Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Group
2.2. Preparing the File for 3D Printing
2.3. Linear Measurements on Panoramic Radiographs
2.4. Linear Measurements on Cone-Beam Computed Tomography
2.5. Linear Measurements on Three-Dimensional Models Obtained Using the DLP Method of 3D Printing
2.6. Methodology of Statistical Analysis
3. Results
3.1. Comparative Analysis of the Distance of the Second Lower Molar from the Anterior Margin of the Mandibular Ramus on the Panoramic Radiograph, Cone Beam Computed Tomography, and Three-Dimensional Model
3.2. Comparative Analysis of the Amount of Space Due to the Width of the Crown of the Impacted Tooth in Relation to the Distance of the Second Lower Molar from the Anterior Edge of the Mandibular Ramus on the Panoramic Radiograph, Cone-Beam Computed Tomography, and Three-Dimensional Model
3.3. Comparative Analysis of the Distance of the Impacted Tooth from the Mandibular Canal on the Panoramic Radiograph, Cone-Beam Computed Tomography, and Three-Dimensional Model
3.4. Comparative Analysis of the Thickness of the Bone Cover at the Impacted Tooth on the Panoramic Radiograph, Cone-Beam Computed Tomography, and the Three-Dimensional Model
Comparative Analysis of Buccal Bone Plate Thickness at the Greatest Crown Convexity of the Impacted Tooth on Cone-Beam Computed Tomography and Three-Dimensional Model
3.5. Comparative Analysis of the Distance of the Impacted Tooth from the Anterior Margin of the Mandibular Ramus According to Pell and Gregory on the Panoramic Radiograph, Cone-Beam Computed Tomography, and Three-Dimensional Model
3.5.1. Comparative Analysis of the Distance of the Impacted Tooth from the Anterior Margin of the Mandibular Ramus According to Pell and Gregory on a Panoramic Radiograph and Cone-Beam Computed Tomography
3.5.2. Comparative Analysis of the Distance of the Impacted Tooth from the Anterior Margin of the Mandibular Ramus According to Pell and Gregory on Cone-Beam Computed Tomography and Three-Dimensional Model
3.5.3. Comparative Analysis of the Distance of the Impacted Tooth from the Anterior Margin of the Mandibular Ramus According to Pell and Gregory on the Panoramic Radiographs and Three-Dimensional Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hattab, F.N. Positional changes and eruption of impacted mandibular third molars in young adults. A radiographic 4-year follow-up study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1997, 84, 6004–6008. [Google Scholar]
- Zawilska, A.; Koszowski, R.; Waśkowska, J. Ocena budowy oraz typów retencji zatrzymanych trzecich trzonowców w obrazie pantomograficznym. Ann. Acad. Med. Stetin. 2007, 53, 165–171. [Google Scholar]
- Aniko-Włodarczyk, M.; Jaroń, A.; Preuss, O.; Grzywacz, A.; Trybek, G. Evaluation of the Effect of Surgical Extraction of an Impacted Mandibular Third Molar on the Periodontal Status of the Second Molar—Prospective Study. J. Clin. Med. 2021, 10, 2655. [Google Scholar] [CrossRef]
- Baioor, D.N.; Nagesh, K.S. Fundamentals of Oral Medicine and Radiology; Jaypee Brothers, Medical Publishers Pvt. Limited: New Delhi, India, 2005. [Google Scholar]
- Ludlow, J.B.; Davies-Ludlow, L.E.; White, S.C. Patient risk related to common dental radiographic examinations: The impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation. J. Am. Dent. Assoc. 2008, 139, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Owecka, M.; Dyszkiewicz-Konwińska, M.; Kulczyk, T. Zastosowanie tomografii komputerowej z promieniem stożkowym (CBCT) w stomatologii i laryngologii. Now. Lek. 2012, 81, 653–657. [Google Scholar]
- Mah, J.K.; Danforth, R.A.; Bumann, A.; Hatcher, D. Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 96, 508–513. [Google Scholar] [CrossRef]
- Loubele, M.; Jacobs, R.; Maes, F.; Schutyser, F.; Debaveye, D.; Bogaerts, R.; Coudyzer, W.; Vandermeulen, D.; van Cleynenbreugel, J.; Marchal, G.; et al. Radiation dose vs. image quality for low-dose CT protocols of the head for maxillofacial surgery and oral implant planning. Radiat. Prot. Dosim. 2005, 117, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Tsiklakis, K.; Donta, C.; Gavala, S.; Karayianni, K.; Kamenopoulou, V.; Hourdakis, C.J. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur. J. Radiol. 2005, 56, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; Wolf, U.; Heinicke, F.; Bumann, A.; Visser, H.; Hirsch, E. Cone-beam computed tomography for routine orthodontic treatment planning: A radiation dose evaluation. Am. J. Orthod. Dentofac. Orthop. 2008, 133, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Drage, N.A.; Davies, J.; Thomas, D.W. Effective dose from cone beam CT examinations in dentistry. Br. J. Radiol. 2009, 82, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, K.; Brykalski, A. Zastosowanie drukarek 3D w przemyśle. Przegląd Elektrotechniczny 2017, 93, 156–158. [Google Scholar] [CrossRef]
- Jalili, M.R.; Esmaeelinejad, M.; Bayat, M.; Aghdasi, M.M. Appearance of anatomical structures of mandible on panoramic radiographs in Iranian population. Acta Odontol. Scand. 2012, 70, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Jaroń, A.; Trybek, G. The Pattern of Mandibular Third Molar Impaction and Assessment of Surgery Difficulty: A Retrospective Study of Radiographs in East Baltic Population. Int. J. Environ. Res. Public Health 2021, 18, 6016. [Google Scholar] [CrossRef]
- Aniko-Włodarczyk, M.; Jaroń, A.; Preuss, O.; Trybek, G. Zastosowanie druku 3D w planowaniu postępowania i leczeniu chirurgicznym kości szczęk. Mag. Stom. 2018, 7–8, 84–89. [Google Scholar]
- Delamare, E.L.; Liedke, G.S.; Vizzotto, M.B. Topographic relationship of impacted third molars and mandibular canal: Correlation of panoramic radiograph signs and CBCT images. Dentomaxillofac. Radiol. 2012, 41, 553–557. [Google Scholar]
- Bertram, F.; Bertram, S.; Rudisch, A.; Emshoff, R. Assessment of Location of the Mandibular Canal: Correlation Between Panoramic and Cone Beam Computed Tomography Measurements. Int. J. Prosthodont. 2018, 31, 129–134. [Google Scholar] [CrossRef]
- Różyło-Kalinowska, I.; Różyło, T. ABC Radiografii i Radiologii Stomatologicznej; Wydawnictwo Czelej SP. Z.O.O.: Lublin, Poland, 2017. [Google Scholar]
- Lim, L.Z.; Padilla, R.J.; Reside, G.J.; Tyndall, D.A. Comparing panoramic radiographs and cone beam computed tomography: Impact on radiographic features and differentia diagnoses. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Fokas, G.; Vaughn, V.M.; Scarfe, W.C.; Bornstein, M.M. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: A systematicreview. Clin. Oral Implants Res. 2018, 29, 393–415. [Google Scholar] [CrossRef] [PubMed]
- Matzen, L.H.; Wenzel, A. Efficacy of CBCT for assessment of impacted mandibular third molars: A review—Based on a hierarchical model of evidence. Dentomaxillofac. Radiol. 2014, 44, 1–11. [Google Scholar] [CrossRef]
- Maglione, M.; Costantinides, F.; Bazzocchi, G. Classification of impacted mandibular third molars on cone-beam CT images. J. Clin. Exp. Dent. 2015, 7, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Hasani, A.; Ahmadi Moshtaghin, F.; Roohi, P.; Rakhshan, V. Diagnostic value of cone beam computed tomography and panoramic radiography in predicting mandibular nerve exposure during third molar surgery. Int. J. Oral Maxillofac. Surg. 2017, 46, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, S.; Zamiri, B.; Abolvardi, M.; Akhlaghia, M.; Paknahad, M. Comparison of Dental Panoramic Radiography and CBCT for Measuring Vertical Bone Height in Different Horizontal Locations of Posterior Mandibular Alveolar Process. J. Dent. 2018, 19, 83–91. [Google Scholar]
- Gu, L.; Zhu, C.; Chen, K.; Liu, X.; Tang, Z. Anatomic study of the position of the mandibular canal and corresponding mandibular third molar on cone-beam computed tomography images. Surg. Radiol. Anat. 2018, 40, 609–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghai, S.; Choudhury, S. Role of Panoramic Imaging and Cone Beam CT for Assessment of Inferior Alveolar Nerve Exposure and Subsequent Paresthesia Following Removal of Impacted Mandibular Third Molar. J. Maxillofac. Oral Surg. 2018, 17, 242–247. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, X.; Chen, K. Comparison of digital panoramic radiography versus cone beam computerized tomography for measuring alveolar bone. Head Face Med. 2017, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Abdinian, M.; Baninajarian, H. The accuracy of linear and angular measurements in the different regions of the jaw in cone-beam computed tomography views. Dent. Hypotheses 2017, 8, 100–103. [Google Scholar]
- Ventä, I.; Murtomaa, H.; Ylipaavalniemi, P. A device to predict lower third molar eruption. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1997, 84, 598–603. [Google Scholar] [CrossRef]
- Kursun, S.; Hakan, K.M.; Bengi, O.; Nihat, A. Use of cone beam computed tomography to determine the accuracy of panoramic radiological markers: A pilot study. J. Dent. Sci. 2015, 10, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, G.; Abella, F.; Durán-Sindreu, F.; Patel, S.; Roig, M. Influence of Cone-beam Computed Tomography in Clinical Decision Making among Specialists. J. Endodontol. 2017, 43, 194–199. [Google Scholar] [CrossRef]
- Cook, V.C.; Timock, A.M.; Crowe, J.J.; Wang, M.; Covell, D.A., Jr. Accuracy of alveolar bone measurements from cone beam computed tomography acquired using varying settings. Orthod. Craniofac. Res. 2015, 18, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Timock, A.M.; Cook, V.; McDonald, T.; Leo, M.C.; Crowe, J.; Benninger, B.L.; Covell, D.A., Jr. Accuracy and reliability of buccal bone height and thickness measurements from cone-beam computed tomography imaging. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Wesemann, C.; Muallah, J.; Mah, J.; Bumann, A. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing. Quintessence 2017, 48, 41–50. [Google Scholar]
- Vijayan, S.; Allareddy, V. Accuracy of 3d-Printed Mandibles Constructed from Cbct Volumes of Different Voxel Sizes College of Dentistry & Clinics; The University of Iowa: Iowa City, IA, USA, 2018. [Google Scholar]
- Santana, R.R.; Lozada, J.; Kleinman, A.; Al-Ardah, A.; Herford, A.; Jung-Wei, C. Accuracy of Cone Beam Computerized Tomography and a Three-Dimensional Stereolithographic Model in Identifying the Anterior Loop of the Mental Nerve: A Study on Cadavers. J. Oral Implantol. 2012, 38, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Metlerski, M.; Grocholewicz, K.; Jaroń, A.; Lipski, M.; Trybek, G. Comparison of Presurgical Dental Models Manufactured with Two Different Three-Dimensional Printing Techniques. J. Healthc. Eng. 2020, 2020, 8893338. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Park, T.; Chun, I.; Yun, K. The accuracy of a 3D printing surgical guide determined by CBCT and model analysis. J. Adv. Prosthodont. 2018, 10, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Msallem, B.; Sharma, N.; Cao, S.; Halbeisen, F.S.; Zeilhofer, H.F.; Thieringer, F.M. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J. Clin. Med. 2020, 9, 817. [Google Scholar] [CrossRef] [Green Version]
Distance of the Second Lower Molar from the Anterior Edge of the Mandibular Ramu | CBCT | OPG | MODEL | p-Value * |
---|---|---|---|---|
Mean ± SD | 14.22 ± 4.34 | 10.49 ± 8.36 | 14.58 ± 4.53 | p < 0.001 MODEL, CBCT > OPG |
Median | 13.15 | 8.55 | 13.75 | |
Q1 | 11.67 | 6.95 | 11.59 | |
Q3 | 15.72 | 10.88 | 16.76 |
Amount of Space | CBCT | OPG | MODEL | p-Value * |
---|---|---|---|---|
Mean ± SD | 1.28 ± 0.33 | 0.93 ± 0.68 | 1.32 ± 0.35 | p < 0.001 MODEL, CBCT > OPG |
Median | 1.24 | 0.8 | 1.24 | |
Q1 | 1.04 | 0.64 | 1.08 | |
Q3 | 1.46 | 0.96 | 1.47 |
Distance | CBCT | OPG | MODEL | p-Value * |
---|---|---|---|---|
Mean ± SD | 1.93 ± 2.29 | 0.23 ± 0.88 | 2.07 ± 2.54 | p < 0.001 MODEL, CBCT > OPG |
Median | 1.05 | 0 | 1 | |
Q1 | 0 | 0 | 0 | |
Q3 | 3 | 0 | 2.96 |
Buccal Bone Plate Thickness | CBCT | MODEL | p-Value * |
---|---|---|---|
Mean ± SD | 3.24 ± 1.5 | 3.32 ± 1.53 | <0.001 |
Median | 3.05 | 3.19 | |
Q1 | 2.1 | 2.21 | |
Q3 | 3.95 | 3.98 |
Distance According to Pell and Gregory | ||||||||
---|---|---|---|---|---|---|---|---|
Distance on OPG 1 and Distance on CBCT 1 | Distance on OPG 2 and Distance on CBCT 1 | Distance on OPG 3 and Distance on CBCT 1 | Distance on OPG 1 and Distance on CBCT 2 | Distance on OPG 2 and Distance on CBCT 2 | Distance on OPG 3 and Distance on CBCT 2 | Distance on OPG 1 and Distance on CBCT 3 | Distance on OPG 2 and Distance on CBCT 3 | Distance on OPG 3 and Distance on CBCT 3 |
6 | 18 | 1 | 0 | 1 | 4 | 0 | 0 | 0 |
p * < 0.001 |
Distance According to Pell & Gregory | |||
---|---|---|---|
Distance on MODEL 1 and Distance on CBCT 1 | Distance on MODEL 2 and Distance on CBCT 1 | Distance on MODEL 1 and Distance on CBCT 2 | Distance on MODEL 2 and Distance on CBCT 2 |
25 | 0 | 2 | 3 |
* p = 0.48 |
Distance According to Pell & Gregory | ||||||||
---|---|---|---|---|---|---|---|---|
Distance on OPG 1 and Distance on MODEL 1 | Distance on OPG 2 and Distance on MODEL 1 | Distance on OPG 3 and Distance on MODEL 1 | Distance on OPG 1 and Distance on MODEL 2 | Distance on OPG 2 and Distance on MODEL 2 | Distance on OPG 3 and Distance on MODEL 2 | Distance on OPG 1 and Distance on MODEL 3 | Distance on OPG 2 and Distance on MODEL 3 | Distance on OPG 3 and Distance on MODEL 3 |
6 | 19 | 2 | 0 | 0 | 3 | 0 | 0 | 0 |
* p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaroń, A.; Gabrysz-Trybek, E.; Bladowska, J.; Trybek, G. Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars. J. Clin. Med. 2021, 10, 4189. https://doi.org/10.3390/jcm10184189
Jaroń A, Gabrysz-Trybek E, Bladowska J, Trybek G. Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars. Journal of Clinical Medicine. 2021; 10(18):4189. https://doi.org/10.3390/jcm10184189
Chicago/Turabian StyleJaroń, Aleksandra, Ewa Gabrysz-Trybek, Joanna Bladowska, and Grzegorz Trybek. 2021. "Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars" Journal of Clinical Medicine 10, no. 18: 4189. https://doi.org/10.3390/jcm10184189
APA StyleJaroń, A., Gabrysz-Trybek, E., Bladowska, J., & Trybek, G. (2021). Correlation of Panoramic Radiography, Cone-Beam Computed Tomography, and Three-Dimensional Printing in the Assessment of the Spatial Location of Impacted Mandibular Third Molars. Journal of Clinical Medicine, 10(18), 4189. https://doi.org/10.3390/jcm10184189