Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations
Abstract
:1. Introduction
2. Effect of TKI on Immune Function
2.1. Altered Humoral and Cellular Immune Function
2.2. Immunizations
2.2.1. Inactivated (Killed) Vaccines
2.2.2. Live Attenuated Vaccines
Attenuated Varicella Virus Live Vaccine
Attenuated Measles Mumps Rubella Live Vaccine
Yellow Fever Live Attenuated Vaccine
2.3. COVID-19
2.3.1. Putative Antiviral Action of TKIs
2.3.2. COVID-19 Infection in Patients with CML
2.3.3. Vaccines against COVID-19
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hehlmann, R.; Hochhaus, A.; Baccarani, M.; European, L. Chronic myeloid leukaemia. Lancet 2007, 370, 342–350. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Statistics, Table 3.1: Age-Adjusted Incidence Rates and Number of Cases By Period of Diagnosis for Major Cancer Sites and Subsites. Available online: https://seer.cancer.gov/statistics/nccr/details.html (accessed on 7 September 2021).
- Smith, D.L.; Burthem, J.; Whetton, A.D. Molecular pathogenesis of chronic myeloid leukaemia. Expert Rev. Mol. Med. 2003, 5, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Hijiya, N.; Suttorp, M. How I treat chronic myeloid leukemia in children and adolescents. Blood 2019, 133, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Steegmann, J.L.; Cervantes, F.; le Coutre, P.; Porkka, K.; Saglio, G. Off-target effects of BCR-ABL1 inhibitors and their potential long-term implications in patients with chronic myeloid leukemia. Leuk. Lymphoma 2012, 53, 2351–2361. [Google Scholar] [CrossRef]
- Wolf, D.; Tilg, H.; Rumpold, H.; Gastl, G.; Wolf, A.M. The kinase inhibitor imatinib—An immunosuppressive drug? Curr. Cancer Drug Targets 2007, 7, 251–258. [Google Scholar] [CrossRef]
- Appel, S.; Balabanov, S.; Brummendorf, T.H.; Brossart, P. Effects of imatinib on normal hematopoiesis and immune activation. Stem Cells 2005, 23, 1082–1088. [Google Scholar] [CrossRef]
- Suttorp, M.; Schulze, P.; Glauche, I.; Gohring, G.; von Neuhoff, N.; Metzler, M.; Sedlacek, P.; de Bont, E.; Balduzzi, A.; Lausen, B.; et al. Front-line imatinib treatment in children and adolescents with chronic myeloid leukemia: Results from a phase III trial. Leukemia 2018, 32, 1657–1669. [Google Scholar] [CrossRef]
- Millot, F.; Baruchel, A.; Guilhot, J.; Petit, A.; Leblanc, T.; Bertrand, Y.; Mazingue, F.; Lutz, P.; Verite, C.; Berthou, C.; et al. Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: Results of the French national phase IV trial. J. Clin. Oncol. 2011, 29, 2827–2832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurosawa, H.; Tanizawa, A.; Muramatsu, H.; Tono, C.; Watanabe, A.; Shima, H.; Ito, M.; Yuza, Y.; Hamamoto, K.; Hotta, N.; et al. Sequential use of second-generation tyrosine kinase inhibitors following imatinib therapy in pediatric chronic myeloid leukemia: A report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Pediatr Blood Cancer 2018, 65, e27368. [Google Scholar] [CrossRef]
- Rohon, P.; Porkka, K.; Mustjoki, S. Immunoprofiling of patients with chronic myeloid leukemia at diagnosis and during tyrosine kinase inhibitor therapy. Eur. J. Haematol. 2010, 85, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Climent, N.; Plana, M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity against Cancer and Viral Infection. Front. Pharmacol. 2019, 10, 1232. [Google Scholar] [CrossRef]
- Rajala, H.L.M.; Missiry, M.E.; Ruusila, A.; Koskenvesa, P.; Brummendorf, T.H.; Gjertsen, B.T.; Janssen, J.; Lotfi, K.; Markevarn, B.; Olsson-Stromberg, U.; et al. Tyrosine kinase inhibitor therapy-induced changes in humoral immunity in patients with chronic myeloid leukemia. J. Cancer Res. Clin. Oncol. 2017, 143, 1543–1554. [Google Scholar] [CrossRef] [Green Version]
- de Lavallade, H.; Khoder, A.; Hart, M.; Sarvaria, A.; Sekine, T.; Alsuliman, A.; Mielke, S.; Bazeos, A.; Stringaris, K.; Ali, S.; et al. Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood 2013, 122, 227–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totadri, S.; Thipparapu, S.; Aggarwal, R.; Sharma, M.; Naseem, S.; Jain, R.; Trehan, A.; Malhotra, P.; Varma, N.; Bansal, D. Imatinib-Induced Hypogammaglobulinemia in Children and Adolescents with Chronic Myeloid Leukemia. Pediatr. Hematol. Oncol. 2020, 37, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Kin, A.; Schiffer, C.A. Infectious Complications of Tyrosine Kinase Inhibitors in Hematological Malignancies. Infect. Dis. Clin. N. Am. 2020, 34, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Reinwald, M.; Silva, J.T.; Mueller, N.J.; Fortun, J.; Garzoni, C.; de Fijter, J.W.; Fernandez-Ruiz, M.; Grossi, P.; Aguado, J.M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Intracellular signaling pathways: Tyrosine kinase and mTOR inhibitors). Clin. Microbiol. Infect. 2018, 24 (Suppl. 2), S53–S70. [Google Scholar] [CrossRef] [Green Version]
- Yazici, O.; Sendur, M.A.; Aksoy, S. Hepatitis C virus reactivation in cancer patients in the era of targeted therapies. World J. Gastroenterol. 2014, 20, 6716–6724. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, V.; Adelakun, A.; Kendall, T.; Holtzman, N.; Farshidpour, M.; Stevenson, B.; Chen, Q.; Emadi, A. Diseases at the crossroads: Chronic myelogenous leukemia and tuberculosis. Arch. Iran Med. 2015, 18, 65–68. [Google Scholar]
- Iqbal, P.; Soliman, A.; De Sanctis, V.; Yassin, M.A. Association of tuberculosis in patients with chronic myeloid leukemia: A treatment proposal based on literature review. Expert Rev. Hematol. 2021, 14, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, E.M.; Elena, C.; Bono, E. Risk of hepatitis B reactivation under treatment with tyrosine-kinase inhibitors for chronic myeloid leukemia. Leuk. Lymphoma 2017, 58, 1764–1766. [Google Scholar] [CrossRef]
- Atteya, A.; Ahmad, A.; Daghstani, D.; Mushtaq, K.; Yassin, M.A. Evaluation of Hepatitis B Reactivation among Patients with Chronic Myeloid Leukemia Treated with Tyrosine Kinase Inhibitors. Cancer Control 2020, 27, 1073274820976594. [Google Scholar] [CrossRef]
- Miller, K.; Leake, K.; Sharma, T. Advances in vaccinating immunocompromised children. Curr. Opin. Pediatr. 2020, 32, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Cesaro, S.; de Lavallade, H.; Di Blasi, R.; Einarsdottir, S.; Gallo, G.; Rieger, C.; Engelhard, D.; Lehrnbecher, T.; Ljungman, P.; et al. Vaccination of patients with haematological malignancies who did not have transplantations: Guidelines from the 2017 European Conference on Infections in Leukaemia (ECIL 7). Lancet Infect Dis. 2019, 19, e188–e199. [Google Scholar] [CrossRef]
- de Lavallade, H.; Garland, P.; Sekine, T.; Hoschler, K.; Marin, D.; Stringaris, K.; Loucaides, E.; Howe, K.; Szydlo, R.; Kanfer, E.; et al. Repeated vaccination is required to optimize seroprotection against H1N1 in the immunocompromised host. Haematologica 2011, 96, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamarstrom, V.; Pauksen, K.; Svensson, H.; Oberg, G.; Paul, C.; Ljungman, P. Tetanus immunity in patients with hematological malignancies. Support Care Cancer 1998, 6, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Hijiya, N.; Millot, F.; Suttorp, M. Chronic myeloid leukemia in children: Clinical findings, management, and unanswered questions. Pediatr. Clin. N. Am. 2015, 62, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Meral Gunes, A.; Millot, F.; Kalwak, K.; Lausen, B.; Sedlacek, P.; Versluys, A.B.; Dworzak, M.; De Moerloose, B.; Suttorp, M. Features and outcome of chronic myeloid leukemia at very young age: Data from the International Pediatric Chronic Myeloid Leukemia Registry. Pediatr. Blood Cancer 2021, 68, e28706. [Google Scholar] [CrossRef]
- Suttorp, M.; Metzler, M.; Millot, F. Horn of plenty: Value of the international registry for pediatric chronic myeloid leukemia. World J. Clin. Oncol. 2020, 11, 308–319. [Google Scholar] [CrossRef]
- Bettoni da Cunha-Riehm, C.; Hildebrand, V.; Nathrath, M.; Metzler, M.; Suttorp, M. Vaccination with Live Attenuated Vaccines in Four Children With Chronic Myeloid Leukemia While on Imatinib Treatment. Front. Immunol. 2020, 11, 628. [Google Scholar] [CrossRef]
- Huber, F.; Ehrensperger, B.; Hatz, C.; Chappuis, F.; Buhler, S.; Eperon, G. Safety of live vaccines on immunosuppressive or immunomodulatory therapy-a retrospective study in three Swiss Travel Clinics. J. Travel Med. 2018, 25, tax082. [Google Scholar] [CrossRef]
- Mattiuzzi, G.N.; Cortes, J.E.; Talpaz, M.; Reuben, J.; Rios, M.B.; Shan, J.; Kontoyiannis, D.; Giles, F.J.; Raad, I.; Verstovsek, S.; et al. Development of Varicella-Zoster virus infection in patients with chronic myelogenous leukemia treated with imatinib mesylate. Clin. Cancer Res. 2003, 9, 976–980. [Google Scholar] [PubMed]
- Giona, F.; Santopietro, M.; Menna, G.; Putti, M.C.; Micalizzi, C.; Santoro, N.; Ziino, O.; Mura, R.; Ladogana, S.; Iaria, G.; et al. Real-Life Management of Children and Adolescents with Chronic Myeloid Leukemia: The Italian Experience. Acta Haematol. 2018, 140, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Gay, N.J. The theory of measles elimination: Implications for the design of elimination strategies. J. Infect Dis. 2004, 189 (Suppl. 1), S27–S35. [Google Scholar] [CrossRef]
- Dabbagh, A.; Laws, R.L.; Steulet, C.; Dumolard, L.; Mulders, M.N.; Kretsinger, K.; Alexander, J.P.; Rota, P.A.; Goodson, J.L. Progress Toward Regional Measles Elimination—Worldwide, 2000–2017. MMWR Morb. Mortal Wkly. Rep. 2018, 67, 1323–1329. [Google Scholar] [CrossRef]
- Strebel, P.M.; Orenstein, W.A. Measles. N. Engl. J. Med. 2019, 381, 349–357. [Google Scholar] [CrossRef]
- Patel, M.K.; Goodson, J.L.; Alexander, J.P., Jr.; Kretsinger, K.; Sodha, S.V.; Steulet, C.; Gacic-Dobo, M.; Rota, P.A.; McFarland, J.; Menning, L.; et al. Progress Toward Regional Measles Elimination—Worldwide, 2000–2019. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1700–1705. [Google Scholar] [CrossRef]
- Worldwide Measles Deaths Climb 50% from 2016 to 2019 Claiming over 207 500 Lives in 2019. Available online: https://www.who.int/news/item/12-11-2020-worldwide-measles-deaths-climb-50-from-2016-to-2019-claiming-over-207-500-lives-in-2019 (accessed on 13 April 2021.).
- Tanveer, M.; Ahmed, A.; Siddiqui, A.; Gudi, S.K. The mystery of plummeting cases of measles during COVID-19 pandemic in Pakistan: Hidden impact of collateral damage. J. Med. Virol. 2021. [Google Scholar] [CrossRef]
- Poethko-Muller, C.; Mankertz, A. Seroprevalence of measles-, mumps- and rubella-specific IgG antibodies in German children and adolescents and predictors for seronegativity. PLoS ONE 2012, 7, e42867. [Google Scholar] [CrossRef]
- Bochennek, K.; Allwinn, R.; Langer, R.; Becker, M.; Keppler, O.T.; Klingebiel, T.; Lehrnbecher, T. Differential loss of humoral immunity against measles, mumps, rubella and varicella-zoster virus in children treated for cancer. Vaccine 2014, 32, 3357–3361. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.M.; Bommarius, B.; Lebeis, S.; McNulty, S.; Christensen, J.; Swimm, A.; Chahroudi, A.; Chavan, R.; Feinberg, M.B.; Veach, D.; et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med. 2005, 11, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.M.; Smith, S.K.; Olson, V.A.; Thorne, S.H.; Bornmann, W.; Damon, I.K.; Kalman, D. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J. Virol. 2011, 85, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Klitting, R.; Fischer, C.; Drexler, J.F.; Gould, E.A.; Roiz, D.; Paupy, C.; de Lamballerie, X. What Does the Future Hold for Yellow Fever Virus? (II). Genes 2018, 9, 425. [Google Scholar] [CrossRef] [Green Version]
- Wyplosz, B.; Leroy, J.P.; Derradji, O.; Consigny, P.H. No booster dose for yellow fever vaccination: What are the consequences for the activity of vaccination in travel clinics? J. Travel Med. 2015, 22, 140–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotton, C.N.; Ryan, E.T.; Fishman, J.A. Prevention of infection in adult travelers after solid organ transplantation. Am. J. Transplant 2005, 5, 8–14. [Google Scholar] [CrossRef]
- Campi-Azevedo, A.C.; Reis, L.R.; Peruhype-Magalhaes, V.; Coelho-Dos-Reis, J.G.; Antonelli, L.R.; Fonseca, C.T.; Costa-Pereira, C.; Souza-Fagundes, E.M.; da Costa-Rocha, I.A.; Mambrini, J.V.M.; et al. Short-Lived Immunity After 17DD Yellow Fever Single Dose Indicates That Booster Vaccination May Be Required to Guarantee Protective Immunity in Children. Front. Immunol. 2019, 10, 2192. [Google Scholar] [CrossRef]
- Burkhard, J.; Ciurea, A.; Gabay, C.; Hasler, P.; Muller, R.; Niedrig, M.; Fehr, J.; Villiger, P.; Visser, L.G.; de Visser, A.W.; et al. Long-term immunogenicity after yellow fever vaccination in immunosuppressed and healthy individuals. Vaccine 2020, 38, 3610–3617. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, L.S.; Lasmar, E.P.; Contieri, F.L.; Boin, I.; Percegona, L.; Saber, L.T.; Selistre, L.S.; Netto, M.V.; Moreira, M.C.; Carvalho, R.M.; et al. Yellow fever vaccination in organ transplanted patients: Is it safe? A multicenter study. Transpl. Infect Dis. 2012, 14, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.N.; Miyaji, K.T.; Ibrahim, K.Y.; Lopes, M.H.; Sartori, A.M.C. Adverse events following yellow fever vaccination in immunocompromised persons. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e13. [Google Scholar] [CrossRef] [PubMed]
- Breccia, M.; Abruzzese, E.; Bocchia, M.; Bonifacio, M.; Castagnetti, F.; Fava, C.; Galimberti, S.; Gozzini, A.; Gugliotta, G.; Iurlo, A.; et al. Chronic myeloid leukemia management at the time of the COVID-19 pandemic in Italy. A campus CML survey. Leukemia 2020, 34, 2260–2261. [Google Scholar] [CrossRef] [PubMed]
- Foa, R.; Bonifacio, M.; Chiaretti, S.; Curti, A.; Candoni, A.; Fava, C.; Ciccone, M.; Pizzolo, G.; Ferrara, F. Philadelphia-positive acute lymphoblastic leukaemia (ALL) in Italy during the COVID-19 pandemic: A Campus ALL study. Br. J. Haematol. 2020, 190, e3–e5. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Chen, Y.; Guo, H.; Li, M.; Wang, B.; Shi, D.; Cheng, X.; Guan, J.; Wang, X.; Xue, C.; et al. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 2020, 39, 7239–7252. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.M.; Sisk, J.M.; Halasz, G.; Zhong, J.; Beck, S.E.; Matthews, K.L.; Venkataraman, T.; Rajagopalan, S.; Kyratsous, C.A.; Frieman, M.B. CD8+ T Cells and Macrophages Regulate Pathogenesis in a Mouse Model of Middle East Respiratory Syndrome. J. Virol. 2017, 91, e01825-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisk, J.M.; Frieman, M.B.; Machamer, C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J. Gen. Virol. 2018, 99, 619–630. [Google Scholar] [CrossRef]
- Bendinelli, M.; Pistello, M.; Maggi, F.; Fornai, C.; Freer, G.; Vatteroni, M.L. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin. Microbiol. Rev. 2001, 14, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Focosi, D.; Spezia, P.G.; Macera, L.; Salvadori, S.; Navarro, D.; Lanza, M.; Antonelli, G.; Pistello, M.; Maggi, F. Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin. Microbiol. Infect. 2020, 26, 1406–1410. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, S.; Petrini, M.; Barate, C.; Ricci, F.; Balducci, S.; Grassi, S.; Guerrini, F.; Ciabatti, E.; Mechelli, S.; Di Paolo, A.; et al. Tyrosine Kinase Inhibitors Play an Antiviral Action in Patients Affected by Chronic Myeloid Leukemia: A Possible Model Supporting Their Use in the Fight Against SARS-CoV-2. Front. Oncol. 2020, 10, 1428. [Google Scholar] [CrossRef]
- COUNTER-COVID—Oral Imatinib to Prevent Pulmonary Vascular Leak in Covid19—A Randomized, Double—Blind, Placebo Controlled, Clinical Trial in Patients with Severe Covid19 Disease’. Effecten van Imatinib bij Patiënten met Longschade Door COVID-19 Infectie. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL (accessed on 2 September 2021).
- Imatinib in COVID-19 Disease in Aged Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT04357613 (accessed on 2 September 2021).
- Li, W.; Wang, D.; Guo, J.; Yuan, G.; Yang, Z.; Gale, R.P.; You, Y.; Chen, Z.; Chen, S.; Wan, C.; et al. COVID-19 in persons with chronic myeloid leukaemia. Leukemia 2020, 34, 1799–1804. [Google Scholar] [CrossRef]
- Rea, D.; Mauro, M.J.; Cortes, J.E.; Jiang, Q.; Pagnano, K.B.; Ongondi, M.; Kok, C.H.; Evans, N.; Hughes, T.P.; Foundation, I.C. COVID-19 in patients (pts) with Chronic Myeloid Leukemia (CML): Results from the international CML foundation (iCMLf) CML and COVID-19 (CANDID) study. Blood 2020, 136, 46–47. [Google Scholar] [CrossRef]
- Ector, G.; Huijskens, E.G.W.; Blijlevens, N.M.A.; Westerweel, P.E. Prevalence of COVID-19 diagnosis in Dutch CML patients during the 2020 SARS-CoV2 pandemic. A prospective cohort study. Leukemia 2020, 34, 2533–2535. [Google Scholar] [CrossRef]
- Parri, N.; Lenge, M.; Buonsenso, D.; Coronavirus Infection in Pediatric Emergency Departments Research Group. Children with Covid-19 in Pediatric Emergency Departments in Italy. N. Engl. J. Med. 2020, 383, 187–190. [Google Scholar] [CrossRef]
- Meena, J.P.; Kumar Gupta, A.; Tanwar, P.; Ram Jat, K.; Mohan Pandey, R.; Seth, R. Clinical presentations and outcomes of children with cancer and COVID-19: A systematic review. Pediatr. Blood Cancer 2021, 68, e29005. [Google Scholar] [CrossRef] [PubMed]
- Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA 2021, 325, 1318–1320. [Google Scholar] [CrossRef] [PubMed]
- Harrington, P.; Harrison, C.N.; Dillon, R.; Radia, D.H.; Rezvani, K.; Raj, K.; Woodley, C.; Curto-Garcia, N.; O’Sullivan, J.; Saunders, J.; et al. Evidence of robust memory T-cell responses in patients with chronic myeloproliferative neoplasms following infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Br. J. Haematol 2021, 193, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Harrington, P.; Doores, K.J.; Radia, D.; O’Reilly, A.; Lam, H.P.J.; Seow, J.; Graham, C.; Lechmere, T.; McLornan, D.; Dillon, R.; et al. Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. Br. J. Haematol. 2021. [Google Scholar] [CrossRef] [PubMed]
Vaccine | Company | Vaccine Type | Antigen | Dose | Licensed or Emergency Use Application (EUA, as of 12 March 2021) in |
---|---|---|---|---|---|
Comirnaty® Tozinameran BNT162b2 | BioNtech (Germany). Pfizer (USA) | mRNA | Full-length spike (S) protein with proline substitutions of the SARS-CoV-2 virus | 2 doses, each 30 µg, 21 days apart | Canada, EU, Japan, UK, USA * |
Covid-19 Vaccine Moderna, (mRNA-1273) | Moderna (USA) | mRNA | Full-length spike (S) protein with proline substitutions of the SARS-CoV-2 virus | 2 doses, each 100 µg, 28 days apart | Canada, EU, UK, USA |
CVnCoV | Curevac (Germany), Bayer (Germany), Glaxo-Smith-Kline (UK) | mRNA | Prefusion stabilized full-length spike (S) protein with proline substitutions of the SARS-CoV-2 virus | 2 doses, each 12 µg, 28 days apart | (under a rolling review in the EU) |
Covid-19 Vaccine Astra-Zeneca, ChAdOx1, AZD1222 | Astra-Zeneca (UK, Sweden) | Viral vector | Replication-deficient chimpanzee adenoviral vector with the SARS-CoV-2S protein | 2 doses, each containing 5 × 1010 virus particles 28 days apart | Canada, EU, India, Mexico, UK |
Covid-19 Vaccine Janssen, Ad26.CoV2.S | Janssen (Belgium), Johnson & Johnson (USA) | Viral vector | Recombinant replication incompetent human adenovirus-vector serotype 26, encoding a full-length, stabilized SARS-CoV-2 spike (S)-protein with proline-substitutions | 1 dose containing 5 × 1010 virus particles | Canada, EU, USA |
Gam-Covid-Vac, Sputnik V | Gamaleya National Research Center for Epidemiology and Microbiology (Russia) | Viral vector | Full-length recombinant spike (S) protein with proline substitutions of the SARS-CoV-2 virus, carried by each replication-incompetent human adenovirus vector serotype 5 or 26 | 2 doses (first with rAd26, second with rAd5), each containing 1011 virus particles 21 days apart | Algeria, Argentina, Belarus, Egypt, Palestina, Russia, Serbia (under a rolling review in the EU) |
NVX-CoV2373 | Novavax (USA) | Protein subunit | Recombinant full-length prefusion stabilized spike (S) protein | 2 doses each, both containing 5 µg protein plus 50 µg matrix protein as adjuvants | (under a rolling review in the EU) |
CoronaVac | Sinovac Biotech (China) | Inactivated virus | Inactivated strain CN02 of SARS-CoV-2, produced in Vero cells | 2 doses, each containing 3 µg plus Al(OH)3 as adjuvants 14 days apart | Azerbaijan, Bolivia, Brazil, China, Chile, Columbia, Indonesia, Uruguay, Turkey |
BBIBP-CorV | Sinopharm 1/2 (China) | Inactivated virus | Inactivated strain HB02 of SARS-CoV-2, produced in Vero cells | 2 doses, each containing 4 µg plus Al(OH)3 as adjuvants 21 days apart | Bahrain, China, Peru, Serbia, Zimbabwe |
Covaxin | Bharat Biotech (India) | Inactivated virus |
Inactivated strain NIV-2020-770 of SARS-CoV-2, produced in Vero cells | 2 doses, each containing 6 µg plus (Al(OH)3 as adjuvants at least 28 days apart | Guyana, India, Iran, Mauritius, Mexico, Nepal, Paraguay, the Philippines, Zimbabwe |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suttorp, M.; Webster Carrion, A.; Hijiya, N. Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations. J. Clin. Med. 2021, 10, 4056. https://doi.org/10.3390/jcm10184056
Suttorp M, Webster Carrion A, Hijiya N. Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations. Journal of Clinical Medicine. 2021; 10(18):4056. https://doi.org/10.3390/jcm10184056
Chicago/Turabian StyleSuttorp, Meinolf, Andrea Webster Carrion, and Nobuko Hijiya. 2021. "Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations" Journal of Clinical Medicine 10, no. 18: 4056. https://doi.org/10.3390/jcm10184056
APA StyleSuttorp, M., Webster Carrion, A., & Hijiya, N. (2021). Chronic Myeloid Leukemia in Children: Immune Function and Vaccinations. Journal of Clinical Medicine, 10(18), 4056. https://doi.org/10.3390/jcm10184056