New Therapies of Liver Diseases: Hepatic Encephalopathy
Abstract
:1. Introduction
- -
- The HE phenotype is nonspecific and differential diagnosis extremely important;
- -
- Response to treatment can be utilized to confirm a working diagnosis of HE, especially in its mild forms;
- -
- The lack thereof, should prompt fast differential diagnosis investigations, especially in severe forms;
- -
- With the exception of direct modulation of vigilance/inflammation (vide infra), HE treatment is essentially synonymous of ammonia-lowering treatment. Hyperammonaemia is necessary but not sufficient for a working diagnosis of HE (i.e., there is no HE without hyperammonaemia but the presence of hyperammonaemia does not necessarily translate into a HE phenotype, especially in young patients) [1].
2. General Management Principles
3. Therapies Other Than Non-Absorbable Disaccharides and Non-Absorbable Antibiotics
3.1. Polyethylene Glycol (PEG)
3.2. L-Ornithine L-Aspartate (LOLA)
3.3. Non Ureic Nitrogen Scavengers
3.4. Nutrition
3.5. Albumin
3.6. Branched-Chain Amino Acids (BCAAs)
3.7. Acetyl L-carnitine (ALC)
3.8. Probiotics
3.9. Fecal Microbiota Transplantation (FMT)
3.10. Direct Vigilance Modulation
3.11. Education
3.12. Miscellanea
3.13. Local Experience
Treatment Category | Treatment | Evidence or Tips for Use |
---|---|---|
Laxative | Polyethylene glycol | In the acute setting, when administration is safe by mouth or by naso-gastric tube |
L-Ornithine L-Aspartate | ||
Non ureic nitrogen scavengers | Sodium benzoate | Particularly useful when hyponatremia is also present |
Non ureic nitrogen scavengers | Sodium phenylbutyrate | |
Non ureic nitrogen scavengers | Glycerol phenylbutyrate | |
Non ureic nitrogen scavengers | Ornithine phenylacetate | |
Nutritional measures | Vegetarian/dairy diets | In patients with highly recurrent/persistent HE or those who are truly intolerant to animal protein Under tight monitoring to avoid lowering overall calorie/protein intake |
Nutritional measures | Food intake distribution over the 24 h | 3 snacks to top up the 3 main meals can be suggested to malnourished/sarcopenic patients If not tolerated, please insist on the late-evening snack, which is the most important |
Nutritional measures | Branched-chain amino acids | Useful also as a late-evening snack and in association with vegetarian/dairy diets, to ensure adequate protein intake |
Nutritional measures | Prebiotics, probiotics and symbiotics | Ecological approaches, such as increased soluble fibre intake (albeit not necessarily easy to obtain) most likely useful and free of side effects |
Albumin | In patients with ascites Possibly also acting as a nutritional measure | |
Acetyl L-carnitine | ||
Fecal Microbiota Transplantation | ||
Direct vigilance modulation | Golexanolone | |
Direct vigilance modulation | Caffeine | With attention to timing (max effect for 60–90 min after intake) |
Miscellanea | Minocycline, ibuprofen, indomethacin, phosphodiesterase-5 inhibitors, benzodiazepine inverse agonists, AST-120, liposome-supported peritoneal dialysis | Experimental |
Education | Limited evidence but reasonable approach, especially if slim and structured, for both patients and caregivers | |
Tertiary referral centre experience | Needs to be better and more formally described, published where possible and disseminated in a structured fashion |
Funding
Conflicts of Interest
References
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef] [PubMed]
- Strauss, E.; Tramote, R.; Silva, E.P.; Caly, W.R.; Honain, N.Z.; Maffei, R.A. Doubleblind randomized clinical trial comparing neomycin and placebo in the treatment of exogenous hepatic encephalopathy. Hepatogastroenterology 1992, 39, 542–545. [Google Scholar]
- Mullen, K.D.; Sanyal, A.J.; Bass, N.M.; Poordad, F.F.; Sheikh, M.Y.; Frederick, R.T.; Bortey, E.; Forbes, W.P. Rifaximin is safe and well tolerated for long-term maintenance of remission from overt hepatic encephalopathy. Clin. Gastroenterol. Hepatol. 2014, 12, 1390–1397.e2. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.S.; Barrett, A.C.; Bortey, E.; Paterson, C.; Forbes, W.P. Prolonged remission from hepatic encephalopathy with rifaximin: Results of a placebo crossover analysis. Aliment. Pharmacol. Ther. 2015, 41, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Agrawal, A.; Sharma, B.C.; Sarin, S.K. Prophylaxis of hepatic encephalopathy in acute variceal bleed: A randomized controlled trial of lactulose versus no lactulose. J. Gastroenterol. Hepatol. 2011, 26, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Tromm, A.; Griga, T.; Greving, I.; Hilden, H.; Huppe, D.; Schwegler, U.; Micklefield, G.H.; May, B. Orthograde whole gut irrigation with mannite versus paromomycine + lactulose as prophylaxis of hepatic encephalopathy in patients with cirrhosis and upper gastrointestinal bleeding: Results of a controlled randomized trial. Hepatogastroenterology 2000, 47, 473–477. [Google Scholar]
- Di Pascoli, M.; Ceranto, E.; De Nardi, P.; Donato, D.; Gatta, A.; Angeli, P. Hospitalizations due to cirrhosis: Clinical aspects in a large cohort of Italian patients and cost analysis report. Dig. Dis. 2017, 35, 433–438. [Google Scholar] [CrossRef]
- Sharma, B.C.; Sharma, P.; Agrawal, A.; Sarin, S.K. Secondary prophylaxis of hepatic encephalopathy: An open-label randomized controlled trial of lactulose versus placebo. Gastroenterology 2009, 137, 885–891. [Google Scholar] [CrossRef]
- Agrawal, A.; Sharma, B.C.; Sharma, P.; Sarin, S.K. Secondary prophylaxis of hepatic encephalopathy in cirrhosis: An open-label, randomized controlled trial of lactulose, probiotics, and no therapy. Am. J. Gastroenterol. 2012, 107, 1043–1050. [Google Scholar] [CrossRef]
- Bass, N.M.; Mullen, K.D.; Sanyal, A.; Poordad, F.; Neff, G.; Leevy, C.B.; Sigal, S.; Sheikh, M.Y.; Beavers, K.; Frederick, T.; et al. Rifaximin treatment in hepatic encephalopathy. N. Engl. J. Med. 2010, 362, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Amodio, P. Hepatic encephalopathy: Diagnosis and management. Liver Int. 2018, 38, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riggio, O.; Efrati, C.; Catalano, C.; Pediconi, F.; Mecarelli, O.; Accornero, N.; Nicolao, F.; Angeloni, S.; Masini, A.; Ridola, L.; et al. High prevalence of spontaneous portal-systemic shunts in persistent hepatic encephalopathy: A case-control study. Hepatology 2005, 42, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Kochar, N.; Tripathi, D.; Ireland, H.; Redhead, D.N.; Hayes, P.C. Transjugular intrahepatic portosystemic stent shunt (TIPSS) modification in the management of post-TIPSS refractory hepatic encephalopathy. Gut 2006, 55, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Riggio, O.; Angeloni, S.; Salvatori, F.M.; De Santis, A.; Cerini, F.; Farcomeni, A.; Attili, A.F.; Merli, M. Incidence, natural history, and risk factors of hepatic encephalopathy after transjugular intrahepatic portosystemic shunt with polytetrafluoroethylenecovered stent grafts. Am. J. Gastroenterol. 2008, 3, 2738–2746. [Google Scholar] [CrossRef] [PubMed]
- Schepis, F.; Vizzutti, F.; Garcia-Tsao, G.; Marzocchi, G.; Rega, L.; De Maria, N.; Di Maira, T.; Gitto, S.; Caporali, C.; Colopi, S.; et al. Under-dilated TIPS Associate With Efficacy and Reduced Encephalopathy in a Prospective, Non-randomized Study of Patients With Cirrhosis. Clin. Gastroenterol. Hepatol. 2018, 16, 1153–1162.e7. [Google Scholar] [CrossRef] [Green Version]
- Montagnese, S.; Russo, F.P.; Amodio, P.; Burra, P.; Gasbarrini, A.; Loguercio, C.; Marchesini, G.; Merli, M.; Ponziani, F.R.; Riggio, O.; et al. Hepatic encephalopathy 2018: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig. Liver Dis. 2019, 51, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, K.; Tietge, U.J.; Bokemeyer, M.; Mohammadi, B.; Bode, U.; Manns, M.P.; Caselitz, M. Liver transplantation improves hepatic myelopathy: Evidence by three cases. Gastroenterology 2003, 124, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.S.; Singal, A.G.; Cuthbert, J.A.; Rockey, D.C. Lactulose vs. polyethylene glycol 3350—Electrolyte solution for treatment of overt hepatic encephalopathy: The HELP randomized clinical trial. JAMA Intern. Med. 2014, 174, 1727–1733. [Google Scholar] [CrossRef]
- Naderian, M.; Akbari, H.; Saeedi, M.; Sohrabpour, A.A. Polyethylene glycol and lactulose versus lactulose alone in the treatment of hepatic encephalopathy in patients with cirrhosis: A non-inferiority randomized controlled trial. Middle East J. Dig. Dis. 2017, 9, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Hoilat, G.J.; Ayas, M.F.; Hoilat, J.N.; Abu-Zaid, A.; Durer, C.; Durer, S.; Adhami, T.; John, S. Polyethylene glycol versus lactulose in the treatment of hepatic encephalopathy: A systematic review and meta-analysis. BMJ Open Gastro. 2021, 8, e000648. [Google Scholar] [CrossRef]
- Rose, C.; Michalak, A.; Rao, K.V.; Quack, G.; Kircheis, G.; Butterworth, R.F. L-ornithine-L-aspartate lowers plasma and cerebrospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 1999, 30, 636–640. [Google Scholar] [CrossRef]
- Bai, M.; Yang, Z.; Qi, X.; Fan, D.; Han, G. L-ornithine-l-aspartate for hepatic encephalopathy in patients with cirrhosis: A meta-analysis of randomized controlled trials. J. Gastroenterol. Hepatol. 2013, 28, 783–792. [Google Scholar] [CrossRef]
- Poo, J.L.; Gongora, J.; Sanchez-Avila, F.; Aguilar-Castillo, S.; Garcia-Ramos, G.; Fernandez-Zertuche, M.; Rodríguez-Fragoso, L.; Uribe, M. Efficacy of oral L-ornithine-L-aspartate in cirrhotic patients with hyperammonemic hepatic encephalopathy. Results of a randomized, lactulose-controlled study. Ann. Hepatol. 2006, 5, 281–288. [Google Scholar] [CrossRef]
- Mittal, V.V.; Sharma, B.C.; Sharma, P.; Sarin, S.K. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2011, 23, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Varakanahalli, S.; Sharma, B.C.; Srivastava, S.; Sachdeva, S.; Dahale, A.S. Secondary prophylaxis of hepatic encephalopathy in cirrhosis of liver: A double-blind randomized controlled trial of L-ornithine L-aspartate versus placebo. Eur. J. Gastroenterol. Hepatol. 2018, 30, 951–958. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Sharma, B.C.; Goyal, O.; Kishore, H.; Kaur, N. L-ornithine L-aspartate in bouts of overt hepatic encephalopathy. Hepatology 2018, 67, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Hadjihambi, A.; Arias, N.; Sheikh, M.; Jalan, R. Hepatic encephalopathy: A critical current review. Hepatol. Int. 2018, 12 (Suppl. S1), 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, E.T.; Stokes, C.S.; Sidhu, S.S.; Vilstrup, H.; Gluud, L.L.; Morgan, M.Y. L-ornithine Laspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst. Rev. 2018, 5, CD012410. [Google Scholar]
- Butterworth, R.F.; McPhail, M.J.W. L-Ornithine L-Aspartate (LOLA) for Hepatic Encephalopathy in Cirrhosis: Results of Randomized Controlled Trials and Meta-Analyses. Drugs 2019, 79, S31–S37. [Google Scholar] [CrossRef] [Green Version]
- Sushma, S.; Dasarathy, S.; Tandon, R.K.; Jain, S.; Gupta, S.; Bhist, M.S. Sodium benzoate inthe treatment of acute hepatic encephalopathy: A double-blind randomized trial. Hepatology 1992, 16, 138–144. [Google Scholar] [CrossRef]
- Efrati, C.; Masini, A.; Merli, M.; Valeriano, V.; Riggio, O. Effect of sodium benzoate on blood ammonia response to oral glutamine challenge in cirrhotic patients: A note of caution. Am. J. Gastroenterol. 2000, 95, 3574–3578. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, H.D.; Zacharias, A.P.; Gluud, L.L.; Morgan, M.Y. Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Cochrane Database Syst. Rev. 2019, 6, CD012334. [Google Scholar] [CrossRef]
- Amodio, P.; Bemeur, C.; Butterworth, R.; Cordoba, J.; Kato, A.; Montagnese, S.; Uribe, M.; Vilstrup, H.; Morgan, M.Y. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology 2013, 58, 325–336. [Google Scholar] [CrossRef]
- Weiss, N.; Tripon, S.; Lodey, M.; Guiller, E.; Junot, H.; Monneret, D.; Mayaux, J.; Brisson, H.; Mallet, M.; Rudler, M.; et al. Treating hepatic encephalopathy in cirrhotic patients admitted to ICU with sodium phenylbutyrate: A preliminary study. Fundam. Clin. Pharmacol. 2018, 32, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Vierling, J.M.; Mantry, P.; Ghabril, M.; Brown, R.S., Jr.; Alexeeva, O.; Zupanets, I.A.; Grinevich, V.; Baranovsky, A.; Dudar, L.; et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology 2014, 59, 1073–1083. [Google Scholar] [CrossRef]
- Jover-Cobos, M.; Noiret, L.; Sharifi, Y.; Jalan, R. Ornithine phenylacetate revisited. Metab. Brain Dis. 2013, 28, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Cots, M.; Concepcion, M.; Arranz, J.A.; Simon-Talero, M.; Torrens, M.; Blanco-Grau, A.; Fuentes, I.; Suñé, P.; Alvarado-Tapias, E.; Gely, C.; et al. Impact of ornithine phenylacetate (OCR-002) in lowering plasma ammonia after upper gastrointestinal bleeding in cirrhotic patients. Therap. Adv. Gastroenterol. 2016, 9, 823–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahimi, R.S.; Safadi, R.; Thabut, D.; Bhamidimarri, K.R.; Pyrsopoulos, N.; Potthoff, A.; Bukofzer, S.; Bajaj, J.S. Efficacy and Safety of Ornithine Phenylacetate for Treating Overt Hepatic Encephalopathy in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Merli, M.; Riggio, O.; Dally, L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica italiana nutrizione cirrosi). Hepatology 1996, 23, 1041–1046. [Google Scholar] [CrossRef]
- Merli, M.; Giusto, M.; Lucidi, C.; Giannelli, V.; Pentassuglio, I.; Di Gregorio, V.; Lattanzi, B.; Riggio, O. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: Results of a prospective study. Metab. Brain Dis. 2013, 28, 281–284. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Cordoba, J.; Lopez-Hellin, J.; Planas, M.; Sabin, P.; Sanpedro, F.; Castro, F.; Esteban, R.; Guardia, J. Normal protein diet for episodic hepatic encephalopathy: Results of a randomized study. J. Hepatol. 2004, 41, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Maharshi, S.; Sharma, B.C.; Sachdeva, S.; Srivastava, S.; Sharma, P. Efficacy of Nutritional Therapy for Patients With Cirrhosis and Minimal Hepatic Encephalopathy in a Randomized Trial. Clin. Gastroenterol. Hepatol. 2016, 14, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsien, C.D.; McCullough, A.J.; Dasarathy, S. Late evening snack: Exploiting a period of anabolic opportunity in cirrhosis. J. Gastroenterol. Hepatol. 2012, 27, 430–441. [Google Scholar] [CrossRef]
- Tandon, P.; Ismond, K.P.; Riess, K.; Duarte-Rojo, A.; Al-Judaibi, B.; Dunn, M.A.; Holman, J.; Howes, N.; Haykowsky, M.J.F.; Josbeno, D.A.; et al. Exercise in cirrhosis: Translating evidence and experience to practice. J. Hepatol. 2018, 69, 1164–1177. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Tapia, N.C.; Cesar-Arce, A.; Barrientos-Gutierrez, T.; Villegas-Lopez, F.A.; Mendez-Sanchez, N.; Uribe, M. A systematic review and meta-analysis of the use of oral zinc in the treatment of hepatic encephalopathy. Nutr. J. 2013, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Bernardi, M.; Yoshida, E.M.; Li, H.; Guo, X.; Méndez-Sánchez, N.; Li, Y.; Wang, R.; Deng, J.; Qi, X. Albumin infusion may decrease the incidence and severity of overt hepatic encephalopathy in liver cirrhosis. Aging 2019, 8, 8502–8525. [Google Scholar] [CrossRef] [PubMed]
- Teh, K.B.; Loo, J.H.; Tam, Y.C.; Wong, Y.J. Efficacy and safety of albumin infusion for overt hepatic encephalopathy: A systematic review and meta-analysis. Dig. Liver Dis. 2021, 53, 817–823. [Google Scholar] [CrossRef]
- Caraceni, P.; Pavesi, M.; Baldassarre, M.; Bernardi, M.; Arroyo, V. The use of human albumin in patients with cirrhosis: A European survey. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 625–632. [Google Scholar] [CrossRef]
- Gluud, L.L.; Dam, G.; Les, I.; Marchesini, G.; Borre, M.; Aagaard, N.K.; Vilstrup, H. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 5, CD001939. [Google Scholar] [CrossRef]
- Park, J.G.; Tak, W.Y.; Park, S.Y.; Kweon, Y.O.; Chung, W.J.; Jang, B.K.; Bae, S.H.; Lee, H.J.; Jang, J.Y.; Suk, K.T.; et al. Effects of Branched-Chain Amino Acid (BCAA) Supplementation on the Progression of Advanced Liver Disease: A Korean Nationwide, Multicenter, Prospective, Observational, Cohort Study. Nutrients 2020, 12, 1429. [Google Scholar] [CrossRef] [PubMed]
- Gomes Romeiro, F.; do Val Ietsugu, M.; de Campos Franzoni, L.; Augusti, L.; Alvarez, M.; Alves Amaral Santos, L.; Bazeia Lima, T.; Hiromoto Koga, K.; Marta Moriguchi, S.; Antonio Caramori, C.; et al. Which of the branched-chain amino acids increases cerebral blood flow in hepatic ncephalopathy? A double-blind randomized trial. NeuroImage 2018, 19, 302–310. [Google Scholar] [CrossRef]
- Marchesini, G.; Bianchi, G.; Merli, M.; Amodio, P.; Panella, C.; Loguercio, C.; Rossi Fanelli, F.; Abbiati, R. Italian BCAA Study Group. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: A double-blind, randomized trial. Gastroenterology 2003, 124, 1792–1801. [Google Scholar] [CrossRef]
- Malaguarnera, M. Acetyl-L-carnitine in hepatic encephalopathy. Metab. Brain Dis. 2013, 28, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Jiang, G.; Shi, K.Q.; Cai, H.; Wang, Y.X.; Zheng, M.H. Oral acetyl-L-carnitine treatment in hepatic encephalopathy: View of evidence-based medicine. Ann. Hepatol. 2013, 12, 803–809. [Google Scholar] [CrossRef]
- Martí-Carvajal, A.J.; Gluud, C.; Arevalo-Rodriguez, I.; Martí-Amarista, C.E. Acetyl-L-carnitine for patients with hepatic encephalopathy. Cochrane Database Syst. Rev. 2019, 1, CD011451. [Google Scholar] [CrossRef]
- Viramontes Horner, D.; Avery, A.; Stow, R. The effects of probiotics and symbiotics on risk factors for hepatic encephalopathy: A systematic review. J. Clin. Gastroenterol. 2017, 51, 312–323. [Google Scholar] [CrossRef]
- Dalal, R.; McGee, R.G.; Riordan, S.M.; Webster, A.C. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 2, CD008716. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, C.B.; Yang, S.G.; Cao, H.C.; Chen, P.; Deng, M.; Li, L.J. Effect of probiotic treatment on cirrhotic patients with minimal hepatic encephalopathy: A meta-analysis. Hepatob. Pancreat. Dis. Int. 2018, 17, 9–16. [Google Scholar] [CrossRef]
- Liu, Q.; Duan, Z.P.; Ha, D.K.; Bengmark, S.; Kurtovic, J.; Riordan, S.M. Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004, 39, 1441–1449. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Fagan, A.; Gavis, E.A.; Kassam, Z.; Sikaroodi, M.; Gillevet, P.M. Long-term Outcomes of Fecal Microbiota Transplantation in Patients With Cirrhosis. Gastroenterology 2019, 156, 1921–1923. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.T.; Andersen, M.L.; Morgan, M.Y.; Gluud, L.L. Flumazenil versus placebo or no intervention for people with cirrhosis and hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 8, CD002798. [Google Scholar] [PubMed]
- Johansson, M.; Agusti, A.; Llansola, M.; Montoliu, C.; Strömberg, J.; Malinina, E.; Ragagnin, G.; Doverskog, M.; Bäckström, T.; Felipo, V. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G400–G409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.; Strömberg, J.; Ragagnin, G.; Doverskog, M.; Bäckström, T. GABAA receptor modulating steroid antagonists (GAMSA) are functional in vivo. J. Steroid Biochem. Mol. Biol. 2016, 160, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Montagnese, S.; Lauridsen, M.; Vilstrup, H.; Zarantonello, L.; Lakner, G.; Fitilev, S.; Zupanets, I.; Kozlova, I.; Bunkova, E.; Tomasiewicz, K.; et al. A pilot study of golexanolone, a new GABA-A receptor-modulating steroid antagonist, in patients with covert hepatic encephalopathy. J. Hepatol. 2021, 75, 98–107. [Google Scholar] [CrossRef]
- Garrido, M.; Skorucak, J.; Raduazzo, D.; Turco, M.; Spinelli, G.; Angeli, P.; Amodio, P.; Achermann, P.; Montagnese, S. Vigilance and wake EEG architecture in simulated hyperammonaemia: A pilot study on the effects of L-Ornithine-L-Aspartate (LOLA) and caffeine. Metab. Brain Dis. 2016, 31, 965–974. [Google Scholar] [CrossRef] [PubMed]
- De Rui, M.; Schiff, S.; Aprile, D.; Angeli, P.; Bombonato, G.; Bolognesi, M.; Sacerdoti, D.; Gatta, A.; Merkel, C.; Amodio, P.; et al. Excessive daytime sleepiness and hepatic encephalopathy: It is worth asking. Metab Brain. Dis. 2013, 28, 245–248. [Google Scholar] [CrossRef]
- Garrido, M.; Turco, M.; Formentin, C.; Corrias, M.; De Rui, M.; Montagnese, S.; Amodio, P. An educational tool for the prophylaxis of hepatic encephalopathy. BMJ Open Gastro. 2017, 4, e000161. [Google Scholar] [CrossRef] [Green Version]
- Gamal, M.; Abdel Wahab, Z.; Eshra, M.; Rashed, L.; Sharawy, N. Comparative Neuroprotective effects of dexamethasone and minocycline during hepatic encephalopathy. Neurol. Res. Int. 2014, 2014, 254683. [Google Scholar] [CrossRef] [Green Version]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Boix, J.; Felipo, V. Inflammation and hepatic encephalopathy: Ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 2007, 46, 514–519. [Google Scholar] [CrossRef]
- Ahboucha, S.; Jiang, W.; Chatauret, N.; Mamer, O.; Baker, G.B.; Butterworth, R.F. Indomethacin improves locomotor deficit and reduces brain concentrations of neuroinhibitory steroids in rats following portacaval anastomosis. Neurogastroenterol. Motil. 2008, 20, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Hernandez-Rabaza, V.; Balzano, T.; Taoro-Gonzalez, L.; Ibanez-Grau, A.; Cabrera-Pastor, A.; Fustero, S.; Llansola, M.; Montoliu, C.; Felipo, V. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy. CNS Neurosci. Ther. 2017, 23, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Steindl, P.; Puspok, A.; Druml, W.; Ferenci, P. Beneficial effect of pharmacological modulation of the GABAA-benzodiazepine receptor on hepatic encephalopathy in the rat: Comparison with uremic encephalopathy. Hepatology 1991, 14, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Bosoi, C.R.; Parent-Robitaille, C.; Anderson, K.; Tremblay, M.; Rose, C.F. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology 2011, 53, 1995–2002. [Google Scholar] [CrossRef] [Green Version]
- Matoori, S.; Forster, V.; Agostoni, V.; Bettschart-Wolfensberger, R.; Bektas, R.N.; Thöny, B.; Häberle, J.; Leroux, J.C.; Kabbaj, M. Preclinical evaluation of liposome-supported peritoneal dialysis for the treatment of hyperammonemic crises. J. Control. Release 2020, 328, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Formentin, C.; Zarantonello, L.; Mangini, C.; Frigo, A.C.; Montagnese, S.; Merkel, C. Clinical, neuropsychological and neurophysiological indices and predictors of hepatic encephalopathy (HE). Liver Int. 2021, 41, 1070–1082. [Google Scholar] [CrossRef] [PubMed]
- Montagnese, S.; Schiff, S.; Amodio, P. Quick diagnosis of hepatic encephalopathy: Fact or fiction? Hepatology 2015, 61, 405–406. [Google Scholar] [CrossRef]
- Montagnese, S.; De Rui, M.; Angeli, P.; Amodio, P. Neuropsychiatric performance in patients with cirrhosis: Who is “normal”? J. Hepatol. 2017, 66, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Bersagliere, A.; Raduazzo, I.D.; Nardi, M.; Schiff, S.; Gatta, A.; Amodio, P.; Achermann, P.; Montagnese, S. Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis. Hepatology 2012, 55, 869–878. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangini, C.; Montagnese, S. New Therapies of Liver Diseases: Hepatic Encephalopathy. J. Clin. Med. 2021, 10, 4050. https://doi.org/10.3390/jcm10184050
Mangini C, Montagnese S. New Therapies of Liver Diseases: Hepatic Encephalopathy. Journal of Clinical Medicine. 2021; 10(18):4050. https://doi.org/10.3390/jcm10184050
Chicago/Turabian StyleMangini, Chiara, and Sara Montagnese. 2021. "New Therapies of Liver Diseases: Hepatic Encephalopathy" Journal of Clinical Medicine 10, no. 18: 4050. https://doi.org/10.3390/jcm10184050
APA StyleMangini, C., & Montagnese, S. (2021). New Therapies of Liver Diseases: Hepatic Encephalopathy. Journal of Clinical Medicine, 10(18), 4050. https://doi.org/10.3390/jcm10184050