Visual Evoked Potentials as Potential Biomarkers of Visual Function in Patients with Primary Sjögren’s Syndrome
Abstract
:1. Introduction
2. Materials
3. Methods
Visual Evoked Potentials
4. Statistical Methods
5. Results
5.1. Rheumatologic Parameters Analysis
5.2. VEP Parameters
5.2.1. Baseline Analysis of VEP Parameters with Clinical Data
5.2.2. Analysis of VEP Parameters after 6 Years of Follow-Up
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Qin, Q.; Liu, B.; Fu, Y.; Lin, L.; Huang, X.; Jin, X. Clinical Analysis: Aqueous-Deficient and Meibomian Gland Dysfunction in Patients with Primary Sjogren’s Syndrome. Front. Med. 2019, 6, 291. [Google Scholar] [CrossRef]
- Heidary, M.; Alesaeidi, S.; Afshari, K. Cerebellar degeneration in primary Sjögren syndrome. BMJ Case Rep. 2018, 2018. [Google Scholar] [CrossRef]
- Choi, W.; Lee, S.-S.; Park, Y.-G.; Yoon, K.-C. A Case of Necrotizing Keratoscleritis in Primary Sjogren’s Syndrome. Korean J. Ophthalmol. 2011, 25, 275–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, E.L. Neurologic disease in sjogren’s syndrome: Mononuclear inflammatory vasculopathy affecting central/peripheral nervous system and muscle. Rheum. Dis. Clin. N. Am. 1993, 19, 869–908. [Google Scholar] [CrossRef]
- Pournaras, J.-A.; Vaudaux, J.; Borruat, F.-X. Bilateral Sequential Optic Neuropathy as the Initial Manifestation of Sjögren Syndrome. Klin Monbl Augenheilkd 2007, 224, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Bak, E.; Yang, H.K.; Hwang, J.-M. Optic Neuropathy Associated with Primary Sjögren’s Syndrome: A Case Series. Optom. Vis. Sci. 2017, 94, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Jayarangaiah, A.; Sehgal, R.; Epperla, N. Sjögren’s syndrome and Neuromyelitis Optica spectrum disorders (NMOSD)—A case report and review of literature. BMC Neurol. 2014, 14, 200. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Liu, X.; Hou, X.; Zhu, Y.; Zhang, T.; Liao, L. Recurrent optic neuritis in a patient with Sjogren syndrome and neuromyelitis optica spectrum disorder. Medicine 2020, 99, e23029. [Google Scholar] [CrossRef]
- Gono, T.; Kawaguchi, Y.; Katsumata, Y.; Takagi, K.; Tochimoto, A.; Baba, S.; Okamoto, Y.; Ota, Y.; Yamanaka, H. Clinical manifestations of neurological involvement in primary Sjögren’s syndrome. Clin. Rheumatol. 2010, 30, 485–490. [Google Scholar] [CrossRef]
- Delalande, S.; de Seze, J.; Fauchais, A.L.; Hachulla, E.; Stojkovic, T.; Ferriby, D.; Dubucquoi, S.; Pruvo, J.-P.; Vermersch, P.; Hatron, P.-Y. Neurologic Manifestations in Primary Sjögren Syndrome. Medicine 2004, 83, 280–291. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Zhao, L.-R.; Zhou, J.-M.; Su, Y.-Y.; Ke, J.; Cheng, Y.; Li, J.-L.; Shen, W. Altered hippocampal functional connectivity in primary Sjögren syndrome: A resting-state fMRI study. Lupus 2020, 29, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye 2017, 31, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, S.; Panigrahi, T.; Shetty, R.; Subramani, M.; Ghosh, A.; Jeyabalan, N. Chloroquine Protects Human Corneal Epithelial Cells from Desiccation Stress Induced Inflammation without Altering the Autophagy Flux. BioMed Res. Int. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Vitali, C.; Bombardieri, S.; Jonsson, R.; Moutsopoulos, H.M.; Alexander, E.L.; Carsons, S.E.; Daniels, T.E.; Fox, P.C.; Fox, R.I.; Kassan, S.S.; et al. Classification criteria for Sjogren’s syndrome: A revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 2002, 61, 554–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome. Ann. Rheum. Dis. 2016, 76, 9–16. [Google Scholar] [CrossRef]
- Seror, R.; Bowman, S.J.; Brito-Zeron, P.; Theander, E.; Bootsma, H.; Tzioufas, A.; Gottenberg, J.-E.; Ramos-Casals, M.; Dörner, T.; Ravaud, P.; et al. EULAR Sjogren’s syndrome disease activity index (ESSDAI): A user guide. RMD Open 2015, 1, e000022. [Google Scholar] [CrossRef] [Green Version]
- Seror, R.; Theander, E.; Brun, J.G.; Ramos-Casals, M.; Valim, V.; Dörner, T.; Bootsma, H.; Tzioufas, A.; Solans-Laqué, R.; Mandl, T.; et al. Validation of EULAR primary Sjögren’s syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann. Rheum. Dis. 2014, 74, 859–866. [Google Scholar] [CrossRef]
- Cruccu, G.; Aminoff, M.; Curio, G.; Guerit, J.; Kakigi, R.; Mauguiere, F.; Rossini, P.; Treede, R.-D.; Garcia-Larrea, L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin. Neurophysiol. 2008, 119, 1705–1719. [Google Scholar] [CrossRef]
- Prado-Gutiérrez, P.; Otero, M.; Martínez-Montes, E.; Weinstein, A.; Escobar, M.-J.; El-Deredy, W.; Zañartu, M. A Method for Tracking the Time Evolution of Steady-State Evoked Potentials. J. Vis. Exp. 2019, e59898. [Google Scholar] [CrossRef] [Green Version]
- Béjot, Y.; Osseby, G.-V.; Ben Salem, D.; Beynat, J.; Muller, G.; Moreau, T.; Giroud, M. Bilateral optic neuropathy revealing Sjögren’s syndrome. Rev. Neurol. 2008, 164, 1044–1047. [Google Scholar] [CrossRef]
- De Seze, J. Atypical forms of optic neuritis. Rev. Neurol. 2012, 168, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.C.; Tironi, T.S.; Freitas, D.S.; Kleinpaul, R.; Talim, N.C.; Lana-Peixoto, M.A. Sjögren syndrome and neuromyelitis optica spectrum disorder co-exist in a common autoimmune milieu. Arq. Neuro-Psiquiatria 2014, 72, 619–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnbaum, J.; Atri, N.M.; Baer, A.N.; Cimbro, R.; Montagne, J.; Casciola-Rosen, L. Relationship Between Neuromyelitis Optica Spectrum Disorder and Sjögren’s Syndrome: Central Nervous System Extraglandular Disease or Unrelated, Co-Occurring Autoimmunity? Arthritis Rheum. 2016, 69, 1069–1075. [Google Scholar] [CrossRef]
- Park, J.-H.; Hwang, J.; Min, J.-H.; Kim, B.J.; Kang, E.-S.; Lee, K.H. Presence of anti-Ro/SSA antibody may be associated with anti-aquaporin-4 antibody positivity in neuromyelitis optica spectrum disorder. J. Neurol. Sci. 2015, 348, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Deng, C.; Wang, Q.; Zhang, W.; Fei, Y.; Xu, Y.; Zhao, Y.; Li, Y. Serum Clusterin and Complement Factor H May Be Biomarkers Differentiate Primary Sjögren’s Syndrome with and Without Neuromyelitis Optica Spectrum Disorder. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Xing, W.; Shi, W.; Leng, Y.; Sun, X.; Guan, T.; Liao, W.; Wang, X. Resting-state fMRI in primary Sjögren syndrome. Acta Radiol. 2018, 59, 1091–1096. [Google Scholar] [CrossRef]
- Hietaharju, A.; Yli-Kerttula, U.; Häkkinen, V.; Frey, H. Nervous system manifestations in Sjögren’s syndrome. Acta Neurol Scand. 1990, 81, 144–152. [Google Scholar] [CrossRef]
- Garcia, A.B.A.; Dardin, L.P.; Minali, P.A.; Czapkowsky, A.; Ajzen, S.A.; Trevisani, V.F.M. Asymptomatic Atherosclerosis in Primary Sjögren Syndrome. JCR J. Clin. Rheumatol. 2016, 22, 295–298. [Google Scholar] [CrossRef]
- Akasbi, M.; Berenguer, J.; Saiz, A.; Zeron, P.B.; Pérez-De-Lis, M.; Bové, A.; Diaz-Lagares, C.; Retamozo, S.; Blanco, Y.; Perez-Alvarez, R.; et al. White matter abnormalities in primary Sjogren syndrome. Qjm Int. J. Med. 2011, 105, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Tang, X.; Wu, L.; Lu, L.; Feng, X. Anti-Ro52 antibodies in clinical practice: A single-centre experience. Int. J. Clin. Pr. 2020, 75. [Google Scholar] [CrossRef]
- Murng, S.H.K.; Thomas, M. Clinical associations of the positive anti Ro52 without Ro60 autoantibodies: Undifferentiated connective tissue diseases. J. Clin. Pathol. 2017, 71, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Dugar, M.; Cox, S.; Limaye, V.; Gordon, T.; Roberts-Thomson, P. Diagnostic utility of anti-Ro52 detection in systemic autoimmunity. Postgrad. Med. J. 2010, 86, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Zampeli, E.; Mavrommati, M.; Moutsopoulos, H.M.; Skopouli, F.N. Anti-Ro52 and/or anti-Ro60 immune reactivity: Autoantibody and disease associations. Clin. Exp. Rheumatol. 2020, 126, 134–141. [Google Scholar]
- Sellmeijer, J.; Mathis, V.; Hugel, S.; Li, X.; Song, Q.; Chen, Q.-Y.; Barthas, F.; Lutz, P.-E.; Karatas, M.; Luthi, A.; et al. Hyperactivity of Anterior Cingulate Cortex Areas 24a/24b Drives Chronic Pain-Induced Anxiodepressive-like Consequences. J. Neurosci. 2018, 38, 3102–3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bale, A.S.; Adams, T.L.; Bushnell, P.J.; Shafer, T.J.; Boyes, W.K. Role of NMDA, nicotinic, and GABA receptors in the steady-state visual-evoked potential in rats. Pharmacol. Biochem. Behav. 2005, 82, 635–645. [Google Scholar] [CrossRef]
- Jung, S.; Ballheimer, Y.E.; Brackmann, F.; Zoglauer, D.; Geppert, C.-I.; Hartmann, A.; Trollmann, R. Seizure-induced neuronal apoptosis is related to dysregulation of the RNA-edited GluR2 subunit in the developing mouse brain. Brain Res. 2020, 1735, 146760. [Google Scholar] [CrossRef]
- Norheim, K.B.; Jonsson, G.; Harboe, E.; Hanasand, M.; Gøransson, L.; Omdal, R. Oxidative stress, as measured by protein oxidation, is increased in primary Sjøgren’s syndrome. Free. Radic. Res. 2012, 46, 141–146. [Google Scholar] [CrossRef]
- Della Porta, A.; Bornstein, K.; Coye, A.; Montrief, T.; Long, B.; Parris, M.A. Acute chloroquine and hydroxychloroquine toxicity: A review for emergency clinicians. Am. J. Emerg. Med. 2020, 38, 2209–2217. [Google Scholar] [CrossRef]
- Cabral, R.T.D.S.; Klumb, E.M.; Couto, M.I.N.N.; Carneiro, S. Evaluation of toxic retinopathy caused by antimalarial medications with spectral domain optical coherence tomography. Arq. Bras. Oftalmol. 2019, 82, 12–17. [Google Scholar] [CrossRef] [Green Version]
Age (Median) at Time of pSS Diagnosis (Years) | 50 (35–68) | ||
---|---|---|---|
Number of patients | Females | 31 | |
Males | 1 | ||
Comorbidities (n) | Lipid disorder | 1 | |
Cholelithiasis | 1 | ||
Hypertension (controlled) | 3 | ||
Thyroid nodules | 9 | ||
Clinical manifestations of pSS at the moment of examination, n (%) | glandular | Xeroophtalmia | 32 (100%) |
Xerostomia | 31 (97%) | ||
Parotid gland enlargement | 14 (44%) | ||
extraglandular | Skin lesions | 10 (31%) | |
Respiratory system involvement | 19 (59%) | ||
Peripheral arthritis | 28 (87%) | ||
Sialadenitis with a focus score ≥ 1, n (%) | 29 (90%) | ||
Autoantibodies, n (%) | ANA | 26 (81%) | |
Ro52-antibody positive | 22 (69%) | ||
SSA-antibody positive | 26 (81%) | ||
SSB-antibody positive | 21 (66%) |
VEP | Study Group n = 32 | Control Group n = 50 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | |||
Latency (ms) | N75 | 71.0 | 73.2 | 7.6 | 69.0 | 70.4 | 4.6 | 0.072 |
P100 | 103.5 | 105.5 | 5.1 | 99.50 | 100.5 | 3.9 | 0.000 | |
N145 | 143 | 145.7 | 14.2 | 146 | 140.8 | 10.9 | 0.068 | |
Amplitude (μV) | P100-N145 | 11.2 | 12.3 | 4.1 | 9.98 | 9.4 | 3.0 | 0.000 |
VEP | Mean ± SD | |
---|---|---|
Latency (ms) | N75 | 77.9 ± 7.33 |
P100 | 109.37 ± 5.67 | |
N145 | 146.80 ± 12.19 | |
Amplitude (μV) | P100-N145 | 9.89 ± 3.38 |
VEP | Study Group at Baseline n = 32 | Study Group in Follow up after 6 Years n = 32 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | |||
Latency (ms) | N75 | 71.0 | 73.2 | 7.6 | 77.0 | 77.9 | 7.33 | 0.001 |
P100 | 103.5 | 105.5 | 5.1 | 108.75 | 109.37 | 5.67 | 0.002 | |
N145 | 143 | 145.7 | 14.2 | 149.25 | 146.8 | 12.19 | 0.751 | |
Amplitude (μV) | P100-N145 | 11.2 | 12.3 | 4.1 | 9.83 | 9.89 | 3.38 | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziadkowiak, E.; Sebastian, A.; Wieczorek, M.; Pokryszko-Dragan, A.; Madej, M.; Waliszewska-Prosół, M.; Budrewicz, S.; Wiland, P.; Ejma, M. Visual Evoked Potentials as Potential Biomarkers of Visual Function in Patients with Primary Sjögren’s Syndrome. J. Clin. Med. 2021, 10, 4196. https://doi.org/10.3390/jcm10184196
Dziadkowiak E, Sebastian A, Wieczorek M, Pokryszko-Dragan A, Madej M, Waliszewska-Prosół M, Budrewicz S, Wiland P, Ejma M. Visual Evoked Potentials as Potential Biomarkers of Visual Function in Patients with Primary Sjögren’s Syndrome. Journal of Clinical Medicine. 2021; 10(18):4196. https://doi.org/10.3390/jcm10184196
Chicago/Turabian StyleDziadkowiak, Edyta, Agata Sebastian, Malgorzata Wieczorek, Anna Pokryszko-Dragan, Marta Madej, Marta Waliszewska-Prosół, Sławomir Budrewicz, Piotr Wiland, and Maria Ejma. 2021. "Visual Evoked Potentials as Potential Biomarkers of Visual Function in Patients with Primary Sjögren’s Syndrome" Journal of Clinical Medicine 10, no. 18: 4196. https://doi.org/10.3390/jcm10184196
APA StyleDziadkowiak, E., Sebastian, A., Wieczorek, M., Pokryszko-Dragan, A., Madej, M., Waliszewska-Prosół, M., Budrewicz, S., Wiland, P., & Ejma, M. (2021). Visual Evoked Potentials as Potential Biomarkers of Visual Function in Patients with Primary Sjögren’s Syndrome. Journal of Clinical Medicine, 10(18), 4196. https://doi.org/10.3390/jcm10184196