The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Serum Sampling
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmick, C.G.; Felson, D.T.; Lawrence, R.C.; Gabriel, S.; Hirsch, R.; Kwoh, C.K.; Liang, M.H.; Kremers, H.M.; Mayes, M.D.; Merkel, P.A.; et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008, 8, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Shimizu, T.; Kawakami, A. Role of viral infections in the pathogenesis of Sjögren’s syndrome: Different characteristics of Epstein-Barr virus and HTLV-1. J. Clin. Med. 2020, 9, 1459. [Google Scholar] [CrossRef]
- Lessard, C.J.; Li, H.; Adrianto, I.; Adrianto, I.; A Ice, J.; Rasmussen, A.; Grundahl, K.M.; Kelly, J.; Dozmorov, M.; Miceli-Richard, C.; et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat. Genet. 2013, 45, 1284–1292. [Google Scholar] [CrossRef]
- Song, I.W.; Chen, H.C.; Lin, Y.F.; Yang, J.-H.; Chang, C.-C.; Chou, C.-T.; Lee, M.-T.M.; Chou, Y.-C.; Chen, C.-H.; Chen, Y.-T.; et al. Identification of susceptibility gene associated with female primary Sjögren’s syndrome in Han Chinese by genome-wide association study. Hum. Genet. 2016, 135, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ice, J.A.; Lessard, C.J.; Sivils, K.L. Interferons in Sjögren’s syndrome: Genes, mechanisms, and effects. Front. Immunol. 2013, 4, 290. [Google Scholar] [CrossRef] [Green Version]
- Marketos, N.; Cinoku, I.; Rapti, A.; Mavragani, C.P. Type I interferon signature in Sjögren’s syndrome: Pathophysiological and clinical implications. Clin. Exp. Rheumatol. 2019, 37, 185–191. [Google Scholar] [PubMed]
- Nezos, A.; Gravani, F.; Tassidou, A.; Kapsogeorgou, E.K.; Voulgarelis, M.; Koutsilieris, M.; Crow, M.K.; Mavragani, C.P. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: Contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J. Autoimmun. 2015, 63, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.Q.; Peck, A.B. The Interferon-Signature of Sjögren’s Syndrome: How Unique Biomarkers Can Identify Underlying Inflammatory and Immunopathological Mechanisms of Specific Diseases. Front. Immunol. 2013, 4, 142. [Google Scholar] [CrossRef] [Green Version]
- Mavragani, C.P.; Niewold, T.B.; Moutsopoulos, N.M.; Pillemer, S.R.; Wahl, S.M.; Crow, M.K. Augmented interferon-alpha pathway activation in patients with Sjogren’s syndrome treated with etanercept. Arthritis Rheum. 2007, 56, 3995–4004. [Google Scholar] [CrossRef]
- Ambrosi, A.; Wahren-Herlenius, M. Update on the immunobiology of Sjogren’s syndrome. Curr. Opin. Rheumatol. 2015, 27, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Gottenberg, J.E.; Cagnard, N.; Lucchesi, C.; Letourneur, F.; Mistou, S.; Lazure, T.; Jacques, S.; Ba, N.; Ittah, M.; Lepajolec, C.; et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 2770–2775. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.C.; Casciola-Rosen, L.; Berger, A.E.; Kapsogeorgou, E.K.; Cheadle, C.; Tzioufas, A.G.; Baer, A.N.; Rosen, A. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. Proc. Natl. Acad. Sci. USA 2012, 109, 17609–17614. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, N.; Ping, L.; Zhenjun, L.; Takada, Y.; Sugai, S. Involvement of the interferon-gamma-induced T cell-attracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjogren’s syndrome. Arthritis Rheum. 2002, 46, 2730–2741. [Google Scholar] [CrossRef]
- Ronnblom, L.; Eloranta, M.L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 2013, 25, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Brayer, J.; Gao, J.; Brown, V.; Killedar, S.; Yasunari, U.; Peck, A.B. A dual role for interferon-gamma in the pathogenesis of Sjogren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand. J. Immunol. 2004, 60, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Pollard, K.M.; Cauvi, D.M.; Toomey, C.B.; Morris, K.V.; Kono, D.H. Interferon-gamma and systemic autoimmunity. Discov. Med. 2013, 16, 123–131. [Google Scholar] [PubMed]
- Billiau, A.; Matthys, P. Interferon-gamma: A historical perspective. Cytokine Growth Factor Rev. 2009, 20, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ivashkiv, L.B. Cross-regulation of signaling pathways by interferon-gamma: Implications for immune responses and autoimmune diseases. Immunity 2009, 31, 539–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Yu, X.Q.; Greth, W.; Robbie, G.J. Population pharmacokinetic analysis of sifalimumab from a clinical phase IIb trial in systemic lupus erythematosus patients. Br. J. Clin. Pharmacol. 2016, 81, 918–928. [Google Scholar] [CrossRef]
- Retamozo, S.; Flores-Chavez, A.; Consuegra-Fernández, M.; Lozano, F.; Ramos-Casals, M.; Brito-Zerón, P. Cytokines as therapeutic targets in primary Sjögren syndrome. Pharmacol. Ther. 2018, 184, 81–97. [Google Scholar] [CrossRef]
- Sjöstrand, M.; Johansson, A.; Aqrawi, L.; Olsson, T.; Wahren-Herlenius, M.; Espinosa, A. The Expression of BAFF Is Controlled by IRF Transcription Factors. J. Immunol. 2016, 196, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Coursey, T.G.; Tukler Henriksson, J.; Barbosa, F.L.; de Paiva, C.S.; Pflugfelder, S.C. Interferon-γ-Induced Unfolded Protein Response in Conjunctival Goblet Cells as a Cause of Mucin Deficiency in Sjögren Syndrome. Am. J. Pathol. 2016, 186, 1547–1558. [Google Scholar] [CrossRef] [Green Version]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Seror, R.; Bowman, S.J.; Brito-Zeron, P.; Theander, E.; Bootsma, H.; Tzioufas, A.; Gottenberg, J.-E.; Ramos-Casals, M.; Dörner, T.; Ravaud, P.; et al. EULAR Sjögren’s syndrome disease activity index (ESSDAI): A user giude. RMD Open 2015, 1, e000022. [Google Scholar] [CrossRef] [Green Version]
- Seror, R.; Ravaud, P.; Mariette, X.; Bootsma, H.; Theander, E.; Hansen, A.; Ramos-Casals, M.; Doerner, T.; Bombardieri, S.; Hachulla, E.; et al. EULAR Sjogren’s Syndrome Patient Reported Index (ESSPRI): Development of a consensus patient index for primary Sjogren’s syndrome. Ann. Rheum. Dis. 2011, 70, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, G.; Kitapçıoğlu, G.; Özçaka, Ö.; Alpöz, E.; Nalbantsoy, A.; Koçanaoğulları, H.; Gücenmez, S.; Keser, G.; Kabasakal, Y. Saliva levels of caspase-1, TNF-α, and IFN-γ in primary Sjögren’s syndrome: Oral mucosal abnormalities revisited. Turk. J. Med. Sci. 2018, 48, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Brkic, Z.; Maria, N.I.; van Helden-Meeuwsen, C.G.; van de Merwe, J.P.; van Daele, P.L.; A Dalm, V.; E Wildenberg, M.; Beumer, W.; A Drexhage, H.; A Versnel, M. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren’s syndrome and association with disease activity and BAFF gene expression. Ann. Rheum. Dis. 2013, 72, 728–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.C.; Baer, A.N.; Shah, A.A.; Criswell, L.A.; Shiboski, C.H.; Rosen, A.; Casciola-Rosen, L. Molecular Subsetting of Interferon Pathways in Sjögren’s Syndrome. Arthritis Rheumatol. 2015, 67, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Bodewes, I.L.A.; Al-Ali, S.; van Helden-Meeuwsen, C.G.; Maria, N.I.; Tarn, J.; Lendrem, D.; Schreurs, M.W.J.; Steenwijk, E.C.; Van Daele, P.L.A.; Both, T.; et al. Systemic interferon type I and type II signatures in primary Sjögren’s syndrome reveal differences in biological disease activity. Rheumatology 2018, 57, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.; Mirza, K.; Tarn, J.; Howard-Tripp, N.; Bowman, S.J.; Lendrem, D.; Ng, W.F. Fatigue in primary Sjögren’s syndrome (pSS) is associated with lower levels of proinflammatory cytokines: A validation study. Rheumatol. Int. 2019, 39, 1867–1873. [Google Scholar] [CrossRef] [Green Version]
- Maślińska, M.; Mańczak, M.; Kwiatkowska, B. Usefulness of rheumatoid factor as an immunological and prognostic marker in PSS patients. Clin. Rheumatol. 2019, 38, 1301–1307. [Google Scholar] [CrossRef] [Green Version]
- Nocturne, G.; Mariette, X. Sjögren Syndrome-associated lymphomas: An update on pathogenesis and management. Br. J. Haematol. 2015, 168, 317–327. [Google Scholar] [CrossRef]
- Youinou, P.; Pers, J.O. Disturbance of cytokine networks in Sjögren’s syndrome. Arthritis Res. Ther. 2011, 13, 227. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Shimizu, E.; Tsubota, K. Interferons and Dry Eye in Sjögren’s Syndrome. Int. J. Mol. Sci. 2018, 19, 3548. [Google Scholar] [CrossRef] [Green Version]
- Bian, F.; Barbosa, F.L.; Corrales, R.M.; Pelegrino, F.S.A.; A Volpe, E.; Pflugfelder, S.C.; De Paiva, C.S. Altered balance of interleukin-13/interferon-gamma contributes to lacrimal gland destruction and secretory dysfunction in CD25 knockout model of Sjögren’s syndrome. Arthritis Res. Ther. 2015, 17, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodewes, I.L.A.; Gottenberg, J.E.; van Helden-Meeuwsen, C.G.; Mariette, X.; Versnel, M.A. Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjögren’s syndrome in the JOQUER randomized trial. Rheumatology 2020, 59, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Hillen, M.R.; Pandit, A.; Blokland, S.L.M.; Hartgring, S.A.Y.; Bekker, C.P.J.; Van Der Heijden, E.H.M.; Servaas, N.H.; Rossato, M.; Kruize, A.A.; Van Roon, J.A.G.; et al. Plasmacytoid DCs From Patients With Sjögren’s Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front. Immunol. 2019, 10, 2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bombardieri, M.; Argyropoulou, O.D.; Ferro, F.; Coleby, R.; Pontarini, E.; Governato, G.; Lucchesi, D.; Fulvio, G.; Tzioufas, A.G.; Baldini, C. One year in review 2020: Pathogenesis of primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2020, 126, 3–9, Epub 2020 Sep 29. [Google Scholar]
- Aota, K.; Ono, S.; Yamanoi, T.; Kani, K.; Momota, Y.; Azuma, M. MMP-9 Inhibition Suppresses Interferon-γ-Induced CXCL10 Production in Human Salivary Gland Ductal Cells. Inflammation 2019, 42, 2148–2158. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, D.; Coleby, R.; Pontarini, E.; Prediletto, E.; Rivellese, F.; Hill, D.G.; Soria, A.D.; Jones, S.A.; Humphreys, I.R.; Sutcliffe, N.; et al. Impaired Interleukin-27-Mediated Control of CD4+ T Cell Function Impact on Ectopic Lymphoid Structure Formation in Patients With Sjögren’s Syndrome. Arthritis Rheumatol. 2020, 72, 1559–1570. [Google Scholar] [CrossRef]
- Fox, R.I.; Fox, C.M.; Gottenberg, J.E.; Dörner, T. Treatment of Sjögren’s syndrome: Current therapy and future directions. Rheumatology 2021, 60, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
Parameter | IFNγ Negative Group (n = 7) | IFNγ Positive Group (n = 33) | p-Value |
---|---|---|---|
Age of patients (years) | |||
- mean (SD) | 57.7 (12.0) | 43.5 (13.3) | 0.04 (test U) |
Time from pSS diagnosis (years) | 5.2 (3.5) | 4.27 (4.28) | 0.01 (test U) |
ESSDAI value | |||
- Mean (SD) | 6.2 (2.0) | 10.4 (6.2) | <0.05(test U) |
C3 hypocomplementemia (n) | 1 | 4 | 0.8 (test X2) |
C4 hypocomplementemia (n) | 1 | 5 | 0.9 (test X2) |
Positive anti-SSA antibodies (n) | 6 | 26 | 0.8 (test X2) |
Positive anti-SSB antibodies (n) | 4 | 20 | 0.9 (test X2) |
Focus score ≥ 1 (n) | 4 | 30 | 0.4 (test X2) |
Rheumatoid factor (nv < 14 IU/mL) | |||
- Positive results (n) | 3 | 28 | 0.3 (test U) |
- Mean (SD) | 10.5 (11.4) | 34.9 (72.1) | <0.05 (test X2) |
- median | 5 | 9 | |
Positive cryoglobulins (n) | 1 | 0 | - |
ESR mean value (nv 3–15 mm/hr) (SD) | 11 (4.9) | 17.8 (13.3) | 0.1 (test U) |
CRP mean value (nv 0–5 mg/L) (SD) | 0.8 (0.5) | 1.8 (2.7) | 0.1 (test U) |
ESSDAI Domain (Weight > 0) | IFNγ Negative Group Number of Patients | IFNγ Positive Group Number of Patients | p-Value |
---|---|---|---|
Constitutional | 0 | 4 | - |
Lymphadenopathy | 0 | 2 | - |
Lymphoma | 0 | 0 | |
Glandular | 3 | 6 | 0.2 (test X2) |
Articular | 4 | 22 | 0.8 (test X2) |
Cutaneous | 0 | 4 | - |
Pulmonary | 2 | 6 | 0.6 (test X2) |
Renal | 0 | 1 | - |
Muscular | 0 | 0 | - |
Peripheral nervous system | 0 | 0 | - |
Central nervous system | 0 | 0 | - |
Hematological | 2 | 8 | 0.8 (test X2) |
Biological | 3 | 16 | 0.8 (test X2) |
ESSPRI Score (Min 0 to Max 10 Points) | IFNγ Negative Group (0–10 Points) | IFNγ Positive Group (0–10 Points) | p-Value |
---|---|---|---|
Dryness–mean (SD) | 6.1 (4.1) | 4.6 (2.2) | 0.1 |
Fatigue–mean (SD) | 6.1 (3.0) | 4.8 (2.2) | 0.3 |
Pain–mean (SD) | 4.0 (3.5) | 3.0 (2.6) | 0.5 |
Medicament | IFNγ Negative Group Number of Patients | IFNγ Positive Group Number of Patients | p-Value |
---|---|---|---|
Hydroxychloroquine | 3 | 17 | 0.06 (test X2) |
Methotrexate | 0 | 5 | - |
Azathioprine | 1 | 4 | 0.08 (test X2) |
Cyclosporine | 0 | 2 | - |
Mycophenolate mofetil | 0 | 1 | - |
Combination therapy | 1 | 10 | 0.4 (test X2) |
No therapy | 3 | 4 | 0.1 (test X2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastian, A.; Madej, M.; Sebastian, M.; Łuczak, A.; Gajdanowicz, P.; Zemelka-Wiącek, M.; Wiland, P. The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study. J. Clin. Med. 2022, 11, 3. https://doi.org/10.3390/jcm11010003
Sebastian A, Madej M, Sebastian M, Łuczak A, Gajdanowicz P, Zemelka-Wiącek M, Wiland P. The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study. Journal of Clinical Medicine. 2022; 11(1):3. https://doi.org/10.3390/jcm11010003
Chicago/Turabian StyleSebastian, Agata, Marta Madej, Maciej Sebastian, Anna Łuczak, Paweł Gajdanowicz, Magdalena Zemelka-Wiącek, and Piotr Wiland. 2022. "The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study" Journal of Clinical Medicine 11, no. 1: 3. https://doi.org/10.3390/jcm11010003
APA StyleSebastian, A., Madej, M., Sebastian, M., Łuczak, A., Gajdanowicz, P., Zemelka-Wiącek, M., & Wiland, P. (2022). The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study. Journal of Clinical Medicine, 11(1), 3. https://doi.org/10.3390/jcm11010003