10 | Koyanagi et al. [14] | 28 | Radiographic and clinical findings in patients with OPLL |
| 63.0 | na | Limited to OPLL |
11 | Takahashi et al. [15] | 43 | Investigated association between image findings and clinical outcome |
| 63.4 | na | Limited patient number |
12 | Ishida and Tominaga [16] | 22 | Evaluated MRI predictors for good neurologic recovery in patients with only upper extremity impairment |
| 45.9 | na | Limited patient number |
13 | Koyanagi et al. [17] | 42 | MRI predictors of worse outcome in patients without fracture or dislocation | Intramedullary hyperintensity on T2-weighted images was associated with more severe neurological deficits | 58.9 | na | No results on association between MRI and clinical outcome |
14 | Shimada and Tokioka [18] | 75 | MRI findings and clinical outcomes |
| 54.7 | na | Limited patient number |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jentzsch, T.; Cadotte, D.W.; Wilson, J.R.; Jiang, F.; Badhiwala, J.H.; Akbar, M.A.; Rocos, B.; Grossman, R.G.; Aarabi, B.; Harrop, J.S.; et al. Spinal Cord Signal Change on Magnetic Resonance Imaging May Predict Worse Clinical In- and Outpatient Outcomes in Patients with Spinal Cord Injury: A Prospective Multicenter Study in 459 Patients. J. Clin. Med. 2021, 10, 4778. https://doi.org/10.3390/jcm10204778
Jentzsch T, Cadotte DW, Wilson JR, Jiang F, Badhiwala JH, Akbar MA, Rocos B, Grossman RG, Aarabi B, Harrop JS, et al. Spinal Cord Signal Change on Magnetic Resonance Imaging May Predict Worse Clinical In- and Outpatient Outcomes in Patients with Spinal Cord Injury: A Prospective Multicenter Study in 459 Patients. Journal of Clinical Medicine. 2021; 10(20):4778. https://doi.org/10.3390/jcm10204778
Chicago/Turabian StyleJentzsch, Thorsten, David W. Cadotte, Jefferson R. Wilson, Fan Jiang, Jetan H. Badhiwala, Muhammad A. Akbar, Brett Rocos, Robert G. Grossman, Bizhan Aarabi, James S. Harrop, and et al. 2021. "Spinal Cord Signal Change on Magnetic Resonance Imaging May Predict Worse Clinical In- and Outpatient Outcomes in Patients with Spinal Cord Injury: A Prospective Multicenter Study in 459 Patients" Journal of Clinical Medicine 10, no. 20: 4778. https://doi.org/10.3390/jcm10204778
APA StyleJentzsch, T., Cadotte, D. W., Wilson, J. R., Jiang, F., Badhiwala, J. H., Akbar, M. A., Rocos, B., Grossman, R. G., Aarabi, B., Harrop, J. S., & Fehlings, M. G. (2021). Spinal Cord Signal Change on Magnetic Resonance Imaging May Predict Worse Clinical In- and Outpatient Outcomes in Patients with Spinal Cord Injury: A Prospective Multicenter Study in 459 Patients. Journal of Clinical Medicine, 10(20), 4778. https://doi.org/10.3390/jcm10204778